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New Foundation for the Use of Pseudopotentials in Metals*
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A theoretical foundation for the pseudopotential concept has been provided by switching from the Hartree-
Fock framework to the G1 framework. The new method allows ab initio determinations of the potential
and removes many of the serious theoretical difhculties which have plagued the pseudopotential approach.
The potential from ab initio calculations on the Li atom using the new approach is reported, along with the
Fourier transform of the potential, There are still practical difIIculties in solving the equations for the
pseudopotentials of large atoms.

INTRODUCTION

HE concept of the pseudopotential' has in recent
years been extremely useful in developing the

theory of metals. ' ' Essentially the idea is to replace
the Hartree-Fock equation for the valence orbitals

HIPPY

HHF —T+ V'HF

(where 7= —-', V' is the kinetic term and VHP is the
potential term) by another equation

ps —e .
Q

.ps

where g,p' is a "smooth" function without the nodes of
P,. In addition we take

Hp, =H"P+ Vtt,

where Vg is a repulsive pseudopotential which cancels
much of the negative V F in the core region of the
atom. Since pp' is smooth it can be well described with
just a few plane waves, and since

V.tt= V"F+Vz

~ Partially supported by Grant No. GP-6965 from the National
Science Foundation.
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is a weak potential, we can hope to use perturbation
theory to describe scattering due to lattice vibrations,
impurities, etc. The net result is a quite aesthetic theory
encompassing many of the interesting aspects of metals'
and relevant even for discussing liquid metals' and the
interactions leading to superconductivity. ' '

However, there are some well-known Raws in the
pseudopotential theory. First, the pseudopotential is
not unique'; there are an infinite number of different
Vtt, each of which leads to a different qP', but with the
same ~;. Second, the new Hamiltonian is not Her-
mitian, ' ' which leads to complications when consider-
ing scattering. Third, the Vg is an integral operator; it
is not a local potential4 even when VHF is assumed to
be local. This causes problems when considering scatter-
ing since the scattering matrix element between plane
waves k and k+q, (k+q~ V

~ k), depends not only on q
but also on k.'

These difhculties also lead to certain conceptual
problems. It is clear that a solution to (1) can be inter-
preted as the eigenstate of an electron moving in the
average Geld of the other electrons. "However, it is not
at all clear that the solutions of (2) can be so inter-
preted. This is especially apparent since there are an
inlnite number of different equations like (2), each

s L.J. Sham and J. M. Ziman, Solid State Phys. 15, 221 (1963).
7 J. M. Ziman, Phil. Mag. 6, 1013 (1960); C. C. Bradley,

T. E. Faber, E. G. Wilson, and J. M. Ziman, Phil. Mag. 7, 865
(1962).

V. Heine, in Optical Properties and Electronic Structure of
Metals and Alloys, edited by F. Abeles (John Wiley 0 Sons,
Inc. , New York, 1966), p. 16.' B.J. Austin, V. Heine, and L. J. Sham, Phys. Rev. 127, 276
(1962).I W. A. Goddard, III, Phys. Rev. 157, 81 (1967).
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I.2—

Tmx.z I.Energies for several excited states of the Li atom calcu-
lated using the effective potential, W's, ~', from Fig. 2. (Energies
are in reduced atomic units for Li, 1hz;=27.208 eV.)
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Moore Atomic Energy Levels, Natl, Bur. Std. U. S. Circ. No. 467

(U. S. Government Printing OfFice, Washington, D. C., ),
~ t

n D. C., 1949), using
1hz,&=219457.454 cm ' [from C. W. Scherr, J. N. Silverman, and F.
Matsen, Phys. Rev. 127, 830 (1962), Table Vj.

Frc. 3. The eGective potentials for the valence electron as ob-
tained from the Gi and Hartree-Pock methods and empirically
(Seitz). U is the local potential due to the core electrons and Tr is
the total potential, V= U 3/r. (Energi—es are in reduced atomic
units for Li, 1kL;=27.208 eV.) On the inner side of the node of
the Hartree-Fock orbital, the 1/H~ is negative.

Hamiltonian and each is nodeless. Two orbitals, pt,
and Pts, are concentrated in the core region and the
other, the valence orbital pz, is smooth and large out to
about Sao. In Fig. 1 we compare the G1 and Hartree-
Fock orbitals for Li. Since the G1 orbitals are nodeless,
it is straightforward to solve the equation

&.'~'=I:--:&'—Z/r+U'(r)3'(r) = '~'(r) (4)

for a foca/ potential U;(r) such that the local operator
H has the same solution, P; and e;, as the nonlocal
operator H; in (3); i.e.,

Z l (f+ 1) 0,"(r)
U;(r) = e;+— +

r 2r' 20;(r)

t/'2 = U2, —Z//'r

is shown in Fig. 3. Also shown in Figs. 2 and 3 are the
po enotentials for the Hartree-Fock valence orbital" an
the potentials for a commonly used empirical potential
for Ii, the Seitz potential. " Lin the Hartree-Pock
method the valence orbital 02 has a node and thus the

"A.W. Weiss, Astrophys. J. 138, 1262 (1963).We use the Weiss
Hartree-Pock wave function for Li because the orbitals satisfy the
cusp conditions exactly (if the orbital does not satisfy the cusp
condition at the nucleus, the U; is in6nite there). Since the
Hartree-Fock valence orbital for Li has a node, straightforward
application of (5) leads to erratic behavior in the region of t e
node."F.Seitz, Phys. Rev. 47, 400 (1935).The published table for
the potential was in error and has been corrected by %.Kohn and
N. Rostoker, Phys. Rev. 94, 1116 (1954); however, it would
appear that one of their values is in error. Specilcally for the po-
tential to be smooth, the value of —rV at r =0.92 should be about
2.466 rather than 2.4242.

where 0(r)=rg(r) and e"=d'8/dr'. The Us. for the
valence electron of I i is shown in Fig. 2 and the total
effective potential

(6)

local potential defined by (5) has a singularity. ")Thus
we see that the G1 effective potential is rather weak. In
fact, from Figs. 1—3 we see that the G1 orbita. l and G
I 1 potential for the valence state of I.i have exact yocR po

2 dthe forms postulated for the pseudo-wave-function an
pseudopotential. s However, Vz, ' is unique, Hermitian,
and local, and the Ps,a' is the eigenstate of the one-
electron Hamiltonian obtained directly from the varia-
tional principle. Thus, conceptually everything is in
order and all the problems mentioned in the Introduc-
tion have been removed. By replacing the Hartree-Fock
method by the G1 method we have very naturally ob-
tained a firm foundation for all of the concepts of the
pseudopotentials, ingeniously developed over the last
few years, avoiding, however, most of the attendant
difhculties. Ke see that these concepts are much more
fundamental than has been previously supposed, ' In
the G1 and pseudopotential methods the weakly bound
orbital is described as the lowest (hence nodeless) state
of a weak potential, whereas this orbital is described in
the Hartree-Fock method as a higher (node containin. g)
state of a deep or strong potential.

There is, however, one thing left to clear up. If the
local potential U(r) in (5) really represents an average
potential due to the core electrons, then the excited
states in this potential should correspond approximately

eIwi th the actual excited states of the atom. In Ta e
es'5we compare the experimental energies for the es

states with e up to 6 to those calculated using the

~4 Note that e;" of (5) does not in general have a node at the
node of 8;. For example, for Li the Hartree-Pock equations become

Z 0,*(2)e, (2)——'0 "(1)——8 {1)+2 dx2 02(1)

dX2
e~*(2)es(2)

el 62282(1)+f2181(1)~

r12

Thus at the node of 02 we have

e,*(2)e,(2}-'g "(1)= — ~21+ dx2— 0 (1),2 2 = 2
r12

which need not be zero (here eql=(HA~1/r&~~8 e~l). 2I thank
Professor R. M. Pitzer for a discussion on this point."B.J. Austin and V. Heine, J. Chem. Phys. 45, 928 (1966).
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Us (r) obtained from the 2s orbital, it s,o'.is We see that
the calculated energies for the ns'5 states are within
about 1% of the experimental values, and thus as far
as s states are concerned the local potential does seem to
be equivalent to the nonlocal potential it replaces. This
does not extend, however, to states of di6erent sym-
metry. A portion of the exchange term in the nonlocal
U2 0' depends directly on the overlap between core and
valence orbitals which is signi6cantly changed when the
valence orbital has a diferent symmetry. A similar

"Thus the calculated excitation energies are based on the as-
sumption that the core orbitals are the same for all excited states.
Of course they do rearrange some. If the rearrangement were
large it would make less sense to assume that the core electrons
can be replaced by the same potential for all states. The effect of
the rearrangement on the calculated ionization energy is small,
however, and should be about 0.00003k; see P. C. Chow and
L. Kleinman, Phys. Rev. 162, 105 (1967).

FIG. 4. The Fourier transforms of the core potential, t/„„=U'

—2/r and the total et1ective potential, V= U—3/r. See Ref. 18
for a precise de6nition of the Fourier transform.

dBFiculty occurs in the pseudopotential approach,
where there is a diferent pseudopotential for each
symmetry. ' ' '~

Now that we at last have pseudopotentials, derived
from ab initio calculations, there are many areas for
possible applications. Since many applications, for
example, calculations of band structure and electron-
phonon interactions, require the Fourier transform of
the potential, ' we show in Fig. 4 the Fourier transform, "
v„,,g'(k), of V„,.g'(r) = Us, g'(—r) 2/r. V„—, g' is the net
core potential to which we must add 1/r i—n the case
of the atom and, in the case of a metal, also some sort
of shielded potential due to the other atoms. The
Fourier transform 8s,g'(k) of Vs,g'(r) is also included.
For comparison purposes the Fourier transform of the
Seitz core potential is also given in Fig. 4. Thus we
see that the weakness of the G1 potential does indeed
lead to much smaller Fourier codBcients. Note that
since Vs, '(r) is local, the matrix element between plane
waves k and k+q is just the Fourier transform of V,

(k+q~ Vi k) =v(q).

The major difFiculty with the G1 approach is that the
initial solution of Eqs. (3) for the atoms is much more
complex than in the Hartree-Fock case. Calculations
have at the present time been carried out only for He,
Li, and Be (and isoelectronic ions). We are in the
process of developing programs for atoms up through
Na.
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