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from the equation of Fischer and Seraphin!®.!1:
OR/R=a(s,e1,e2)3e11B (¢, €1,€2) 0¢s, (6)

where a and B are also functions of the polarization of
the incident light when ¢0. It is obvious that the two
terms of (6) might nearly cancel, even when the struc-
ture in de; and be; is pronounced, if o and 8 had proper
magnitude and sign.

The measurements are consistent with the usual in-
terpretation of the band structure in Au and Ag. The
Ly — Ly transition at 2.1 €V in Au and the hybrid in-
terband transition and plasma resonance at 3.9 ¢V in Ag
are clearly visible. Analysis of the de; and de;, lineshapes
obtained by this method should aid the study of other
excitations, in these and other materials, whose identi-
fication from band theory may be less clear, since para-
bolic and saddle-point transitions give easily identified
characteristic line shapes.

10 B. O. Seraphin and N. Bottka, Phys. Rev. Letters 15, 104
(1965).

11 J. E. Fischer and B. O. Seraphin, Solid State Commun. 5,
973 (1967).
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This theory assumes scalar e, e, 8¢, and 8e;. The
obliquely incident beam is affected by components of
the tensors d¢; and dez both along and perpendicular to
the modulating field. This is not the case with normal-
incidence measurements, where the electric vector of the
light is always perpendicular to the applied electric
field. The agreement of our calculated 6R/R spectra
with those observed in normal-incidence experiments
suggests that the anisotropy introduced is small. This
may be due to the fact that, in a polycrystalline film,
the crystal axes effectively assume all orientations with
respect to the optical and applied fields. The tensor
character of de; and dez, contained in matrix elements
which in turn depend on crystal orientation with respect
to the modulating field,>=1* may thus be masked in
polycrystalline samples.

12D, E. Aspnes, Phys. Rev. 147, 544 (1966).

13D, E. Aspnes, Phys. Rev. 153, 972 (1967).

14D, E. Aspnes, P. Handler, and D. F. Blossey, Phys. Rev. 166,
921 (1968).
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The Cohen-Harrison-Harrison formalism has been used to calculate longitudinal magnetoacoustic dis-
persion and attenuation curves in transverse fields for values of the parameter ¢/ between 1.0 and 200
(gd=wvs7/v). The results of this calculation show that as ¢/ is decreased from the limiting case of ¢I>>1,
the oscillations in the attenuation are damped out faster than the oscillations in the dispersion. Experi-
mental data are given for both the attenuation and fractional velocity shift in aluminum and are shown to
be in qualitative agreement with the theory. An examination of magnetoacoustic-attenuation data in
potassium shows that the deviation of the attenuation minima from the positions predicted in the limit

g>1 agrees quantitatively with theory.

INTRODUCTION

HEORETICAL treatments of the magnetoacous-

tic effect can be divided into those based upon

the free-electron model of a metal and those which are

designed to apply to a metal with an arbitrary Fermi

surface. Both types of treatments are semiclassical in

nature and both assume an isotropic electron relaxation
time over the Fermi surface.

A comprehensive treatment of ultrasonic attenuation
in real metals is given by Pippard.! He first considers
the attenuation in the absence of a magnetic field and
then applies the field. The effect of real metals on the
attenuation is introduced by means of a deformation

* Work supported by the U. S. Atomic Energy Commission.
1 A. B. Pippard, Proc. Roy. Soc. (London) 257, 165 (1960).

parameter. This parameter is a measure of how the
local Fermi surface deforms when subjected to a strain.
In the presence of an acoustic wave, this strain is
produced by the electric field set up between the ions
and electrons by the wave. It would appear that such
a treatment, which can be used for arbitrarily shaped
Fermi surfaces and which includes variations in the
strength of the coupling between the electrons and the
acoustic phonons, should be used in interpreting experi-
mental magnetoacoustic data. However, when this is
attempted, several inherent difficulties appear. One
problem is that a determination of the shape of the
attenuation curve involves evaluating many integrals
over the Fermi surface. Thus, while one can predict
the shape of the experimental curve if the Fermi sur-
face is known, it is far more difficult to determine the
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Fermi surface from the shape of the experimental curve.
In addition, many of these integrals over the Fermi
surface contain the deformation parameter. The form
of this parameter is not well known and has been
experimentally determined only partially for the noble
metals.? While this parameter should, in principle, be
calculable from a pseudopotential approach, this has
not yet been done. In view of these difficulties, it ap-
pears that it might be preferable to use a theory based
upon the free-electron model for a guide in interpreting
experimental data.

The free-electron theory of magnetoacoustic attenua-
tion was first correctly developed by Kjeldaas and
Holstein.? Their treatment was aimed specifically at
geometries associated with experimental work. In it,
curves are given showing the variation in the shape of
the attenuation curves as a function of the parameter ¢/
(gis the acoustic wave number and / is the electron mean
free path). Cohen, Harrison, and Harrison* (CHH)
then developed a complete formalism for the magneto-
acoustic attenuation. This formalism applies to all
geometries of magnetic field direction and acoustic
polarization vector and, in addition, holds for all values
of ¢l. However, in their application of the formalism,
they restricted themselves to the limiting case of ¢/>>1.
Here it should be noted that Pippard’s treatment gives
the CHH results when applied to a free-electron gas.
Subsequently, Shah and Meijer® used the CHH for-
malism to calculate attenuation curves for several
values of ¢l. Flax and Trivisonno® have also determined
the attenuation at several values of ¢/ and, in addition,
give series solutions which can be used to calculate the
attenuation for arbitrary values of gl.

Magnetoacoustic-attenuation experiments, in which
the necessary requirements of frequency and sample
purity have been met, have shown oscillatory behavior
similar to that predicted by the CHH theory. In general,
the shapes of these attenuation curves are more complex
than those predicted by CHH. This complexity arises
from three main sources. They are differing phases for
the oscillations because of departures of the orbit
shapes from circles, more than one band of electrons
giving rise to oscillations, and a background attenuation
caused by a noncoherent sum of attenuations arising
from all other orbits on the Fermi surface. The best
agreement between the shapes of experimental and
theoretical curves should be seen in the alkali metals
because of their near-spherical Fermi surfaces. Such
agreement is apparent in the experimental studies on

(1; 5.) E. MacFarlane and J. A. Rayne, Phys. Rev. 162, 532
(1;;1‘.) ~Kjeldaas and T. D. Holstein, Phys. Rev. Letters 2, 340
9).

4M. H. Cohen, M. J. Harrison, and W. A. Harrison, Phys.
Rev. 117, 937 (1960).
( ; B.) P. Shah and P. H. E. Meijer, J. Acoust. Soc. Am. 36, 327
1964).

8 L. Flax and J. Trivisonno, Phys. Letters 22, 569 (1966).
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potassium by Trivisonno, Said, and Pauer’ and by
Foster, Meijer, and Mielczarek.® Thus, to date, free-
electron theory gives a good qualitative prediction of
the behavior of the magnetoacoustic attenuation in
potassium and appears to give generally correct quali-
tative predictions of the behavior of the attenuation in
other metals.

In addition to the attenuation, one can also measure
the acoustic dispersion caused by the magnetoacoustic
effect. Rodriguez® has applied the CHH formalism to
calculate the fractional velocity shift Av/v. The calcula-
tion is restricted to the limiting case ¢2>>1 and in this
limit shows that the functional dependence of the
attenuation and velocity shift upon the magnetic field
are the same. In an experimental investigation of the
velocity shift in aluminum, Beattie and Uehling!® (BU)
found that for values of ¢/ around 4 the velocity shift
appeared to have a stronger set of oscillations than the
attenuation for the same electron orbits. While alumi-
num is very free-electron-like in character, it does not
have a spherical Fermi surface. This raised the question
as to whether the free-electron theory applies to all
metals having a free-electron character or only to those
metals which have a spherical Fermi surface. It there-
fore appeared desirable to extend the calculation of the
velocity shift to low values of ¢/ in order to investigate
the possible divergences between the functional de-
pendence on the field of the dispersion and attenuation
at small ¢l.

In this paper, the formalism of CHH is used to
calculate both the fractional velocity shift and the
attenuation for values of ¢/ between 1 and 200. The
calculation shows that for ¢/<20 the functional de-
pendences of the attenuation and dispersion diverge,
with the dispersion showing a stronger oscillatory be-
havior than the attenuation at a given value of ¢/. In
addition, new experimental data on aluminum are pre-
sented. The results show that the free-electron theory
does apply remarkably well to free-electron metals with
nonspherical Fermi surfaces. While the shapes of the
experimental curves differ from those predicted because
of the nonspherical surface, it appears that all behavior
seen is qualitatively predicted by theory.

THEORY

In this section the theoretical development will be
briefly sketched and the results presented. Details of the
numerical calculation will be reserved for the Ap-
pendix. The approach is basically that of Rodriguez®
in which the equation of motion of the ions is set up
and solved for both the real and imaginary parts of the
acoustic velocity. For simplicity, cubic symmetry is

7J. Trivisonno, M. S. Said, and L. A. Pauer, Phys. Rev. 147,
518 (1966).

8H. J. Foster, P. H. E. Meijer, and E. V. Mielczarek, Phys.
Rev. 139, A1849 (1965).

9S. Rodriguez, Phys. Rev. 130, 1778 (1963) ; 132, 535 (1963).

10 A, G. Beattie and E. H. Uehling, Phys. Rev. 148, 657 (1966).



174

used. The oscillatory part of the result for both the
attenuation and the dispersion will be valid for any
system where a pure longitudinal wave is propagated.
However the small transverse component present in
any longitudinal wave propagating in a finite medium
should not effect the results of the calculation. The
calculation is also restricted to a magnetic field per-
pendicular to the direction of propagation.

Longitudinal plane waves are assumed traveling
along the x axis with the form of expi(q-x—wf). The
external field B, is applied along the z axis. An equation
of motion for the ions can be written

NoMi=CvV-1—C,VXVXr
+Ne[E+iX (Bo+B)]—Nm(i—8)/7. (1)

In this equation, the C’s are the elastic constants of the
bare lattice, Vo is the number of ions per unit volume,
M is the ion mass, E and B are the fields associated
with the acoustic wave, r and s are the mean displace-
ments of the ions and electrons, respectively, and = is
the mean electron relaxation time. The last term gives
the momentum transfer per unit time from the electrons
to the lattice. The term involving the magnetic field
associated with the ion currents, B, can be dropped
without introducing an appreciable error, and it can be
shown using Maxwell’s equations that the momentum-
transfer term is about a factor of 107 the size of the
third term on the right. For longitudinal motion, only
the x component of Eq. (1) is necessary. This can be

written
NoMoro=Cig’r,— NeE,. (2)

The problem is now reduced to determining E,. The
formalism of CHH can be used to calculate E, in the
following manner. The electric field is linearly related
to the ion velocity, and this defines the tensor W:

E=NoW-i/oo, 3)

Ez= (—'L.wNoefz/Uo)sz. (4)

From CHH we can write W,, in terms of the con-
ductivity tensor o as

from which

©)

To obtain this result, terms involving 8= —w/ut’s,
have been omitted. For acoustic frequencies less than 1
GHz, and for pure samples with 72>107! sec, 8 is less
than 1073, making this a reasonable approximation.
Here o9 is the dc conductivity Netr/m, and A=w7rv,*/
30¢0?(1—4wr). Substituting the CHH expressions for
the components of ¢ into Eq. (5) gives the final
expression

W ooe=1—1000— 0'0(7111// (U'mo'w— ‘711/2) .

w?  C my mv T
P=—= J| T f(Boyk;ql)
¢ NoM 3M(1+w?r?) M
myfeT

+ Bok,gl), (6
13Mg(o g, (6)
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and from Eq. (6) the fractional velocity shift and
attenuation can be written

Av/v=(Es?r?/3M2) f(Bo,k,ql)
a= (2Ex?1/3M ) g(Bo,k,ql).

The magnetoacoustic oscillations arising from the geo-
metric resonances are contained in the oscillatory func-
tions f and g. In the limit of ¢Z>>1 these two functions
differ only by a constant and therefore have the same
functional dependence upon the magnetic field. How-
ever, as gl approaches unity, the oscillatory behavior
of g damps out faster than that of f. Figures 1-3 are
plots of the fractional velocity shift and attenuation as
a function of the parameter gvs/w, for several values of
gl. In this calculation, all terms in «?7* have been kept.
From the definition of ¢/ we can write wr= (v/v;)gl. For
the purpose of the calculation we have set v/v,=300,
which is very close to the correct value for longitudinal
waves in both aluminum and copper.

(M

EXPERIMENTAL APPARATUS

The design of the experiment is based on the con-
tinuous wave phase comparison technique described in
BU. The apparatus has been considerably modified
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Fic. 1. Theoretical curves for the functions f(Bok,gl) and
g(Bo,k,gl) for values of ¢l of 1.0, 2.0, and 3.0. The function f
gives the behavior of the fractional velocity shift, and g gives the
attenuation. Throughout the figures, the fractional velocity shift

is a solid curve and the attenuation is dashed.
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F16. 2. Theoretical curves of f and g for values of g/
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from that used in BU to allow for the continuous re-
cording of the phase shift and attenuation as a function
of magnetic field. A block diagram of the apparatus is
given in Fig. 4. The rf generator is frequency-stabilized
to a few parts in 107 by the synchronizer. The fine
tuning control of the synchronizer and the counter
allow the frequency to be set to any desired value to
within about 4=5 Hz at 50 MHz. The use of the Hewlett-
Packard 8405A vector voltmeter to measure both phase
and amplitude allows the continuous recording of both
attenuation and phase shift as a function of magnetic
field. The field is measured by tapping the output of a
0.019, Rawson gaussmeter used in the field control
circuits of a Harvey-Wells magnet.

Ten MHz X-cut quartz transducers were used. The
bonding agent was Dow Corning 200 fluid of viscosity
200 000 centistokes. It was noted in pulse experiments
that this bonding material exhibited rather anomalous
acoustic behavior above the solidifing temperature.
However, its performance at nitrogen and helium tem-
peratures was satisfactory. The sample holder was a
modification of the one described in BU. The tin casting
around the sample was eliminated and a conducting
paint was used to ground the sample and improve the
shielding. This modification did eliminate the de-
gradation of the sample because of temperature cycling
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but did not improve the electrical characteristics of the
system.

The sample was a right circular cylinder, cut by spark
erosion from a zone-refined ingot of aluminum.! It was
oriented by Laue back reflection and cut with a [110]
crystal axis along the cylinder axis. The cylinder end
faces were spark-planed flat and to within £° of (110)
planes. Final planing of the faces was done on the
lowest range (position 7) of a Servomet spark cutter
and faces were then very lightly polished to remove the
carbon. The residual resistivity ratio of the sample
(R295/R4.0) was determined by the eddy-current-decay
method® to be 55002=109,. Measurements of the ratio
were made at the beginning and end of the experiment
and no change was seen. The average electron relaxation
time corresponding to this ratio is 3.8%X101 sec. All
data were taken at 2.0°K. This eliminated the noise
arising from bubble formation against the faces of the
transducers. The sample conductivity appeared to be
impurity limited and no change in ¢ was detected
between 4.0 and 2.0°K.

The phase noise in the vector voltmeter is about
=£0.1° for high signal amplitudes. For low signal ampli-
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Fic. 3. Theoretical curves of f and g for values of ¢/
of 10, 20, and 200.

11'The sample was cut from an ingot of Cominco 69 grade
aluminum.

2 C. P. Bean, R. W. DeBlois, and L. B. Nesbitt, J. Appl. Phys.
30, 1976 (1959).
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FiG. 4. Block diagram of the experimental apparatus.

tudes into the voltmeter, the noise level increased. It
was found that the noise was essentially white. This
allowed a substantial increase in the signal-to-noise
level by running the output of the vector voltmeter
through an amplifier with a long time constant. A box-
car integrator used in the continuous mode with time
constants from 1 to 10 sec allowed a phase resolution
of 0.01°. Neglecting any experimental difficulties, the
fractional velocity shift is Av/v=vA0/(360Lv), where L
is the sample length and Af is in degrees. For an alumi-
num sample with a length of 1 cm at a frequency of 50
MHz, this gives a resolution in the fractional velocity
shift of better than 0.4 ppm. The magnetic field can be
read off the XV recorder to an accuracy of &5 G.

The signal amplitude was converted to an attenua-
tion by running the output of the vector voltmeter
through a logarithmic converter. The attenuation could
be calibrated by means of the turret attenuator in the
receiving line of the system. For this calibration, the
field was held constant at the point of lowest attenua-
tion and the attenuator changed in appropriate steps
until the received signal amplitude was smaller than the
signal had been at the point of highest attenuation.
Each plot of the attenuation was calibrated in this
manner. At the frequencies reported here, the change in
the voltage standing wave ratio between the individual
attenuator pads was negligible and the difference in
phase shift across the individual pads was less than 0.5°
for the worst pair. The estimated possible error in the
attenuation measurement is less than 4-0.05 dB.

RESULTS AND DISCUSSION

The experimental geometry for the data reported
here had a longitudinal acoustic wave propagating
down a [110] crystal axis with the magnetic field lying
along a [1107] axis. This field direction picks a band of
orbits, roughly hexagonal in shape, lying on the second-
zone hole surface of aluminum. The sides of the hexagon
are concave and this radical departure from a circular
orbit gives rise to magnetoacoustic oscillations with a
phase, in 1/AH, quite different from that predicted by
free-electron theory. This difference in phase plus the
addition of a second weaker oscillation, seen by Kamm
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and Bohm,” makes any detailed comparison of the
experimental curve shape with theory impossible. In
general, all field orientations in aluminum will give
oscillatory patterns composed of oscillations with sev-
eral periods and different phases. The field direction
selected gives one of the strongest and cleanest sets of
oscillations. An example of these oscillations in the
attenuation is given in Fig. 5. This curve was obtained
by standard pulse-echo techniques at 140 MHz. The
sample was a disk sliced from the end of the cylinder
used in the velocity-shift experiments. The distortion
in the relative heights of the peaks is caused by the
presence of the low-frequency oscillation.

Experimental curves for both the attenuation and
fractional velocity shift are presented for 30 MHz in
Fig. 6(a) and for 50 MHz in Fig. 7(a). From the esti-
mated electron relaxation time, the values of ¢/ for
these curves were calculated to be 2.3 and 3.7, with an
uncertainty of 109, In Figs. 6(b) and 7(b) the
theoretical functions f(Bok,ql) and g(Bok,ql) are
plotted for these values of gl. These values of ¢/ are
obtained from the eddy-current-decay measurement of
the electron relaxation time. This measurement was
taken with the field parallel to a [[110] axis so as to
have the same distribution of electron orbits on the
Fermi surface as was present in the experiment. The
eddy-current-decay method will pick out the longest
relaxation time present in the metal for any sizable
band of orbits. For this field direction, the largest band
of orbits is the one giving rise to the magnetoacoustic
oscillations. Therefore these values are thought to be
correct to within experimental accuracy.

The exact shapes of the fractional velocity shift
curves were sensitive to small changes in frequency.
This sensitivity arises from two different types of ex-
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Fi6. 5. Magnetoacoustic attenuation curve taken by the pulse-
echo method at 140 MHz. The ¢/ for this curve is about 10.

18 G, N. Kamm and H. V. Bohm, Phys. Rev. 131, 111 (1963).
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Fic. 6. (a) Experimental curves for the fractional velocity
shift in aluminum taken at 31.091 MHz. The approximate ¢/ is
2.3. (b) Theoretical curves of fand g for a ¢ of 2.3.

perimental difficulties. These are rf leakage from the
transmitting line to the receiving line and the occur-
rence of standing waves in the sample. Both will cause
any changes in the signal amplitude to be reflected in
the measured phase shift. This will occur at most
frequencies. However, there are narrow frequency
bands, spaced at intervals of Av=1/2L (Av=2330 kHz
for this sample), where the phase shift is caused pri-
marily by the velocity shift. The width of these bands
varies from about 20 kHz for interference caused pri-
marily by leakage to 10 Hz for interference caused by
a large-amplitude standing wave. The intetference
by the standing waves rapidly decreased as the
frequency, and thus the attenuation, was raised, while
the interference from leakage increased with an in-
crease in frequency. Inside the bands the curve shapes
are still somewhat distorted by the attenuation changes.
Thus care had to be used in choosing the exact fre-
quency. The criterion used was to find a frequency where
the shapes of the curves resembled those predicted by
theory and the shifts had the correct sign, i.e., corre-
sponded to an increase in the velocity. For the 50-MHz
curve, the frequency was set to maximize the resem-
blance between the shape of the oscillations and the
shape of the attenuation curve shown in Fig. 5. The
frequency-dependent distortions in the curve shapes
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Fic. 7. (a) Experimental curves taken at 50.784 MHz. The
approximate value of ¢l is 3.7. (b) Theoretical curves of f and g
for a gl of 3.7.

appeared to arise almost completely from rf leakage at
50 MHz. At 30 MHz, these distortions appeared to be
due to both rf leakage and the presence of standing
waves. While both types of interference are periodic
in the same frequency increment, they are not neces-
sarily in phase. Probably because of this, distortions
in the 30-MHz curve were larger and more difficult to
eliminate. Attempts to take phase-shift curves at 10
MHz were also made. Here the leakage was low and
standing waves appeared to cause most of the distortion.
Unfortunately, the phase shifts were so violently fre-
quency-dependent that the resulting curves could not
be interpreted with any confidence. It did appear that
at a precise frequency, set to within 4-10 Hz, the phase-
shift curves had the approximate shape predicted by
theory for a ¢/ of 1. This behavior is contrasted to the
30- and 50-MHz data, where the curves had a recogniz-
able, although distorted, shape over a frequency incre-
ment of about 20 kHz. In view of this, no 10-MHz data
are presented since it is thought that the curve may
well have been due to a fortuitous distortion and not
caused by a velocity shift. The shapes of the attenuation
curves, in contrast to those of the velocity shift, were
independent of small changes in frequency. However,
they did appear to be magnified by the experimental
interferences. It is estimated that the attenuation at 50



174

MHz is about 259, too large while the 30-MHz attenua-
tion may be 50-75%, too large. There was no sign of any
distortion other than magnification.

The distortions of the experimental curves caused by
the nonspherical Fermi surface prevents any detailed
comparison of the experimental and theoretical curve
shapes. However, the changes in the shapes of the
curves as ¢/ changes can be compared. Free-electron
theory predicts that as ¢/ is reduced from the limit
¢i>>1, the oscillations in the attenuation curve will be
damped out faster than the oscillations in the fractional
velocity shift. Figures 6(a) and 7(a) show exactly this
type of behavior. The number and strength of the ex-
perimental oscillations for both the velocity and at-
tenuation at a given value of ¢/ are in remarkable agree-
ment with theory. While only data for the field parallel
to a [110] axis are presented, other field orientations in
the (110) plane perpendicular to the direction of pro-
pagation were investigated. All showed the same rela-
tive oscillatory behavior between the attenuation and
velocity shift.

A comparison of the amplitudes of the fractional ve-
locity shift with those predicted by theory is complicated
by both the nonspherical Fermi surface and the experi-
mental distortions. The best point of comparison is the
magnitude of the shift between the first minimum and
the first maximum. The theoretical size of this shift for
the 30-MHz curve is 2.0 ppm and the experimental
value is 13 ppm. For the 50-MHz curve, the theoretical
value is 3.1 ppm and the experimental value is 6.2
ppm. This agreement is not bad, considering the large-
frequency dependence of the experimental values. For
the 30-MHz curve, a frequency change of 2 kHz reduced
the experimental shift to 6.5 ppm and a change of 10
kHz eliminated the oscillation completely, giving a
curve shape similar to the attenuation curve. For the
50-MHz curve, a change of 3 kHz reduced the shift to
0.2 ppm while a change of 2 kHz in the other direction
increased the shift to 11.9 ppm. At the present state
of the art, it does not appear possible to obtain much
more accurate amplitudes for the fractional velocity
shifts than are presented here. The best that can be
said is that experiment and theory appear to agree
within a factor of 2 for the amplitude of the fractional
velocity shift.

The ideal metal for a comparison of the experimental
and theoretical curve shapes is potassium. Since the
shape of the Fermi surface is spherical®® to within a
few parts in 103, the experimental curves should corre-
spond almost exactly to those predicted by theory. One
of the best tests of the theory would be to compare the
positions of the first minima in the attenuation. The

14 While the coefficient of the fractional velocity shift scales as
¢*?, the difference in f(Bo,k,ql) between the first minimum and
the first maximum decreases as ¢l increases, especially at small
vgzlues of gl. Therefore, this difference scales at a rate slower than

18 D. Shoenberg and P. J. Stiles, Proc. Roy. Soc. (London) 281,
62 (1964).
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in the attenuation as a function of ¢l. The positions are given as
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g>1.

theory predicts that these minima will move to lower
values of 1/\H as ¢l decreases. Figure 8 is a plot of the
predicted percentage decrease in 1/AH as a function of
gl for the first and second minima. The decrease is with
respect to the position of the minima in the limit of
gi>1. Figure 9 is a plot of the positions of the minima
of one experimental run in potassium. The data are
from Trivisonno et al.® for their crystal number IV.
Since no value for ¢/ was given with these data, a value
corresponding to the shift of the first minima was used.
This gave a ¢l of 9. The uncertainty in the absolute
accuracy of the data was given as about 49, but the
internal consistency of the data was estimated to be
better than this. It should be noted that the relative
positions of the first two minima (which can be deter-
mined with higher accuracy than the others) are almost
exactly those predicted by theory while the deviations
of the positions of the other minima from theory are
well within experimental error. Foster et al.” plot a
similar curve for the deviations of the positions of the
minima in potassium. The shape of this curve is not in
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Fic. 9. Comparison of the theoretical positions of the attenua-
tion minima with experimental data for potassium. The value of
gl is taken to be 9.0. The experimental points are taken from
Trivisonno et al. (Ref47).
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good agreement with that predicted by theory. How-
ever, they describe the curve as being an average of
their experimental values. If this average, as seems
likely, was taken over several values of ¢/, then no
comparison with theory is possible.

CONCLUSIONS

Free-electron theory for the magnetoacoustic effect
predicts that the oscillations in the attenuation will
damp out faster than oscillations in the fractional ve-
locity shift when ¢/ is decreased. This behavior is seen
experimentally in aluminum. A comparison of the ampli-
tude of the fractional velocity shift with the theoretical
prediction shows agreement to within a factor of 2.
Considering the experimental uncertainty and the non-
spherical Fermi surface, this agreement seems good.

The distortion in the experimental curve shapes
caused by the nonspherical Fermi surface prevents any
comparison of the relative positions of the attenuation
minima in aluminum with theory. When the positions
of the attenuation minima for data taken in potassium
are compared with theory, the agreement appears
excellent.

It can be concluded that free-electron theory gives
good quantitative predictions for the magnetoacoustic
effect for metals with a spherical Fermi surface. For
free-electron-like metals with nonspherical Fermi sur-
faces, the theory gives correct qualitative predictions
for the magnetoacoustic effect. It is doubtful that the
predictions of the theory will be in more than crude
qualitative agreement with magnetoacoustic effects in
non-free-electron-like metals. The magnetoacoustic ef-
fect in such metals can be expected to have large con-
tributions from both deformation effects, as considered
by Pippard, and anisotropic relaxation times.
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APPENDIX

To calculate the function f(Bo,k,ql), the components
of @, 042, 04y, and o, must be obtained in series form
with the real and imaginary parts separated. Series
forms for these components, which are exact within
the limits of the model, are given in CHH by Egs. (4.1).
The algebraic manipulation of these expressions is
simplified by the relations g,(X)=g n(X), £’'(X)
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=g ,/(X), and S,(X)=S_,(X). Three algebraic ex-
pressions appear several times in each of the com-
ponents. They are

D=1421%0 212+ 202+ (W ir?— )2,
Y= (14+r%021*+w?r?)/D,
Z=(1—n2wlr’*+w?%)/D.
The components of ¢ can be written
as= B30/ @) (A—iwrB), ay=(300/2g1) (S—iwrU),
0yy=30o(L+iwrQ),

where we define

A=1—go(x)—2(1—wr?) i Yga(x)—4w?s? i Zga(x),
n=1 n=1
B=1—gy(®)—4 Y. Ygu(0)+2(1—wt) 3 Zga(s),
n=1 n=1
S=g/ 23 Ve @)+ 242 S Zga' (@),
n=1

n=1

U=23 V' (0)=2 % Zga' (),

n=1 =1
So(x) ©
L= 23 VSa(x),
14w??  w=1
So(x) o
Q= 23 ZS.(x).
14w?r? =1

Then, using the relations
P=AL+w?r?BQ+1(S*—uw?r?U?),
R=A4Q—BL—3SU,

one can write the desired functions as

f(Bok,gl)= (PQ—LR)/ (P*+«*7°R?),
LP4?7%QR 1 3

P2+ w?r2R? 1 _I._ (1)21'2 q2 ]2

g(Bok,g)=

The computer program followed this algebra. The func-
tions g.(X), g’ (X), and S,.(X) were calculated from
Egs. (A1), (A2), and (AS) in CHH. For each of these
functions, 80 terms in the series were retained to ensure
convergence. It was found that for values of X up to
15 (where X =qu;/we), gn(X), ga'(X), and S.(X) were
essentially zero for » greater than 20. Therefore the
sums Y n—1® Vg, (X), etc., were truncated at 20 terms.
From the definition of X one can write w.r=¢l/X and,
as was mentjoned in the theory section, wr=g¢l/300.



