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stage III in aluminum is due to the migration of single
vacancies to interstitial agglomerates formed during
the preceding stages of recovery. These interstitial
clusters must be stable at least beyond the point where
the deepest of the impurity traps release their inter-
stitials. The impurity atoms can delay the di8usion of
a vacancy migrating through the lattice by causing the
defect to make more jumps, on the average, before
annihilation. The presence of the impurities does not
affect the activation energy for the onset of vacancy
migration. Impurities can also trap the migrating
vacancies and subsequently release them at a tem-

perature well above that where the initial vacancy
migration occurs. In light of the data presented in this
research it is felt that the introduction of a second type
of interstitial that moves in stage III is not necessary
to explain the results.

ACKNOWLEDGMENTS

The authors wish to thank Dr. C. L. Snead, Jr., for
many helpful suggestions during the course of this
work. One of the authors (P.B.P.) wishes to thank the
Virginia Military Institute for financial support during
the period of this research.

PHYSICAL REVIEW VOLUME 174, NUM BER 3 15 OCTOBER 1968

Lattice Thermal Conductivity, Nernst-Ettinghausen Effect, and
Speci6c Heat in Antimony at Low Temperature~

R. S. BIEWER,t N. H. ZEBOVNI, AND C. G. GRENIER

Louisiana State Un& ersity, Baton Rouge, Louisiana 70803
(Received 5 July 1967; revised manuscript received 3 May 1968)

The lattice thermal conductivity, the high-Geld Nernst-Ettinghausen thermoelectric coef6cient, and the
specific heat of antimony have been determined in the temperature range 0.4-2.4'K. Thermal-conductivity
results confirm the predominance of phonon-electron normal scattering in the lowest range of temperatures
with the expected T law. The dramatic increase in the lattice thermal conductivity above 1.5 K is thought to
be due to the inability of the electrons to scatter phonons with wave numbers q&2hz, where 2hz is the
diameter of a charge carrier's Fermi pocket. An effective scattering Debye temperature of O~*= (2ks/qn) O~

=25 K is in good agreement with experimental results. Nernst-Ettinghausen results give the total
electronic density of states Z= (1.10&0.07) X10"erg ' cm '; the presence of a phonon-drag contribution
is con6rmed and discussed. The specific-heat results C= (116.5+6.4)T+(211.0+5.3)T'+1.97+0.23)1
in pJ {mole 'K) ', are compared with the results of transport measurements and with recent specific-heat
determinations.

I. INTRODUCTIOH

' gART of this work is an extension to lower tempera-
tures of Long, Grenier, and Reynolds's' study of

the transport properties of antimony with the purpose
of clarifying the nature of the scattering mechanisms.

A case in point relates to the Nernst-Kttinghausen

(NE) effect and how precise a determination of
the electronic density of states, Z, can be achieved from
it. Their results indicated the existence of a strong super-

imposed phonon drag which prevented the electronic
term from being determined with sufIj.cient accuracy. To
improve on this point, measurements of the transport
effects were extended down to 0.4'K.. Also, an inde-

pendent determination of the density of states was made

through speciic-heat measurements in this same range
of temperature.

Another point pertained to the inability to work out
a scheme which would explain most properties related

*Work performed under the auspices of the U. S. Atomic
Energy Commission and is Report No. ORO-3087-26 under
Contract No. AT- (40-1)-3087.

t Present address: Electronic Components Laboratory, U. S.
Army Electronics Command, Ft. Monmouth, N. J.

' J. R. Long, C. G. Grenier, and J. M. Reynolds, Phys. Rev.
140, A187 (1965); Phys. Letters 16, 214 (1965).

to the phonon system. For example, the magnitude and
temperature dependence of the lattice thermal conduc-
tivity X, and the ideal electronic conductivity 0-; were
found to disagree with Makinson's' and with Debye,
Gruneisen, and Sloch's' formulas for metals, but the
ratio between these two quantities agreed remarkably
well with Ziman's T' law, 4 strongly indicating the
predominance of phonon-electron scattering. Even
though this conclusion seems reasonable, the strong
three-phonon normal process implied in Ziman's theory
is not very likely at these low temperatures. For that
reason the extension of the measurement of X, down to
0.4'K was desirable in order to better understand the
phonon scattering processes. A better understanding of
the phonon drag also can be attained.

Section II presents briefly the pertinent details of the
experimental procedure; Sec. III presents the results
and discussion of the thermal-conductivity measure-
ments, the NE effect, and the specific heat. Section IV

R E. &. Makinson, Proc. Cambridge Phil. Soc. 34, 4'/4 (1938).' J. M. Ziman, Eleelrorss amd Phorsorss (Oxford University Press,
London, 1960), p. 364.

J.M. Ziman, Eleelrols aad Phomoas (Oxford University Press,
London, 1960), pp. 319-322,
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draws the conclusion of this study. The eGect of the
Landau quantization on the transport effects is not
included in this paper.

II. EXPERIMENTAL DETAILS

A He3 refrigerator similar to the one described by
Reich and Garwin' was used. The lowest temperature
attainable was about 0.7'K in continuous operation and
0.36'K in batch operation. Regulation of the He' bath
temperature could be maintained in the continuous
mode of operation by adjusting the opening of a bypass
valve between intake and output of the He' forepump.
In batch operation, an electric heater feedback system
similar to the one described by Forstat and Novak' was
used to control the temperature in the region below
0.7'K. This method could achieve a stability of 1 mdeg
over a 30-min period. Very pure He' gas was used
(vapor pressure standard) and the secondary thermom-
eters (Allen-Bradley 10-0, —,', -W resistors) were cali-
brated directly against the vapor pressure of the He'
bath. The best conditions for calibration were obtained
by pumping the system to the lowest temperature
attainable, then shutting off the He' system completely
from the outside; the system then warmed up slowly
over a period of 2—3 h, during which the calibration of
the thermometers versus the slowly rising vapor
pressure was carried out. The over-all extraneous heat
leak to the sample, sample holder, and He' cryostat was
estimated to be about 50 pW. The instrument used to
measure the vapor pressure of the He' was a quartz
Bourdon tube manufactured by Texas Instruments
Incorporated. The tube range was 0—200-mm Hg, and
its sensitivity was about 1% in the 100-1r region and
0.1%in the 1-mrn region. At the lowest temperatures a
correction to the pressure readings was made' to take
into account the thermomolecular effect. The whole
calibration procedure was found to be very reproducible.
It was found that the use of epoxy resin seals in contact
with the He' evaporator was to be avoided because
their high heat capacity and extremely low thermal
conductivity make their cooling down to an equilibrium
temperature extremely slow and can disrupt the second-
ary thermometer calibration.

The transport measurements and the crystal used
have been fully described by Long eI, al.' The magnetic
6eld was applied along the trigonal L111$ (or s) direc-
tion and the transport effects were measured in the
(111) (or a-y) plane. The single crystal has a resistivity
ratio psss/pt. s 9000 with a residual resistivity ps—5X10 ' 0 cm. For the measurement of the isothermal
electrical magnetoresistivity p», a current of 1.2 mA
was used. p» was found to be nearly independent of T
below 2'K.

For the temperature measurement in the low range of
temperatures investigated it was found that 10-Q, —,', -W
Allen Bradley resistors had the proper sensitivity. At
temperatures below 0.9'K it was found necessary to
limit the thermometer current to 0.2 pA if self-heating
effects were to be avoided. Under these conditions, the
thermometers were found to obey very accurately a
relation between their resistance E and the vapor
pressure I' of the He' liquid given by' logR= a++„b„
X (logP)". Heat currents for the therrnomagnetic
phenomena ranged from 0.5 pW at 0.44'K to 150 p%
at 2.3'K; care was taken to keep the temperature
gradient sufliciently small ((0.1'K/cm) to allow the
use of linear approximations in the computations.

A different sample and sample holder were used for
the speci6c-heat measurements. The sample was a
142.429-g bar of antimony cut from the same parent bar
from which the crystal was obtained for the transport
measurements. The sample was soldered to the base of
a platform suspended from the evaporator of the He'
refrigerator by three 3-mm-diam graphite rodss 5 cm
long; the rods served as heat shunts during precooling,
circumventing the need for helium exchange gas. A
0.001-in.-diam 99.995% pure lead wire drawn by the
Wollaston process was used in conjunction with the
magnetic field as a superconducting heat switch.
Measurements were made by thermally isolating the
sample when it had been cooled to a temperature of

0.37'K and then supplying well-determined amounts
of heat for accurately known periods of time, taking
care not to change the temperature of the sample by
more than 7% with each heat pulse. 's The electronic
timer used could be read accurately to microseconds
and was arranged in the heater circuit so as to be
automatically activated when the heater was started.
The temperature of the sample was recorded as a func-
tion of time on a Brown strip-chart recorder. The
technique of accounting for the heat capacity of the
sample's addenda was as follows. ' A separate run was

made in which most of the sample had been cut oG with

a spark cutter, and only that portion which was wetted
with solder was left as part of the addenda. The mea-

surement of heat capacity in this run was subtracted
from that taken with the entire bar attached, and this
difference taken as the heat capacity due to the amount

(126.354 g) of pure antimony removed. The heat pulses

applied ranged in power from 0.5 p% at the lowest
temperatures to 6 pW near 1'K.Heating periods ranged
from 2 to 6 sec depending on the criterion of less than

7% temperature rise per heat pulse stated above. The
heat leak from extraneous sources to the sample was
determined to be about 20 erg/min.

' H. A. Reich and R. L. Garwin, Rev. Sci. Instr. 30, 7 (1959).
6 H. Forstat and J. Novak, Rev. Sci. Instr. 29, 733 (1958).' S. G. Sydoriak and R. H. Sherman, J. Res. Natl. Bur. Std.

(U. S.) A68, 547 (1964); T. R. Roberts and S. G. Sydoriak, Phys.
Rev. 102, 304 (1956).

S. Cunsolo, M. Santini, and M. Vicentini-Missoni, Cryogenics
5, 168 (1965); P. P. Craig, ibid. 6, 112 (1966).' I'. J. Shore, V. L. Sailor, H. Marshak, and C. A. Reynolds,
Rev. Sci. Instr. Bl, 970 (1960).IN. K. Phillips, Phys. Rev. 114, 676 (1959).
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FIG. 1. Lattice thermal conductivity of Sb in the temperature
range 0.4—2.4'K. The insert shows the points previously deter-
mined by Long et al. ; circled are two points plotted with our
results.

III. RESULTS AND DISCUSSION

A. Lattice Thermal Conductivity and Phonon-
Electron Normal Scattering

The thermal conductivity of antimony exhibits
several interesting features at very low temperatures.
In particular, the thermal magnetoresistivity
saturates to a constant value in presence of moderate
magnetic field strengths. '""This rejects the near-
complete quenching of electronic conductivity and
allows the study of the lattice conductivity and its
temperature dependence. This dependence has been a
rnatter of conjecture since the measurements of Rosen-
berg" White and Woods "and Long et at. ' It was well

recognized by these authors that the phonon conduc-

tivity X, was mostly limited by scattering from the
electrons, but the temperature dependence determined
experimentally was highly anomalous: White and
Woods found X, ~ T" and Long et a/. found X, ~ T"
in the temperature range 1.6&T(4.2'K, while a T'
dependence was expected. The present work. extends the
thermal-conductivity measurements on the mono-

crystal used by Long et at. down to T=0.4'K.
Figure 1 shows the results of the lattice thermal-

conductivity measurements; the insert shows the points
determined by Long et at. included in this figure. The
logarithmic plot of the quantity X,/T in Fig. 2 reveals
a good T' dependence for temperatures below 1.4'K.
This figure also shows a marked rise in conductivity
above 1.4'K where, within a range of 2'K, the conduc-
tivity rises about 10 times above the expected T'
behavior. The data points of both Long et al. and White
and Woods are also shown in the figure and seen to
blend relatively well with the rest of the data points.
Also, there is possibly a slight tendency at the lowest
temperature for a departure from the T' law.

"H. M. Rosenberg, Phil. Trans. Roy. Soc. London 247, 441
(1955)'.

"G.K. White and S. B. Woods, PhiL Mag. 3, 342 (1958).
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Fzo. 2. The lattice thermal conductivity X~ of antimony, multi-
plied by T ' versus T in a log-log plot. The T' dependence of Xg
displayed below 1.4'I is due to scattering of phonons by elec-
trons. The increase of ) g, above 1.4'K, is due to the predominant
contribution of "peripheral" phonons (q)2k~). The solid curves
correspond to Eq. (9) for different 0*.The dashed curves show the
contribution of phonons with q(2k+, Eq. (18).

with

Ag= dSqt+ r~ t (e&—1)s—
x4e

dS)
r '+r~ ' (e*—1)'

(2a)

(2b)

x4e
ds.

p r '+rN '(e' —1)'
(2c)

Isotropy and absence of dispersion in the crystal-
vibration spectrum are assumed and no distinction is
made between longitudinal and transverse phonons. As
implied by these three assumptions, v, is the velocity of

'3 Joseph Callaway, Phys. Rev. 113, 1046 (1959); 122, 787
(1961).

L,atti ce Coedgctivity

A good starting point in interpreting lattice-conduc-
tivity data is to refer to Callaway's" phenomenological
theory in which the relaxation effect from the three-
phonon normal process is taken into account. Calling
~& ' the relaxation frequency due to the three-phonon
normal scattering and r ' the combined resistive
scattering frequency of phonons by other processes, it
is found that the conductivity regime depends greatly
on the relative value taken by these frequencies as the
conductivity takes the form
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sound. '4 "The parameter x=hce/ET=Aqv. /ET, where
co and q are the phonon frequency and wave vector,
respectively. The limit of integration x&=0~/2' cor-
responds to ce=teD or q=qD with 0, &eo, and qD the
Debye temperature, Debye cutoff frequency, and the
radius of the Debye sphere, respectively.

In the integrals (2) the diverse scattering functions
are weighted by the term x e*(e*—1) '. If the condition
7N (T ' prevails in the weighted part of the integrals,
it may be seen that A ss/A s may be neglected relative to
A & and the conductivity becomes

E (ETi'
2nsvk h ~ s

x'e
(r—'+r -') ' dx (3a)

(ez 1)2

and eventually for 7N

E (ET)s el

2'v, k hi
x4e*

dx.
(e'—1)'

(3b)

The condition v~ '(r ' is characteristic of a poor
phonon mixing.

Under the opposite condition of strong phonon-
phonon E-process v~ '& v ', the conductivity takes the
form as obtained by Ziman4 and by Makinson';

E /ET ' to~q
)e=

2n'v, E h (Tj
x4e

r ' dx (4)
(e*—1)'

where rI4(xo) is the Debye function'r of order 4.
The choice of the forms (1), (3a), (3b), or (4) to be

used to analyze conductivity data depends on the
knowledge of the different scattering effects, and the
prevalence at a given temperature of one of them in the
weighted part of the integrals (2).

Scatterirtg of the phortons The princi.ple of additivity
of the resistive scattering relaxation frequencies may be
used with

r = 'rb +re +riso 1ru

and

m&2bdef2
rs '(q)= q, for q&2hs

27cpA

r),-'(q) =0, for q) 2k& (6)

with similar equations for r, '.
The effective masses of the carrier are nsI, and m„' the

deformation potential B~,g will be supposed the same in
absolute values for both bands, p is the mass density and
the radii kp of the Fermi pockets are respectively k~ and
k, . Under the assumption of isotropic and quadratic
Fermi pockets, masses and radii can be approxi-
mated'0 —"with tI|, ~8.1)&10' cm ' k~ 6.4&(10' cm—'
m ~0.28wo, and m~ 0.14mo.

the charge carriers, the isotopes, and umklapp phonons,
respectively, other scattering mechanisms being
neglected.

Phoeoe-boundary scattering. The scattering relaxation
frequency by crystal boundaries and surface dislocations

is constant; rb ' b=——v,/A, where A, the Casimir
length, " is of the order of the crystal size. For a rec-
tangular cross section 4= 1.12l with / the mean width of
the section. For the crystal under study, Tb '~0.8&(10'
sec '

Phomoe-electro' scattering. The scattering by the
charge carriers is of the form r. '= 6rs '+3r. ', rs ' is
the scattering relaxation frequency due to the hole
carriers contained in one of the hole Fermi pockets and
v, ' corresponds to that of an electron pocket. There are
six hole pockets and three electron pockets in antimony
which contribute independently to the scattering as
long as the q's axe small enough not to scatter carriers
from one pocket to another.

The Tg ' and the v, ' can be approximately formu-
lated if besides the phonon-isotropy assumption, the
carrier pockets are supposed to be isotropic (spherical)
and to obey a quadratic energy law; then"

18 H. B. G. Casimir, Physica 5, 495 (1938)."A. Sommerfeld and H. Bethe, in Hanblch der Physik edited
by H. Geiger and K. Scheel (Julius Springer, Berlin, 1933), Vol.
24/2, p. 333; see also Ref. 28, p. 77 and Ref. 3, p. 330.

'0 Under isotropic- and quadratic-energy distribution, the Fermi
pockets of holes and electrons are spheres of radius k, and kI, given
by k, = (3x','n)'~' and -ks= (3x'-,'n)'~'. The isotropic eBective mass
is given by m, =k'k, s/2n„ the density ot states by Z, =3n/2t4, the
scattering effective Debye temperature by 0,= k2v, kE/, and
similar expressions for the holes. ln agreement with Windmiller
(Ref. 21) and Brandt et ot (Ref. 22),. the number of carriers per
band is taken equal to n =5.45X 10' cm '. The chemical potential
under the assumption of a parabolic distribution is taken as
y, =14.1X10 '4 erg and ttkI,

——18.2X10 '4 erg, an average between
the values given by Brandt (Ref. 22) and Rao (Ref. 23). With
these values and with v =2.5X 10' cm/sec, the different electronic
parameters are kI, =6.43X10' cm ' k =8.11X10' cm ' ml,

0.138mo, m, 0.284mo,' Oj, —24.4'K., 0,* 30.8'K; Zg =0.45
X10'3 erg cm 3, Z, =0.58X10'3 erg I cm 3.

2'L. R, Windmiller, Phys. Rev. 149, 472 (1966).
22N. B. Brandt, N. Ya. Minina, and Chu Chen-Kang, Zh.

Eksperim. i Teor. Fix. Sl, 108 (1966) )English transl. : Soviet
Phys. —JETP 24, 73 (1967)g.

23 G. N. Rao, N. H. Zebouni, C. G. Grenier, and J.M. Reynolds,
Phys. Rev. 133, A141 (1964).

taking into account the scattering by the boundaries,

"The sound velocity average e, will be taken as 2.5X10'
cm/sec in most calculations. As shown by the room-temperature
data of Epstein and DeBretteville (Ref. 15), the velocity' is highly
anisotropic, with longitudinal velocities from 4.19 to 2.59X10
cm/sec and transverse velocities from 2.93 to 1.51X10s cm/sec,
depending on the propagation direction. Even though the different
averages ((v")(v&))'t't"+» should depend strongly on n and p, no
attempt was made to obtain those averages. (See Ref. 16.) The
Debye velocity vn=EO~/k(6m'tt/)'t' is equal to approximately
2.2X10' cm/sec for 0=210'K."S. Epstein and A. P. DeBretteville, Jr., Phys. Rev. 138, A771
(1965); DeBretteville ef al. , i'. 148, 575 (1966).' W. V. Houston, Rev. Mod. Phys. 20, 161 (1948);D. D. Betts,
A. B.Bhatia, and G. K. Horton, Phys. Rev. 104, 43 (1956).

"Debye integrals are of the form
~v/7 g rseL

8 (»)= dg
p (e'—1)'

with g (xn)~(n 1) 'xo" ' f—or xn~0 and g, ( )xnn!t (n) as-
s~ —+ ~. The Riemann zeta function |(n) takes, for example, the
values g (3)=1.202, g (4) =1.082, g (5) =1.037, and g (8) =1.004.
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2m pv, k4

(b) 2ki, &q&2k, or O~se/T&h&0", */T, where
=r' '+c'hT, with

3m,'E
c'=

2m.pv, k4

(c) 2k, &q&qn or O. ,*/T&h&O/T, where r '=r' '.
In the three cases above, v.' ' represents the scattering
other than the carrier scattering.

The eRective Debye temperatures 0'i,*, 0',", associ-
ated with scattering"4 are given by

0~i,*——(2ki, /qD)0' or EO~i,*=hv, (2kb) (8)

with the same expression for O',*. With the isotropic
assumption&' one finds 0'i,*~24.4'K and 0'.*~30.8'K.

The first range of integration accounts for the
phonons scattered by both holes and electrons. In the
second range the phonons are still scattered by the
electrons, whereas the third range accounts for the
phonons which are scattered by neither of the carriers.
Those phonons which are outside the sphere of diameter
2k, will be referred to as the "peripheral" phonons.

It may be noted that the anisotropy in kj, and v, would
lead Eq. (8) to determine a whole spectrum of 0'e values
and widen the range of temperatures in which the pe-
ripheral phonons become efficient. The effect due to the
anisotropy would probably be more important than the
effect brought about by the distinction between holes
and electrons. In view of this, the data will be analyzed

by considering a single empirical O~* to be determined
from experimental data.

Should it be recognized that the regime of conduc-
tivity is such as to be given by formula (3a) or (3b),
the expression to be analyzed will be

lr (ter)'
2~sv, & k s

x4e*
(r' '+chT) ' dh

(e*—1)'

Pholori isotope scailerirrg. -The relaxation frequency
associated with isotope scattering"" is given in the

&4 E. H. Sondheimer, Proc. Phys. Soc. (London) A65, 5{F1
(1952).

"Peter Carruthers, Rev. Mod. Phys. 33, 92 (1961).
'6 P. G. Klemens, Proc. Phys. Soc. (London) A68, 1113 (1955).

The selective scattering as described in Eq. (6) is due
to the normal-scattering momentum-conservation
requirement

q=k'-k, (k'-k( &2k',

and in the conductivity integrals it would correspond
to breaking the range of integration into three ranges:
(a) 0&q&2ki, or 0&h&~0i*/T, where r '=r' '+chT,
with

nondispersive case by

r;„—'=Dq4= dg 74, (10)

where D=v,p;X;(gM;)'/4v-ps and d=D~/@v,
the number of a given kind of isotope atoms (per cms);
(8M;)s= (M;—M)', with M, the isotope mass and M
the average atomic mass. The above expression in the
case of natural antimony gives D~4X10—"cm-4 sec '
and d 3.07'K 4 sec '.

Phonom pko-noN scatterilg The .normal three-phonon
relaxation frequency as used by Callaway'3 is given by
Hei i lng as

~81'(KO/Mv, )bhe e~ r, — (12)

is numerically calculable, with F the Griineisen constant
and b the reciprocal lattice vector which in the cubic
case can be approximated by 2v. (V,) '",where V, is the
atomic volume.

The total phonon scattering may take the form

r '~b+chT+dh'T4+uhe e' v

and
(13b)g2+6

and it may be seen from the temperature dependence
that if b, c, d, and I are properly chosen, the preponder-
ant scattering may be as given above, i.e., near zero
temperature boundary scattering is preponderant, then
electron scattering and the isotope effect, and anally
umklapp processes for higher temperatures. The normal
process, depending on the case, may become important
at any point in the sequence above. Only the order
of magnitudes in particular cases will determine this
point. That is to say, the data at a given temperature
may be approached a priori and in the 6rst-order
approximation either by use of the weak mixing formula
(3b) or the strong-mixing Ziman formula (4) until the
proper magnitude of v~ ' has been established.

In the first attempt to analyze their data in the
range 1.5—4.2'K, Long et al.' noted that there was an
apparent agreement between the ratio ).,/o, of lattice
conductivity to ideal electrical conductivity and the
formula obtained for this ratio by Ziman4 in the strong-

» Conyers Herring, Phys. Rev. 95, 954 (1954).
~ P. G. Klemens, in Solid State Physics, edited by F. Seitz and

D. Turnbull (Academic Press Inc. , ¹wYork. , 1958),Vol. 7, p. 87.
"Philip D. Thacher, Phys. Rev. j.56, 975 (1967).

T~
—

(x: S~T5 or gN
—1 ~ ~yr5

with p= 2 in cubic symmetry and p =3 in an anisotropic
structure for the nondispersive longitudinal phonons.

The umklapp process" leads to scattering of the form

r„'=y(T, q-)c elmr-
where ~ is usually expected in the range 1g~g2. The
form of f(T,q) is still a matter of much conjecture. Thug
f(T,q) could be taken proportional to q

i ss qsTs ~s or
q'T."More complex forms for v-~ ' could also be used. "
The form given by Klemens "
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mixing limit and the case of phonon-electron pre-
ponderant scattering, i.e.,

Eq. (9) is negligible, so that X, can be approximated in
this range (with O~ "/T-+ ao) by

(14)
E E.T ' " 1 x'e

X~~ dSq
2s's Q s $+g~T (s~—1)s

(17)

C =9EZ(T/0~)'g4(O~/T), (15a)

where e is the number of electrons per atom in a
corresponding single-band model and C, is the lattice
specific heat

with b=0.8X10s sec ' and c=14.5X10'('K sec) ' and
is represented below 1.4'K. by the continuous line in
Fig. 2 (where the associated quantity X~2 ' is plotted).

This first term at higher temperature would tend
towal d

which at low temperature tends to

C,=233.7$E(T/0)'. (15b)

E ET
2s's, h)cT ET)

This agreement prompted them to analyze ), on the
Ziman form of Eq. (4) which could be rewritten using
Eq. (7) in the case of preponderant electron scattering
as

as the e6ect of b is becoming negligible and the isotope
eBect is still negligible. This term is outlined above
1.4'K by the dashed lines in Fig. 2 for three diGerent
values of O~" and seen to decrease below the T' behavior.

Above 1.4'K the sharp increase in conductivity will
be associated with the second term in Eq. (9) which
represents the contribution of the peripheral phonons

+negligible terms, (16)

which, with the values of c~15.5X 10' (sec 'K) ' and
O~* 11'K, was found to agree well with the experi-
mental data.

The extension of the thermal-conductivity measure-
ments to lower temperatures'0 shows the expected
appearance of the T' behavior of X, as O~e/T ~ ao, but
the value of X, is about 30% above what is expected
from the extrapolation of Eq. (16).It is then interesting
and tempting to note that the discrepancy can be
practically compensated by replacing in Eq. (16) the
quantity $4s(~)gs '(ao) by gs(ao) which amounts to a
shift from the strong- to the weak-mixing formula (18)
extended to low temperature. This would suggest that
the three-phonon process scattering frequency r~ ',
while negligible below 1.5'K, would become dominant
above this temperature.

Despite this apparent agreement, the above conclu-
sion is strongly in doubt since this would call for a value
of O~* too small compared to the expected value and,
more important, call for a value of ~N ' far above
expectation. The value v~ ' 10' sec ' which is implied
for T~1.5'K is only to be expected near T 10'K. The
apparent agreement with Ziman's 'A, /o; value of Eq.
(14) may be purely accidental and should not be taken
too seriously.

Thus an attempt should be made then to interpret the
data in the form of the weak-mixing formulas (3b) and
(9) all through the helium-temperature range.

Below 1.4'K the near T' dependence of X, strongly
suggests that in the first term in Eq. (9) the electron
scattering is preponderant and that the second term in

«R. S. p]ewer and ¹ H. Zebouni, Phys. Letters 23, 297 (1966).

X (KT' " 1 g4e~

dx (19)
2''v, k h o*)r (b+dT'2) (s*—])s

as 0/T is taken as ~ . The global result obtained for X,
counting the two terms (18) and (19) with &=0.8X 10'
sec ', d=3.07'K ' sec ' and c=14.5X10'('K sec) ' is
shown in Fig. 2 for three values of O~", O'*= 20, 25, and
30'K, by full lines which are seen to delimit relatively
well the region spanned by the experimental points. An
almost good 6t is obtained for O~e=25'K, i.e., close to
the value calculated for 0'qe.

The fact that the experimental points seem to span a
spectrum of values of O~~ ranging from about 20 to 30'K
is in agreement with the qualitative considerations made
previously on the anisotropy of the pockets and the
existence of two bands of charge carriers.

Although one could consider that the experimental
points are falling behind the steep rise of the theoretical
curves because of the added scattering represented by
the increase of v~ ' with temperature, this increase is
probably still insufhcient at these temperatures to
account for the observed values. The results are there-
fore seen to be in agreement with the right order of
magnitude for r~ ', r;„', and O~* but ca—nnot be used
for precise measurement of these quantities; nor can it
be used to map the peripheral phonons.

emote that there is an apparent discrepancy with the
conclusion of White and Woods about the importance
of the isotope eQect. But it seems more likely in this
case that their conclusion sprang from a numerical
error, and it would be interesting to see if their data
could not be reinterpreted with the isotope eBect
included. If it is supposed that rz ' is dominant above
20'K, the strong-mixing formula of Makinson-Ziman'
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FiG. 3. The relaxation frequencies of the phonons for diferent
scattering mechanisms versus the phonon wave vector q. The
boundary contribution ~b ' 0.8&(10' sec ' and the isotope
contribution ~;„' 40(10~'q' sec ' are calculated. The electron-
phonon scattering frequency r, '=27.5q sec ' (q in cm ') is ob-
tained from the experimental data. The separate scattering con-
tributions of holes and electrons are sketched, and are seen to
occur only for q&2k„2kh. The sharp decrease of the scattering at
q=2k„2kh reflects the behavior of peripheral phonons whose
contribution to the conductivity is shown in Fig. 4. The umklapp
scattering frequency 7„' is shown for T=30 K by the dashed
line.

may be used between 20 and 100'K, with

r '=r. '+dx4T4+uxe o ~r

or
(20a)

— E )ETi' (0 (0* t'O)
+dT'gsl —

I2sv&y) kT t T

01
+le o' res —

I
. (20b)

Ti

3' I'=30tJ3C, ~, with room-temperature data for compressibility
(Ref. 15) 8=3.86)&10' dyn cm, for speci6c heat C„=1.4)&10 7

erg cm 3 and linear dilation coefficient a=10.8&(10 ' ('K) '.
C, and a taken from Handbook of Chemistry and Physics (The
Chemical Rubber Publishing Co., Cleveland, Ohio), 44th ed.

The calculated contribution of the carrier scattering
is found to be negligible and, htting White and Wood's
data to Eqs. (20), gives d~2.8s('K) 'sec ', 1=1.7X10'
sec ' and o.=1.35.

The fact that d differs by less than 10% from the
calculated value d~3.07('K) ' sec ' is well within the
range due to errors and the rough approximations made.
The umklapp term I= 81'EO~b (Mv, ) ' determined
above corresponds to 7=1.06, in good agreement with
I.'=0.9, the room-temperature Griineisen coeScient as
determined from the compressibility, dilation, and
specific heat. 3' The value of n is in the acceptable range.

Deforrrlatiorl, Potential. If the value c= 14.5)&10s
('K sec) ' experimentally determined for the electron-
scattering term is used for the calculation of the de-
formation potential he, t through Eq. (7), the value

I be.gI 1.8 eV

IO
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FIG. 4. Contribution of the phonons to the lattice conductivity
as a function of their q value at diGerent temperatures. The
quantity

BX,(q) L E'T ' x'e*

eq 2x' A (e*-1)'
represents in the low-temperature limit the contribution to the
lattice conductivity of the diferent phonons as a function of the
magnitude ot their wave vector q= (KT/Av, )x. The relaxation
time r is given through Eq. (7) in which it has been assumed that
*=O~h*=0, *=25'K or kg=kh=k, . The peripheral phonons
(q&2kF) are seen to exhibit a sharp contribution, negligible at
2'=1.5'K, preponderant at T=3'K and above.

is obtained which is in general agreement with the
results on some semiconductors doped to an equivalent
carrier density. "~ This potential measures the strength
of the electron-phonon interaction and would be
diGerently interpreted in the extreme cases of good
metals and semiconductors. Thus, due to strong screen-
ing in good metals, the dominant term in hq, f is given
as s Z& (where E& is the Fermi energy). If this result is
extrapolated to the case of semimetals, the value ob-
tained should be close to ~3p, , where p, is the chemical
potential, but the term dominant in nonscreened semi-
conductors would be identified more closely with 23'
or —,Eg, where EI is the ionization energy and Eg is the
affinity potential. The semimetals may appear as inter-
mediate between these limits. Relations such as

@ger (holes) = —hd„(el) (21)
and

I
@e t( oles) I+ I

@d.~(ei) I
=

I ~h"./~~I (22)

3' M. G. Holland, Phys. Rev. 134, A471 (1964).» E. F. Steigmeier and S. Abeles, in Proceedings of the Seventh
International Conference on the Physics of Semiconductors Paris,
&964, (Academic Press Inc., New York, 1965), p. 701.

Reference 3, p. 205.

are expected to hold. '4 The 6rst relation has been
assumed in writing Eq. (7) and may help to estimate the
contribution of each band to the scattering of the
phonons which is then roughly found to be 67% due to
the electrons and 33% due to the holes. These separate
relaxation frequencies are displayed in Fig. 3 as a func-
tion of q together with the combined frequency v., '. The
second relation indicates that

I
c) S„v/c)6 I

3.6 eV.
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Peripherat pkortorts .To summarize, the different
scattering relaxation frequencies are shown in Fig. 3 as a
function of q. Here rb ' and v;„' are obtained from
theoretical consideration, 7., ' from experimental deter-
mination. It clearly appears that the band of peripheral
phonons (q)2k, ) around q=1.5X10' cm ', nonscat-
tered by the electrons, has a relaxation frequency one
or two orders of magnitude smaller than other neigh-
boring phonons and should, at certain temperatures,
greatly inAuence the conductivity.

This point is better emphasized in Fig. 4, where the
quantity

rlks(tt) E (ET '
r(x, T)

BtJ 2''k k (e'—1)'
(23)

is displayed versus q= (KT/hs, )x. This quantity cor-
responds to the term integrated in Eq. (3b) and repre-
sents the contribution to the lattice conductivity of the
diferent phonons as a function of the magnitude of
their wave vector. The three curves correspond to
0'~=25'K and describe the term (23) for the three
different temperatures T= 1.5, 3, and 6'K. Each
exhibits the sharp-peaked contribution of the peripheral
phonons above q=2kp and it may be seen that this
contribution changes from negligible at 1.5'K to
preponderant at T=3'K and above. The resulting effect
on P, is shown in Fig. 2.

B. NE Effect at High Field, Electronic and Phonon
Drag Contributions, and Electronic Density of States

The density of electronic states at the Fermi surface
is related to the components of the kinetic thermo-
electric tensor a", where a" is defined through the
kinetic equation

J=e E*+s" VT, (24)

with J the current density, —E~ and V T the gradient
of electrochemical potential and of temperature, re-
spectively, cr and e" the conductivity and thermoelectric
tensors, respectively. The density of states would
generally appear in a" as an average with the mobility
over bands and possibly states.

Great simplifications occur at high field in the case of
a Fermi surface with closed orbits, both in the theo-
retical expression for e" and in its experimental deter-
mination.

The classical mobility of every carrier is known to
tend at high field toward the common limit sc/H, the
Hall mobility. Therefore Eq. (24) takes the simple form

J,= (c/H)F„, (25)

where Ii„ is the effective driving force acting on the
electron system, with

F„=(eh ri,)eE„+ V„(P,i+—rP, ); (26)

K is the electrostatic field, I',i and I', are the

"pressures" of the electron and phonon gases, respec-
tively; r indicates the fraction of momentum of the
phonon system transferred to the electron system, and
e is the density of carriers. Lorentz forces are excluded
from Eq. (26) and the umklapp effect is neglected.

The notion of electron gas pressure is valid in the
classic case of a quadratic-distribution function for
which P,=e(k, el 8/elk, ) is independent of the x direc-
tion. At high field, with more complex surfaces the
pressure can be anisotropic and, in this case, the com-
ponents perpendicular to the field can be taken3' as
Pi——e(hi). For 8i——o~, (p+-', ), isotropy of P in the plane
perpendicular to the fieM ensues, but generally
I'J.&I'&& and will remain different in the classical limit
too. It is not expected, either, that the phonon pressure
should be isotropic.

Under the simplifying assumption of isotropic pres-
sures, the pressure P =Q (the grand canonical potential
per unit volume) and Eq. (25) becomes

or

c 8Q,i tl (Q,i+rQs)J,=—(rid —rt, ,)eE„+ V„ti+ V„T
Bp BT

CJ = (Nh rt.) E—*„—(s, +—r—s,)V„T.
II H

(27)

The temperature dependence of r has been neglected for
simplification. In the low-temperature limit with the
electron entropy density s,~= C,i= 3''E'TZ and in the
low-temperature Debye approximation for which the
Phonon entroPy s,= sC, = ts (12ssiSE) (T/0')s, the NE
kinetic coeKcient takes the value

or

s„"=—(c/H)(C. ,y ',rC,)-(28a)

"V. G. Bar'Yakhtar and S. V. Peletrninskii, Zh. Eksperim. i
Teor. Fiz. 48 187 (1965) (English transl. : Soviet Phys. —JETP
21, 126 (1965)g.

irsJt'cT 12~' ~ T~s-
~» =- Z+r — —~, (28b)

3H 5 EO Ol

and this coeS.cient is seen to measure not only the
electronic specific heat, but also —', of the specific heat of
the fraction of phonons dragged by the electrons.

Besides this greatly simplified expression for ~»", the
experimental determination of this coeS.cient is also
simplified. At high field it is expected and found that
o»/o» and his/Xii become negligible as well as the
correction for the thermocouple e6ect of the leads and
the coefficient E» is well approximated by the expres-
sion e»"——s»'/p»p», all these coeKcients being directly
measured experimentally. (eis'= E„/to, for J=0, —
m * is the heat Qow density, and p» and p» are the elec-
tronic and thermal magnetoresistivities, respectively. )

Etectromic density of states. The total density of elec-
tronic states at the Fermi surface Z would be directly
measured by the apparent quantity Zen= —3He»"/
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FIG. 5. The apparent density of electronic states at the Fermi
surface of Sb, Z'" determined from the high-Geld limit of the NE
thermoelectric codhcient versus T . The extrapolation to T'=0
gives the electronic density of states Z. The additional contribution
due to phonon drag appears as the term proportional to T'.

m'E'cT should the drag term be negligible. But, as shown
in Fig. 5, this quantity is found to be temperature-
dependent with (to a good approximation) the expected
T' dependence of an added drag term. The extrapolation
of Z'" to T=O gives the electronic part Z= (1.10+0.07)
10~ erg ' cm ', and the T'-dependent part yields the
value 50.4&1.2 in J deg s mole ' for the quantity
3rC, T '. The results are in gross agreement with the
rough determination of Long et al. ' using also the NE
determination. The electronic part is also in fair agree-
ment with the value obtained fromm Z=gsse, /is; in
the quadratic-distribution approximation with Z=
1.03X10"erg ' cm '.

Comparison of the NE density-of-states determina-
tion with the determination through the specific heat is
shown in Table I. It may be seen that the NE density
of states is generally larger than the specific-heat
determination by 10—20% depending on the reference.
It is believed that experimental error would not account
for all the discrepancy. Most probably a departure from
quadratic distribution in antimony is the cause of this
discrepancy, with grade(8&) N s grade(8), the first
quantity being 1.1—1.20 times smaller than the second.

The question of comparing bare electrons (b.e.) with
quasiparticle (q.p.) electrons could be raised at this
point with the NE for measurement of the former" and
specific heat defining the latter. The ratio in masses of
the two kinds of electrons would be in direct ratio with
the density of states they depend upon, esb, /esa n

=
ZNE/Zs~ H. . This ratio should be smaller than unity to
account for the quasiparticle added mass but is found
from measurements to be larger than unity. This should
not be taken as a contradiction because the effect of the
nonqua. dratic anisotropic energy distribution is most

~6R. E. Prange and L. P. Kadano8, Phd, Rev, 134, +566
{1964).

TABLE I. Data on speciGc-heat and transport effects. C/T
=nT '+PT +y in 10 ' J deg ' mole ' (T in 'K). In the present
work, errors are determined taking 95% conMence limits and
error is taken to be 1.965 times the first standard deviation. The
coeflicients were obtained from the data by Gtting the previous
equation using a multiple regression program of General Foods.

Transp. eGects Specific heat
This work This work Ref. 38 Ref. 40

Temp. range
('K) 0.4—2.3 0.37—1.4

CX 1.97+0.23
P 186+6 211~5.3

127~7 116.5~6.4
O~('I) 218'a2 209.6+1.18

10ss

Z~
—

~
1.10~0.07 1.O1+0.08

l,erg cms j

0.54-1.1 0.5—4.0
4.8+0.4
210~2 206+1
105~2 112~5
210+0.7 211.3~1.5

0.916 0.97

probably preponderant over the quasiparticle added
mass effect.

Phomoe drag. Below 1.4'K, where the eRect of the
peripheral phonons is negligible, phonons will be mainly
scattered by the electrons and, to a lesser extent, by the
boundaries. It may be estimated that boundaries
contribute to approximately 1—4% of the total scatter-
ing in the range 0.5—1.4'K. This will make the drag
eKciency r =96-99%, which, when used in conjunction
with the drag term in Eqs. (28) and its experimentally
determined value, will give for the lattice specific heat
a value C, =pTs, where p= 186+6 isJ deg 4 mole ' and
with an apparent value for the Debye temperature
0" = 218&2'K. It may be seen in Table I that the NE
drag determination of C, is about 12% smaller than the
direct specific-heat determination. Again, in similarity
to the case of the electrons, the isotropic distribution of
the phonons is far from being achieved and the notion
of phonon pressure is only to be taken as a first-order
approximation. Kith gradPg&&gradP, t& the apparent
directional lattice specific heat measured by the NE
eRect would be diRerent from the averaging obtained
from a specific-heat measurement.

Above 1.4'K a selective drag should appear. Since
part of the phonons, i.e., the peripheral phonons, do not
scatter the electrons, they are not being dragged either.
This is equivalent to replacing in Eq. (28a) C, by
C,*=C,res(O~~/T)/gs(O/T), the subthermal phonon
specific heat. The decrease in the drag in the tempera-
ture range studied due to this effect is still too small for
any conclusive evidence of this eRect. Note that the
temperature dependence of Long's' Z'" data may be an
indication of it.

In conclusion, the NE measurement leads to a deter-
mination of the electron density of states slightly
diRerent than its determination from the specific heat.
This difference is believed to be associated with the
anisotropic nonquadratic electron distribution in anti-
mony. The phonon-drag term also does not match the
prescribed lattice speci6c-heat contribution exactly.

I COT-1 =PT2 and e are obtained from Eq. (28a) and Fig. 6, lower curve, ,
by assuming a (97.5 &1.5)% p!Ionon drag for calculating Cg.
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FIG. 6. Specific-heat data for Sb. The upper set of points are
experimental results for sample plus addenda. The lower set of
points are the data for specific heat of the addenda. The solid lines
represent least-square fits to Eq. (32).

This is probably a consequence of the anisotropic
phonon distribution.

R (2I+2)(2I+3) e'gQi'Cg=- ny s

80 2I(2I—1) KT)
(29)

where E. is the universal gas constant, I is the nuclear
spin, q is the largest component of the electric-field-
gradient tensor in the principal-axis system, and Q is the
scalar quadrupole moment of the nucleus.

The electronic component is expected from free-
electron theory to be linear in T to 6rst order;

C,= '7r'K'TZ+O(Ts)~ y-T, (30)

and for the lattice contribution, the low-temperature
Debye approximation of Eq. (15) will be used:

C,= (127 4NK/5) (T/0)'= pT'. (31)

The total specific heat of the sample can thus be written
as the sum of the three contributions,

C=nT '+yT+PT'
and for purposes of analysis one writes

C/T=nT s+PT'+y. (32)

The speci6c-heat data were analyzed in the following

37 N. E. Phillips, Phys. Rev. 118, 644 (1960).

C. Speci6c Heat

In addition to the electronic and lattice components
of the specific heat, there appears in the semimetals a
term due to the interaction of the nuclear electric
quadrupole moment with the electric field gradient of
the crystal. It is known" that this contribution to first
order in 1/T has a T ' temperature dependence

FIG. 7. Comparison of specific-heat and thermoelectric results
expressed in units of C/T versus T'. The upper curve is derived
from the specific-heat results: The slope of the dashed straight
line is a measure of the Debye temperature O~; its intercept is a
measure of the electronic specific-heat coeKcient p, inhuence of
the nuclear-quadrupole contribution is evident at the lowest
temperatures. The lower curve represents the thermoelectric data
in the same units.

manner: The heat capacity of the sample and its
addenda were measured and normalized to C using the
Anal weight of the sample. The value of the apparent
coefficients n', p', and y' for the separate contributions
were determined by fitting the data points plotted in
C/T versus T' to an equation of type (32). The experi-
mental points are shown in Fig. 6 (upper part) where
the solid line represents the result of a least-squares fit.
In a separate experimental run the heat capacity of the
addenda (i.e., the holder, thermometers, heater, and the
residual piece of the antimony metal) was determined
and normalized in the same manner, and the coefficients
n", p", and y" appropriate to this data were found. The
experimental points are shown in Fig. 6 (lower part)
where the solid line represents the result of a least-
squares fit. The coefficients characteristic of the anti-
mony sample alone were then obtained by subtraction
of the two sets of coefficients. The values obtained are
listed in Table I and are compared to the other recently
determined values. The measured value for the nuclear-
quadrupole contribution nT ' is found to be (1.97
&0.23)T ' pJ deg ' mole '. This value differs by more
than a factor of 2 from that of Mccollum and Taylor"
as shown in Table I; both ranges of error are relatively
large. Lower temperatures were used in this work
than in the work of Ref. 38 and should in principle lead
to a more precise determination of n. If Eq. (29) and
experimentally determined values" of Q are used to And

~8D. C. McCollum and W. A. Taylor, Phys. Rev. 156, 782
(1967)."R.R. Hewitt and B.F. Williams, Phys. Rev. 129, 1188 (1963);
D. Strominger, J. M. Hollander, and G. T. Seaborg, Rev. Mod.
Phys. 30, 697 (1958).
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a, the results vary widely from 4.37 to 1.9pJ deg '
mole '.

Figure 7 shows the result of the specific-heat curve
fit, together with the thermoelectric data expressed in
units of C/T. The slope of the linear portion of the plot
of C/7" versus T' (Fig. 7) is a measure of the Debye
temperature 0",through the relation P = (12/5) s4$EO'
The values p=211.0&5.3 fiJ mole ' deg 4 and 0"

= 209.6'K are found and compared to the results of the
other authors in Table I. Culbert" fitted his data to an
equation different from Eq. (32), so that his value for
P cannot be directly compared; the agreement with
Ref. 38 is satisfactory.

Finally, the intercept with the C/T axis in Fig. 7 is a
measure of the electronic contribution coefficient q, and
the value y=116.5&6.4pJ mole ' deg s is found.
Accurate measurement of the electronic component of
the total heat capacity of antimony (and of the other
semimetals) is especially difficult because of its small
number of conduction electrons. The lattice heat-
capacity term dominates over the electronic term down
to very low temperatures and still accounts for 75% of
the total at 1.0'K. On the other hand, below 0.5'K one
faces the rapidly increasing nuclear-quadrupole contri-
bution. In view of these difficulties, the results for y,
compared in Table I, can be said to be in rather satis-
factory agreement.

Using Eq. (30), a value for the electronic density of
states Z= (1.01&0.05) X 10ss erg ' cm s is found. Agree-
ment is good with the value Z= (1.03) )& 10"erg '/crn '
calculated under quadratic-distribution assumption. "It
is also in fair agreexnent with the NE determination
Z= (1.10~0.07)X10"erg ' cm ', but, as remarkedpre-
viously, if the difference between these values is taken
seriously it may indicate in the NE the influence of a
nonisotropic nonquadratic electron distribution.

IV. CONCLUSION

Residual resistance being preponderant below 2'K
indicates that the main scattering of the electrons is due

' H. V. Culbert, Bull. Am. Phys. Soc. 10, 1104 (1965); Phys.
Rev. 15?, 560 (1967). References to previous data on the specific
heat of antimony can be found in this article.

to impurities. The behavior of the lattice thermal
conductivity in the lowest range of temperature indi-
cates that the main scattering of the phonons is due to
the electrons, whereas the enhancement in this con-
ductivity above 1.4'K seems to be related to the
inability for the phonons with q) 2k& (peripheral
phonons) to be scattered by the electrons, and the
validity of a characteristic scattering Debye tempera-
ture 0' =(2ks/pic)O is verified. This interpretation
implies that the three phonons normal mixing process
is still weak at these temperatures, as expected, and it is
therefore thought that the apparent agreement with the
Ziman s T law in the ratio X,/o; is accidental, i.e., not
indicative of strong mixing.

The predominance of the phonon-electron scattering
is also evident at the appearance of a nearly full phonon
drag in the NE eRect. The comparison of this term with
the lattice specific heat indicates that some discrepancy
may be expected from the simplifying concept of iso-
tropic phonon gas. The notion of selective drag is also
introduced in relation with the q&2k~ drag condition
and the weak-phonon mixing.

The electronic density of states determined from the
NE effect matches approximately the value obtained
from the electronic specific heat. Should the small
discrepancy not be due to simple experimental error it
may indicate in the NE term the inhuence of a non-
isotropic, nonquadratic electron distribution.

The NE effect does not seem to carry any trace of the
nuclear electric quadrupole terms which appear in the
specific heat. The direct measurement of the specific
heat is in agreement with other recent direct measure-
ments.
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