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A theoretical foundation for the pseudopotential concept has been provided by switching from the Hartree-
Fock framework to the G1 framework. The new method allows ab initio determinations of the potential
and removes many of the serious theoretical difficulties which have plagued the pseudopotential approach.
The potential from ab initio calculations on the Li atom using the new approach is reported, along with the
Fourier transform of the potential. There are still practical difficulties in solving the equations for the

pseudopotentials of large atoms.

INTRODUCTION

HE concept of the pseudopotential® has in recent
years been extremely useful in developing the
theory of metals.>~5 Essentially the idea is to replace
the Hartree-Fock equation for the valence orbitals
HY %= e,
HEF— T} JHF
(where T=—%V2 is the kinetic term and VEF is the
potential term) by another equation
HyopiP= €™, (2)
where ¢;% is a “smooth” function without the nodes of
¢:. In addition we take
Hy=HF 4 Vp,

where Vg is a repulsive pseudopotential which cancels
much of the negative VEF in the core region of the
atom. Since ¢P® is smooth it can be well described with
just a few plane waves, and since

Vessg=VEF+Vg
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is a weak potential, we can hope to use perturbation
theory to describe scattering due to lattice vibrations,
impurities, etc.® The net result is a quite aesthetic theory
encompassing many of the interesting aspects of metals®
and relevant even for discussing liquid metals” and the
interactions leading to superconductivity.®3

However, there are some well-known flaws in the
pseudopotential theory. First, the pseudopotential is
not unique?; there are an infinite number of different
V&, each of which leads to a different ¢®%, but with the
same €; Second, the new Hamiltonian is not Her-
mitian,®® which leads to complications when consider-
ing scattering. Third, the V' is an integral operator; it
is not a local potential* even when VEF is assumed to
be local. This causes problems when considering scatter-
ing since the scattering matrix element between plane
waves k and k+q, (k+q| V|k), depends not only on q
but also on k.

These difficulties also lead to certain conceptual
problems. It is clear that a solution to (1) can be inter-
preted as the eigenstate of an electron moving in the
average field of the other electrons.® However, it is not
at all clear that the solutions of (2) can be so inter-
preted. This is especially apparent since there are an
infinite number of different equations like (2), each

6 L. J. Sham and J. M. Ziman, Solid State Phys. 15, 221 (1963).
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with a different ¢*. In addition, since Hp is not
Hermitian, it would seem inappropriate to allege that
it represents the Hamiltonian for an electron moving
in the average field of the other electrons.

We have formulated a different approach' to elec-
tronic wave functions which very naturally leads to po-
tentials and orbitals with the properties desired in the
pseudopotentials ‘and pseudo-orbitals but without the
above-mentioned attendant difficulties.

G1 METHOD AND PSEUDOPOTENTIALS

The new method, called the G1 method,0:!* is related
to the Hartree-Fock method in that the variational
principle is used to functionally optimize a general ex-
pression for the electronic wave function in which there
is one orbital for each electron. However, in addition to
satisfying the Pauli principle (accomplished in the
Hartree-Fock method by the antisymmetrizer), the G1
wave function is an eigenfunction of total spin for any
choice of the N spatial orbitals (the Hartree-Fock
method forces the spatial parts of the core orbitals to
be identical in pairs in order to obtain the proper spin
symmetry). The result is a set of equations

Hipr=exp1, Hupo=e€sps, -+, Hypn=exdn, (3)
determining the optimum orbitals. Here H; has the form
Hi=T+Vaat+UH=T+V4,

where T'=—3V2, Vyq is the potential due to the nuclei,
and U,%! involves integrals over the other N—1 orbitals
(excluding ¢.) and can be considered as the average po-
tential due to the other N—1 electrons as seen by ¢..
Thus, just as in the Hartree-Fock method, H, can be
interpreted as the Hamiltonian for an electron moving
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Fic. 1. The G1 and Hartree-Fock valence orbitals for Li. Also
shown are portions of the core orbitals.

WILLIAM A. GODDARD,

It 174

12.0

10.0

8.0

6.0

POTENTIAL (h)

4.0

2.0

1 1 I 1 1
0.0 1.0 2.0 3.0

DISTANCE FROM NUCLEUS (ao)

F16. 2. The local potentials for the valence electron as obtained
from the G1 and Hartree-Fock methods and empirically (Seitz).
U is the local potential due to the core electrons. (Energies are in
reduced atomic units for Li, 141;=27.208 eV.)

in the average field of the other electrons. Hence we
may interpret the many-electron wave function in
terms of the one-electron orbitals ¢; as if there were an
electron in each orbital moving in the average field of
the other electrons.

The H;is Hermitian and is nonlocal (the U; being an
integral operator just as in the Hartree-Fock case).
However, in contradistinction to the Hartree-Fock
case, the orbitals ¢; in (3) cannot be taken as orthogonal
and the various H; are not equivalent. That is, there is
nothing in the G1 many-electron wave function (as
there is in the Hartree-Fock case) which forces the orbi-
tals to be orthogonal (to orthogonalize the G1 orbitals
would, in general, raise the total energy quite signifi-
cantly). Now it is just the orthogonality condition
between Hartree-Fock orbitals which leads to the diffi-
culties that led to the development of the pseudopo-
tential formalism. Specifically, the orthogonality con-
dition causes the valence orbitals to have nodes in the
core region and thus implies that the effective potentials
for these valence orbitals are strongly negative there.
Hence the valence orbitals fluctuate drastically in the
core region, requiring many plane waves in a plane-wave
expansion, and the potential is too strong to allow a
treatment of scattering in the Born approximation.* On
the other hand, the G1 valence orbital for the atom
turns out to be nodeless and smooth in the core region,
and the total atomic energy is far lower than the
Hartree-Fock total energy.

In order to be specific, we shall discuss the case of the
Li atom in the following since accurate ab initio atomic
calculations have already been carried out! and since
Liis a prototype for the systems of interest. Each of the
G1 orbitals is the lowest solution for its respective

1W. A. Goddard, III, Phys. Rev. 169, 120 (1968).
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F16. 3. The effective potentials for the valence electron as ob-
tained from the G1 and Hartree-Fock methods and empirically
(Seitz). U is the local potential due to the core electrons and V is
the total potential, V'=U—3/r. (Energies are in reduced atomic
units for Li, 141;=27.208 ¢V.) On the inner side of the node of
the Hartree-Fock orbital, the VEF is negative.

Hamiltonian and each is nodeless. Two orbitals, ¢,
and ¢1s, are concentrated in the core region and the
other, the valence orbital ¢, is smooth and large out to
about 5ao. In Fig. 1 we compare the G1 and Hartree-
Fock orbitals for Li. Since the G1 orbitals are nodeless,
it is straightforward to solve the equation

H/'$:=[—3V—Z/r+U:(") () =eips(r) (4

for a local potential U,(r) such that the local operator
H/ has the same solution, ¢; and €;, as the nonlocal
operator H; in (3); i.e.,

_ Z I(I+1) 6/ (r

0r)= et ( )Jr (r) ,
r 22 26,(r)

where 0(r)=r¢(r) and 6"=d20/dr’. The U, for the

valence electron of Li is shown in Fig. 2 and the total
effective potential

©)

I72a= U-'Z’af Z/f (6)

is shown in Fig. 3. Also shown in Figs. 2 and 3 are the
potentials for the Hartree-Fock valence orbital’? and
the potentials for a commonly used empirical potential
for Li, the Seitz potential.’® [In the Hartree-Fock
method the valence orbital 6, has a node and thus the

12 A, W. Weiss, Astrophys. J. 138, 1262 (1963). We use the Weiss
Hartree-Fock wave function for Li because the orbitals satisfy the
cusp conditions exactly (if the orbital does not satisfy the cusp
condition at the nucleus, the U; is infinite there). Since the
Hartree-Fock valence orbital for Li has a node, straightforward
application of (5) leads to erratic behavior in the region of the
node.

1B F. Seitz, Phys. Rev. 47, 400 (1935). The published table for
the potential was in error and has been corrected by W. Kohn and
N. Rostoker, Phys. Rev. 94, 1116 (1954); however, it would
appear that one of their values is in error. Specifically for the po-
tential to be smooth, the value of —#V at »=0.92 should be about
2.466 rather than 2.4242.
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TasiE L. Energies for several excited states of the Li atom calcu-
lated using the effective potential, V1, from Fig. 2. (Energies
are in reduced atomic units for Li, 14r;=27.208 eV.)

Calc. Expt.2
2s —0.19633 —0.19816
3s —0.07475 —0.07419
4s —0.03893 —0.03862
Ss —0.02381 —0.02364
6s —0.01605 —0.01595
2p —0.11233 —0.13025
3p —0.05107 —0.05724
3d —0.05533 —0.05561

a C, Moore, Atomic Energy Levels, Natl. Bur. Std. (U. S.) Circ. No. 467
(U. S. Government Printing Office, Washington, D. C., 1949), using
1hLi=219457.454 cm™! [from C. W. Scherr, J. N. Silverman, and F. A.
Matsen, Phys. Rev. 127, 830 (1962), Table V.

local potential defined by (5) has a singularity.!4] Thus
we see that the G1 effective potential is rather weak. In
fact, from Figs. 1-3 we see that the G1 orbital and G1
local potential for the valence state of Li have exactly
the forms postulated for the pseudo-wave-function? and
pseudopotential.8 However, V59" is unique, Hermitian,
and local, and the ¢,,% is the eigenstate of the one-
electron Hamiltonian obtained directly from the varia-
tional principle. Thus, conceptually everything is in
order and all the problems mentioned in the Introduc-
tion have been removed. By replacing the Hartree-Fock
method by the G1 method we have very naturally ob-
tained a firm foundation for all of the concepts of the
pseudopotentials, ingeniously developed over the last
few years, avoiding, however, most of the attendant
difficulties. We see that these concepts are much more
fundamental than has been previously supposed.!s In
the G1 and pseudopotential methods the weakly bound
orbital is described as the lowest (hence nodeless) state
of a weak potential, whereas this orbital is described in
the Hartree-Fock method as a higher (node containing)
state of a deep or strong potential.

There is, however, one thing left to clear up. If the
local potential U(r) in (5) really represents an average
potential due to the core electrons, then the excited
states in this potential should correspond approximately
with the actual excited states of the atom. In Table I
we compare the experimental energies for the ns2S
states with 7 up to 6 to those calculated using the

% Note that 6;"" of (5) does not in general have a node at the
node of 6;. For example, for Li the Hartree-Fock equations become

—1or 0 ~Zos+2( [ dxfﬂzr—)%@)oz(n
~(f dxﬁif%”@))al: et (1) + e (1).
Thus at the node of 6, we have
104 (W)= (et [axEE2CY 1,
which need not be zero (here en=(6162]1/712/6:02)). I thank

Professor R. M. Pitzer for a discussion on this point.
15 B. J. Austin and V. Heine, J. Chem. Phys. 45, 928 (1966).



662

-20 T T T T T

<G1
Veore (K

FOURIER TRANSFORM OF POTENTIAL (h)

K VECTOR (a.u.)

F1c. 4. The Fourier transforms of the core potential, Veoro=U
—2/r and the total effective potential, V=U—3/r. See Ref. 18
for a precise definition of the Fourier transform.

U, () obtained from the 2s orbital, ¢,,1.1¢ We see that
the calculated energies for the ns%S states are within
about 19, of the experimental values, and thus as far
as s states are concerned the local potential does seem to
be equivalent to the nonlocal potential it replaces. This
does not extend, however, to states of different sym-
metry. A portion of the exchange term in the nonlocal
U,,%! depends directly on the overlap between core and
valence orbitals which is significantly changed when the
valence orbital has a different symmetry. A similar

16 Thus the calculated excitation energies are based on the as-
sumption that the core orbitals are the same for all excited states.
Of course they do rearrange some. If the rearrangement were
large it would make less sense to assume that the core electrons
can be replaced by the same potential for all states. The effect of
the rearrangement on the calculated ionization energy is small,
however, and should be about 0.00003%; see P. C. Chow and
L. Kleinman, Phys. Rev. 162, 105 (1967).
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difficulty occurs in the pseudopotential approach,
where there is a different pseudopotential for each
symmetry.2—5:17

Now that we at last have pseudopotentials, derived
from @b initio calculations, there are many areas for
possible applications.* Since many applications, for
example, calculations of band structure and electron-
phonon interactions, require the Fourier transform of
the potential * we show in Fig. 4 the Fourier transform,®
Beore® (B), Of Veore® (1) = U2 (7) — 2/7. Veore®! is the net
core potential to which we must add —1/7 in the case
of the atom and, in the case of a metal, also some sort
of shielded potential due to the other atoms. The
Fourier transform 75,8 (%) of V2,61(7) is also included.
For comparison purposes the Fourier transform of the
Seitz core potential is also given in Fig. 4. Thus we
see that the weakness of the G1 potential does indeed
lead to much smaller Fourier coefficients. Note that
since V2,7 (7) is local, the matrix element between plane
waves k and k+q is just the Fourier transform of ¥V,

(k+q| V| k)=5(q).

The major difficulty with the G1 approach is that the
initial solution of Eqgs. (3) for the atoms is much more
complex than in the Hartree-Fock case. Calculations
have at the present time been carried out only for He,
Li, and Be (and isoelectronic ions). We are in the

process of developing programs for atoms up through
Na.
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