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Dyson calculated the effect of spin-wave interactions on the static (thermodynamic) properties of the
Heisenberg ferromagnet. Within the same approximation, that of.. including only the contributions of
lowest-order (two-magnonl scattering processes and neglecting the kinematic interaction, we have calculated
the dynamic properties of this system and Gnd results consistent with Dyson s in the zero-wave-vector
limit. In the short-wavelength limit where perturbation theory diverges, we discuss nonperturbatively via
the t matrix the inQuence of the two-spin-wave bound states and the two-spin-wave resonant scattering
states on the single-particle spectrum as characterized by the transverse spectral weight function Ae(jul.
We And that although the total cross section of the bound states is too small for them to be observed directly,
the anomalous effect of the bound states and resonant scattering states on the renormalization of the
spin-wave energy is observable under favorable conditions. In general, we find the quasiparticle picture to
be valid; however, at the highest temperature considered the resonant scattering states cause an extra
resonance in the susceptibility. Most of the results for AI, (co) are given numerically and have been checked
against the sum rules, although the energy shift and energy width as deduced from Zz(ef, ) are given analyti-
cally by rather simple expressions. We have obtained for the erst time a Green s function that is capable of
yielding correctly at low temperatures both the static and dynamic properties for arbitrary spin.

I. INTRODUCTION

r 1HE Heisenberg model of ferromagnetism has been
extensively studied since its proposal in 1926.

Bloch was the 6rst to point out that the elementary
excitations from the fully aligned ground state are the
coherent reversals of magnetic moments smeared out
over the crystal in a wavelike manner. He also calcu-
lated the eGect of these spin-wave excitations, or
magnons, on the thermodynamic properties within the
approximation that the excitations do not interact with
one another. This type of calculation was extended and
systematized by Holstein and PrimakoP via the
introduction of a transformation from spin operators
to boson operators. They were thus able to write down
the terms in the equivalent boson Hamiltonian respon-
sible for the interaction between magnons. From their
arguments it is clear that the simple Bloch theory
becomes exact either at low temperatures as the
thermal average number of magnons goes ti.~ zero, or
for indnite spin where the interactions vanish.

Several authors subsequently attempted to improve
on the Holstein-Primakoff treatment by expanding the
square roots introduced by, the transformation from
spin to boson operators and treating the nonquadratic
parts perturbatively. 4 ' Because the interaction between
the Holstein-PrimakoG spin-waves is large even for
long wavelength, one must group the terms together
properly, ' as for instance, according to powers of 1/S
and (ss), where S is the spin and (zt) the density of
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magnons. This problem was overcome by Dyson, 7 who
introduced a simple equivalent boson Hamiltonian that
consisted of terms quadrati. c and quartic in the boson
operators. He was then able to sum explicitly the
perturbation series for the free energy, including terms
of all orders in 1/S that are of les, ding nontrivial order
in (n). Furthermore, he was able to conclude that
perturbative calculations for static thermodynamic
quantities were qualitatively correct over a wide tem-
perature interval, say, T/T, ( ', . Actually be—cause of
the weakness of the long-wavelength interactions the
expansion parameter turns out to be (rt)(kHT/4JS)
rather than (zt).

Dyson also pointed out that calculation of the prop-
erties of a low-density gas of magnons is formally
identical to that for any low-density system of weakly
interacting particles. By weakly interacting, one means
that there are no low-energy two-particle bound states.
In other words, the thermodynamically important two-
particle, i.e., two-spin-deviation, states are those that
do not differ qualitatively from the states of two non-
interacting particles. Although Dyson did not investi-
gate the possible occurrence of bound states in full
detail, he showed that even if they did exist, they would
not aQ'ect the low-temperature thermodynamics. A
more complete analysis of the two-spin-wave states has
since been carried out by Mortis. ' He found that bound
states of two spin-waves do indeed exist for the c.m.
momentum k greater than a critical value k., the exact
value depending on the direction of k in reciprocal
space.

The problem of the interactions of two spin-waves
is quite similar to the usual two-body problem, ' except
that in the c.m. system the resulting potential depends
on the c.m. momentum. The analogous situation in

' F. J. Dyson, Phys. Rev. 102, 1217, 1230 (1956).
s M. Wortis, Phys. Rev. 132, 85 (1963).
'P. Roman, Adw, rIced Quantum Theory (Addison-Wesley Pub-

lishing Company, Inc., Reading, Mass. , 1965).
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potential scattering is the scattering of a particle from
a spherical potential well whose depth, for the purposes
of the analogy, is dependent on the total momentum
of the two spin-waves. For very shallow wells, only a
continuum of scattering states exist. As the well
becomes deeper one finds the emergence of a bound
state. Continuing the process, one finds successively
more bound states as the depth of the well is increased.
For small c.m. momentum, one is in the regime where
only scattering states exist. Towards the edge of the
Brillouin zone, the momentum-dependent attractive
potential is strong enough to support one, two, and
Anally three bound states of two spin-waves.

An interesting aspect of the two-spin-wave problem
has been discussed by Boyd and Callaway. " They
resolve the scattering cross section into its partial-wave
components and show that there are both s-wave and
d-wave bound states. In addition, they point out that
for k of the order of, but less than, k„ that is, when the
potential is not quite strong enough to support a bound
state, the d-wave (but not the s-wave) states connect
to a set of resonant scattering states. In these states,
the two spin-waves may be thought of as interacting
so strongly that they undergo several successive
collisions before separating. The resonant states are
analogous to those found in the scattering of a particle
from a spherical potential mell that posesses a barrier,
such as the angular momentum barrier /(l+1)/r'. In
this case, the wave function is peaked inside the well,
decays exponentially within the barrier, and then takes
on free-particle character outside. In the two-spin-wave
problem the barrier arises in the following manner.
Consider the phase relation between spins on a large
sphere about the scattering site. Since an s-wave bound
state must be spherically symmetric, all these spins are
in phase and there is no exchange energy associated
with such a configuration. However, for a d-wave state
there must be two nodes in the phase wave function
and thus neighboring spins will be out of phase. There-
fore the d conlguration has exchange energy associated
with it. Moreover, as one decreases the radius of the
sphere, the phase variation becomes more rapid and the
associated exchange energy increases. This increase in
the energy of the d configuration with decreasing radius
from the scattering site is equivalent to a potential
barrier, and explains why there are resonant d states
but no resonant s states.

One expects that rather dramatic eGects on the
single-particle states are possible, when the energy of a
resonant state or "quasi-bound state" is equal to that
of the single-particle excitation of the same momentum.
Under this condition one expects that the single-
particle excitation, or magnon, may combine with a
long-wavelength thermal magnon and be in resonance
with the quasi-bound state. This phenomenon is the
perfectly general and familiar one of level crossing in

I R,. G, boyd snd J. Callaway, Phys. Rev. 138, A1621 (1965).

quantum mechanics. A typical example of this in
magnetism is the eGect of magnon-phonon interaction
on the crossover of the magnon and phonon dispersion
curves. " In the present case, the resonance is not
between two different single-particle excitations (mag-
nons and phonons) but rather between a. single-particle
excitation, magnon, and a two-particle excitation, the
quasi-bound state. Accordingly, a better analogy is to
be made with the Berk-SchrieGer theory of spin
fluctuations in nearly ferromagnetic metals. " In that
case, although one does not have two-particle bound
states (of electron-hole pairs), the large susceptibility
is indicative of paramagnons, which are just quasi-
bound states of electrons and holes of opposite spin in
exactly the sense we have discussed for the spin-wave
bound states. As Berk and SchrieGer show, the severe
interaction with the paramagnons causes the single-
particle excitations to be strongly modined. Thus they
explain the large electron eGective-mass enhancement
in nearly ferromagnetic metals. Our results are quite
similar to theirs in that we find an anomaly in the
magnon renormalization when the magnon energy
approaches the energy of the quasi-bound states. An
important diGerence between the two physical situa-
tions is that, whereas in the case of nearly ferromagnetic
metals one can observe the quasi-bound states directly
through the large paramagnetic susceptibility, in the
case of two-spin-wave bound states it is dificult to
couple directly to them via an external 6eld, thus
making their direct observation dificult (although it
may be possible, as we point out in Sec. IV) . However,
their indirect observation via their eGect on the magnon
spectrum should be more feasible through inelastic
neutron-scattering experiments.

It is clear that in order to study such eGects perturba-
tion theory is hopelessly inadequate. What one must
do is to construct the analog of Dyson's theory as
applied to the calculation of the dynamical properties.
Previous authors have obtained formal expressions
which would desciibe this effect, and have evaluated
the magnon renormalization for small wave vectors. " "

P. Erdos, Phys. Rev. 139, A1249 (1965),"N. F. Berk and J. R. SchrieBer, Phys. Rev. Letters 1'7, 433
(1966)."For ak«1 but e»&k~T, expressions for the energy renormali-
zation, including damping, may be deduced from Dyson's results
(Ref. 7) for the thermodynamics and cross section. These results
have been rederived within a Green's-function formalism by V.X. Kashcheev and M. A. Krivoglaz, Fiz. Tverd. Tela 3, 1541
(1961) LEnglish transl. : Soviet Phys. —Solid State 3, 1117
(1961)g; R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127,
95 (1962);J. F. Cooke and H. A. Gersch, ibid. 153, 641 (1967);W. Marshall and G. Murray, J. Appl. Phys. 39, 380 (1968).'4 For ak«1 and eJ,«k~T, the damping has been evaluated by
Kashcheev and Krivoglaz, and a valid expression was also given
by Tahir-Kheli and ter Haar. The contradictory results given by
Cooke and Gersch and by Marshall and Murray are believed to
be in error, and this will be discussed more fully in a subsequent
paper.

"For ak«1 anisotropy also contributes to the damping. This
case is discussed by S. V. Peletminskii and V. G. Bar yakhtar,Fiz. Tverd. Tela 0, 219 (1964) LEnglish transl. : Soviet Phys. —
Solid State 6, 174 (1964)g.
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y»= z—' Q exp(zk II),

(~b)

(Bc)

where

at the site i. In terms of this representation, the
Hamiltonian (1) becomes"

Js
50nM= A+ ge);as a) ——g~rssas+v ar stara);, (3a)

k pI:g

For large wave vectors these complicated expressions
are rather unenlightening, and to our knowledge no one
has previously pointed out the possible effects of the
quasi-bound states on the single-particle spectrum. By
confining our attention to the L111) direction in
reciprocal space we were able to obtain simplified
expression~ whose evaluation was reported previously. "
The purpose of this paper is to give a more complete
description of the physics and mathematics of the
theory.

Briefly, this paper is organized as follows: In Sec. II
we formulate the problem; in Sec. III we outline the
low-density expansion to be used; in Sec. IV we describe
and interpret our results. Finally, in Sec. V we draw
some conclusions from our calculations.

S, = (2S)"'a
S'= a;~a,—S

(2b)

(2c)

where a; and a;~ destroy and create, respectively, bosons

II. PROBLEM FORMULATION

The Hamiltonian of an ideal isotropic Heisenberg
ferromagnet with nearest-neighbor interactions is

SCH„,———J Q S; S;, (1)(, ')

where J is a positive constant and the sum extends over
all nearest-neighbor pairs in a simple cubic lattice. We
shall employ the Dyson-Maleev (DM) representationr "
for the spin operators, given by

S;+= (2S)'t'a;t(1 —a 'a /2S), (2a)

Eo= —-,'JV2S',

e).„——JzS(1—y),) .
(4a)

(4b)

Here S is the number of lattice sites, Eo is the ground-
state energy of the system, and e& is the energy of a
single spin wave in the free-particle approximation. In
Eq. (3a), 5 is a vector from a lattice site to one of its z
nearest neighbors (z=6 for the simple cubic case we
treat), and

as X'"Q——exp(ik x;)a;.

The boson Ha, miltonian (3a) consists of a kinetic-
energy term (corresponding to a gas of simple spin
waves) and a two-body momentum-conserving poten-
tial, which represents the interactions between spin
waves. The potential is of the standard form, with two
exceptions. First, it is nonlocal, so that 7~k~ depends
not only on the momentum transfer q but also on the
incoming momenta p and k. Second, GCDM is non-
Hennitian. Neither of these facts causes any calcu-
lational problem, since one may still use all of the
formulas of Feynman diagrammatic perturbation
theory, being careful nowhere to assume V= Vt and
remembering that 1'~s, is not just F(q) as one usually
Ands. Finally, we note that the local part of the effective
interaction between spin waves, i.e., that from terms
involving S, operators, is attractive.

We wish to calculate the transverse component of
the dynamical susceptibility, which is the linear
response function of the system. The transverse sus-
ceptibility is the spin Green's function

xi&, ~) imp, ) f=~a—e-'sic'&Ls„-(~), s„+io)]),

in the usual notation and possesses the spectral representation'"

A), (o)')
7t(k, o)) = —(gtttt) ' do)' (3~0+), (7)

"R. Silberglitt and A. B. Harris, Phys. Rev. Letters 19, 30 (1967)."S.V. Maleev, Zh. Eksperim. i Teor. Fiz. 33, 1010 (1957) /English transl. : Soviet Phys. —JETP 6, 776 (1956)g.
"In this equation all wave vectors are restricted to the first Brillouin zone of the reciprocal lattice. Actually the potential

should contain a Kronecker 8 conserving momentum only up to a reciprocal lattice vector, but due to the periodicity of all func-
tions we deal with (including the t matrix), use oi (3a) properly describes the system, including the contribution of all umklapp
processes by bringing all vectors back to the first zone. One cannot make such an argument for a many-sublattice system.

"D.N. Zubarev, Usp. Fiz. Nauk '7l, 71 (1960) LKnglish transl. : Soviet Phys. —Usp. 3, 320 (1960)g.
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where the spectral weight function A&(es) is given by

As(&o) =Z ' g Lexp( —PE ) —exp( —PZ„)j ((zz
~

Ss+
~

zrz) Pb(co E„+—E„).

Thus As(ot) gives a rather complete description of the
dynamics of the system. In Sec. III we will show how
to calculate it for all k and eo at low temperatures.
Numerical results of the calculations will then be
displayed and interpreted in Sec. IV.

In our calculations we will utilize the Green's
function

gs (r) = —(T,ss (r)5~+(0)), (10a)

Sk (r) = exp (X&Mr) 5& exp( —KDMr), ( 10b)

and its Fourier transform

where

gp(ioi„) = dr exp(~„r) gss(r),
0

Here Z is the partition function and
t zzz) and

~
zz) are

exact eigenstates of KH„,. This function contains all
important physical information about the spin-wave
excitation spectrum of the system at finite temperature,
since As(co)/(1 —e s ) for positive co is the probability
of exciting a transverse excitation of momentum k and
energy co in the system. In fact, the inelastic neutron-
scattering cross section is given directly in terms of
As(co) 8 It is also true that from the spectral weight
function one may determine both the real and imaginary
parts of the susceptibility, through the relations

—zr(gzzn)'Ap(&o) = Imp(k, (o), (9a)

the literature" ""It is well known that gs (i&a„)
possesses the spectral representation

, Ag(oi')
gss (ice„) = — do&'

co —Ro~
(13a)

As(co) = —zr ' Img&s(a&+9) (8~0+), (13b)

where A&(co) is given by Eq. (8), so that the imaginary
part of this Green's function gives the spectral weight
function of the finite-temperature susceptibility. Writ-
ing the spin operators in Eq. (10) in terms of bosons
through the use of Eq. (2), and neglecting kinematic
effects (see Appendix A), we find that the spin Green's
function involves both the one- and the two-particle
boson Green's functions. It has been shown, "however,
that for this system the two-particle boson Green's
function equals a function of momentum and frequency
times the single-particle boson function. Thus we obtain
from Eqs. (2), (10), and (11)

/san(mu„) =258(, (i(v„) I1+LAs(ia) )/2Sj}, (14)

where

gI, (uu„) = $uu„—es —Zs(z(o„)j ' (15)

is the boson Green's function, Zs(ia&„) is the usual
irreducible boson self-energy, and A&(ice„) is given
diagrammatically in Fig. 1. In Fig. 1, the double lines
represent gs(zot„) and F is a vertex function, the sum of
the internal parts of all diagrams with two solid lines
both coming in and going out. Note that in lowest
order lambda is just A&'&= —2(rz), so that the boson
and spin Green's functions differ by a factor of

ar„= 2zrzz/P (rz an integer) . (12)

These Green's functions have been very well studied
and their properties have been discussed extensively in.

In terms of Zs(co) and its(cv) the spectral weight
function is given by

As(o)) = —(25/zr) lim
~

(u —es—Zs(a&)+z5
~

sX I (Zs" (a&)+L(ze—eI+ib)/25/Ai" (cv) )

—Im((25) 'zs (N) As(N) )—A/1+ (25) 'h/, '(N) $}, (16)

where a prime denotes the real part and a double prime
denotes the imaginary part; here Z&(m„) and A&(ice„)
are understood to be evaluated for ~ just above the
real axis. In Sec. III we discuss the low-temperature
approximations for Zs(cu) and Aq(zo) and derive in
terms of them a more compact expression for Al„(su)
from Eq. (16). As is discussed in Appendix D, this
expression also gives a spectral weight function from

"I.. Van Hove, Phys. Rev. 95, 249 (1954);95, 1374 (1954).

which one can obtain thermodynamic quantities con-
sistent with Dyson'sz results to all orders in 1/S.

nr. LOW-DENSITY APPROXZMATroN

At low temperatures we will employ the diagram-
matic density expansions for Z&(co) and A&(e0). The

~' T. Matsubara, Progr. Theoret. Phys. (Kyoto) 14, 351
(1955}.

»A. A. Abrikosov, L. P. Gorkov, and I. Y. Dzyaloshinskii,
Quantum Field Theoretical 3fethodsin Statistical I'hysics (Perga-
mon Press, Inc. , New York, 1965), 2nd ed.
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+ + ~ ~ ~
integral ns times f is of order gs ss~P', or Tsls. Making
the definition

FIG. 2. The t matrix, or sum of ladder diagrams, which ap-
pears in the one-backward-line approximations for Zc(car„) and
A/, (za ).

rules for calculating Z&(ce) have been given by a number
of authors" "; most notable is Ref. 25, where an
explicit derivation of the general term is given. The
generalization of the rules necessary for a diagrammatic
calculation of As(ce) is straightforward. In the Baym-
Sessler formalism the Matsubara sums for a diagram
with e vertices are performed by associating with each
original diagram the set of n~ "time-ordered" diagrams
obtained by considering all possible time orderings of
the vertices. In this formulation each line of momentum
k running backward in time is a hole line carrying the
factor nl, and each line running forward in time is a
particle line carrying a factor 1+Is, where rcI,=
Lexp (Pec) —1) '. Thus a classi6cation of diagrams
according to the number of backward lines leads
naturally to an expansion in the density of quasi-
particles. Dyson~ has shown that summing the first
two terms in the density expansion yields the magnet-
ization correctly to order T4. This corresponds to
including all two-particle scattering processes or (for
dynamical quantities) all one-backward-line diagrams.
Consequently, we will sum all contributions to Zs(ce)
and As(co) with at most one backward line and will 6nd
that the errors thus incurred are at most of order T5.

The one-backward-line approximations for Zs(ce) and

As(ce) are given in terms of the t matrix, or sum of
ladder diagrams, shown in Fig. 2. Diagrammatic
expressions for Zc(co) and As(ce) in terms of f are shown

in I'ig. 3. Note that the backward line appearing in
both expressions is one of the outgoing lines of the t
matrix. One of the properties of I'„&, given by Eq. (3b)
is that it vanishes if either of the outgoing lines has
zero momentum (p = q or k= —q) . From Fig. 2, or Eq.
(20), it is clear that the f matrix also has this property,
since the dot carries a factor Jsl „~~. Thus the t-matrix
terms in Fig. 3 both involve integrals over p of e„ times

t, where y is the momentum of one of the outgoing lines
of the f matrix. Since N„=Lexp(Pe„) —1+', the main
contribution to the integral comes from small p.
Converting to the dimensionless variable x= (pJSp) '12,

we see that each factor of p; in the integrand gives a
factor of T'Is (hence g„rss~TN'). Due to the vanish-

ing of I, for p= 0 and the fact that e~ is an even function
of p, we find that the lowest-order contribution to the

IR. Balian and C. DeDominicis, Nucl. Phys. 16, 502 (1960).
24I. E. Dzyaloshinskii, Zh. Eksperim. i Teor. Fiz. 42, 1126

(1962) (English transl. :Soviet Phys. —JETP 15, 778 (1962)g.
s5 G. Baym and A. M. Sessler, Phys. Rev. 131, 2345 (1963).

we observe that both Zs(ce) and hs(co) —A&'& are in
lowest order proportional to T"'. This result for Zs(ce)
verifies that we will obtain the correct low-temperature
renormalization of the spin-wave energies "with the
internal energy" rather than "with the magnetization. "

V/e now return to the expression for the spectral
weight function in terms of Zs(co) and A.s(ce), Eq. (16) .
Retaining only the leading term in the numerator,
which is of order T@', we obtain

where

2S ImRs (ce)
Acco = ——

s.
~

co—es —Zs(u&)+i5 ~''

(
P(i(dzj= 2 x

k
+

t

p, i4Jg

k, IQJ f1

FIG. 3. The one-backward-line ap roximations
for Ac(ice„) and Zs(nu

"We have written the integral equation for the zero-tempera-
ture t matrix, neglecting eq/2+k, +%q/2 7y in the numerator of the
sum over k3. This is consistent with the one-backward-line ap-
proximation, since the neglected terms are of the same order as
the Qrst two-backward-line diagram.

Rs(co) = Zs(co) + (1/2S) (ce—ek+ib) As(co) . (19)

We neglected the second term on the right-hand side of
Eq. (16) because it consists of (2S) 'Z&" (a&) As'(ce),
which is of order Tc, and (2S) 'Zs'(ce) Ak" (ce), which is
of order T'. The third term vanishes except in the case
that the imaginary part of the self-energy vanishes at
the zero of the denominator, corresponding to an
infinitely long-lived quasiparticle. It may thus be
neglected, since at finite temperature the quasiparticles
of the system always have a 6nite lifetime (except in the
case co=0, which we do not treat).

To calculate the spectral weight function given by
Eq. (18), we need to know both Zs(ce) and ImRc(co).
These functions will be obtained from the t matrix,
which (according to Fig. 2) satis6es the following
integral equation":

1 (/cg/csc/~) = V(krksq)

V (ksksq) f (krksqce)E ' . , (20)
&3 ce eels+&a eels-la+i'
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where

V(ktksg) = —2J Q cos(ltt ~ 6)

QJ

24JS
I4
2

&&Leos(lrs 6) —cos(srq 8)j. (21)

The t matrix given by Eq. (20) is a function of both the
relative incoming and outgoing momenta, k~ and k2,
respectively, of the total momentum g, and of the total
energy ~ carried by the two interacting spin waves.
Equation (20) is very similar to equations discussed
previously by Hanus, ~ Wortis, ' and Boyd and Call-

away, "and has the solution

1(ktksqcs) = —2J g Icos(irk 8) Leos(ks 5')

I8 JS

l2JS

6JS

0 30 60 90 l20 l 50 I 80
k (OEGREES)

5,5~=x,y, e

—cos(-,'q 5') jL1—2A(q, te) j&,,—'I. (22)

Here the matrix A is de6ned by

J cosk, (cosk;—cos-,'q, )
A,;q, tq = —— 23

X k te eqls+k eq/s-k+ s3

FIG. 4. The manifold of two-spin-wave states which determine
the spectral weight function in the low-density approximation.

of poles, or a branch cut where the equation co=

eq~s+k+eq~s k has a solution for some k. This condition
can also be written as

= —(1/4S) LD;, (q, ~) —n;D, (q, ~) ], 3(u—1)+ Q n„cosk„=0. (26)

where

D;;(k, x)=X 'Q
ki 3 (X—1)+ Q n„COSk '+ t'd '

(23b)

(24a)

This represents the two-spin-wave band, which extends
from

a)„„„=4JSQ (1—n )

to
~„,. =4JS g (1+~),

D;(1 x) =X-t g
ki 3(x—1)+ g n c sko„'+ik '

Also we use the notation

n)= cosy'')q

M =re/12J5.

(24c)

(25a)

(25b)

Note that 4';, (q, &v) is equal to B,, (q, &0) as defined

by Wortis. From Eq. (22) we see that the singularities
of t are those of (1—2A) ' and occur where

I
1—2A(c, ~) I

=o

It has been pointed out by the previous authors that
these correspond to the two-spin-wave states, both the
continuum of scattering states and the isolated two-
particle bound states outside the continuum. More
explicitly, the singularities of the t matrix are the
following:

(1) In the limit E ' gk —+(2qr) sly'k, a continuum

s7 J. Hatms, Phys. Rev. Letters 11,336 {1963).

(24b)
and below we will introduce also Ds(k, x):

Ds(lr, x) =E 'Q L3(x—1)—+ Q n„cosk„'+s8] '.

where g is the sum of the momenta of the two inter-
acting spin-waves.

(2) Isolated poles below the continuum at the
solutions of

I
1—2A(q, tq)

I
=0, where the A@ are real

functions in this region. These are the bound states
discussed in great detail by Wortis. ' He found that a
threshold exists for q, below which the bound states do
not appear, and that the threshold goes to increasing

q as the spin increases. In addition, he pointed out that
there are at most three bound states. We will locate
the bound states in agreement with the above and will
also calculate the residue of t at the bound-state poles.
From the above discussion and Eq. (20) it is clear that
one may write a spectral representation for the f

matrix

t(ktksgeq) = V(ktksq) + , B(ktksqqq')

where the spectral weight function 8 is real and is
given by

B(k&ksqte) = (1/qr) Imt(ktksqco). (28)

The spectral weight function 8 is nonzero for co' on the
branch cut of t or at the poles of t corresponding to the
bound states. We have plotted these regions of co space
versus k for lr along the I 111jdirection in Fig. 4. Here
lr= k(1, 1, 1) and we have taken the lattice spacing to
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be unity so that k is nlGasured ln degl ees ( k = o&

degrees" means ka= ds./180) .
The diagrammatic equations in Fig. 3 enable us to

write down expressions for Zt. (o&) and As(o&) in terms of
f In. the case k&T«o&, ss where we may neglect the n(o&)

terras in the frequency sums, we obtain, after performing
these sums using the representation given by Eq. (27),

Zs(o&) = —, O'P n„

&«L-'(P —k), -'(P —k) P+» ~+"3 (29a)

j
i (o&) =Au&— &P ~P

32+'

n„t/P' ', (P—+-k), —',(p —k), p+k, to+e~j

cd+e~ ep' —e~+s ~~+lb

From Kq. (29) we may infer the analytic structure of
Zs(ro) and As(to) within our approximation. The factor
ts„may be characterized as a sharply peaked function
with a range in momentum space (kI&T/JS) 'I'. Thus
Zs(o&) and As(o&) will have appreciable spectral weight
over essentially the same interval as the t matrix for
total momentum k. We may say that the spectral
weight of Z~(o&) and As(o&) are obtained from that of
the t matrix via a small thermal "smearing. "Near the
bound states the thermal smearing produces resonances
in Zs(co) and As(o&) from the poles in the t matrix.

As we have already noted, the one-backward-line
approximation, Eq. (29), involves errors only of order
T'. However, in attempting to evaluate these expres-
sions one runs into two di6iculties. First, there is the
problem of performing the three-dimensional momen-
tum integrals. And then, since this must be done
separately for each temperature, the evaluation and
tabulation of the results becomes very unwieldy. In
order to overcome these difiiculties, we have decided to
utilize the temperature expansion in our numerical
work, and consider only the leading contributions
which are of order T'I'"

To obtain the leading term in this expansion the p
integrations in Eq. (29) may be performed in exactly
the same manner as those encountered in the calcu-
lation of the thermodynamics of noninteracting spin
waves, namely, the cofactor of e~ is expanded in powers
of p. Thus we require an expansion of L1—2A(q, o&)1 '
Lace Eq. (22) j about q=k in order to evaluate the
integrals in Eq. (29). This expansion may be made
except very near the Van Hove singularities of the t

matrix or near the bound states, where the gradient of
$1—2A(q, o&) j ' with respect to q becomes infinite.
Thus the equations we are about to derive for Zs(co)
will not be valid in these regions. However, the Uan
Hove singularities affect the calculation of the spectral
weight function only over a negligibly small region in co

space."In the remaining region we use Eq. (22) for the
t matrix and expand $1—2A(q, o&) $

' about q=lr and
obtain, correct to order T"',

z«& k
Z~(o&) = I-,'g (sin'-', k, ) Ll —2A(k, o&) $;,—'+x g (sin~sk;) (cos-,'k;) (c&/c&k;) L1—2A(k& o&) );; 'I. (30)

Here Z"& (k) is the first Born approximation to Zs(o&),

given by Kq. (29a) with t replaced by V:

z~ (a)= 'jap. —vp(p-a) -(p —~) p+a&

(31)
and is evaluated to order T"' a,s

Z& &(k) = —(es/32$)t ( )vsrs~ r ~ (r~knT/JS).
(32)

It is possible to estimate the validity of this asymp-
totic evaluation of the low-density contribution by
comparison with the asymptotic evaluation of a similar
quantity,

~= (1/A&) Z (~s)o= (1/») Z L«p(&«) —13 '

As has been pointed out, "this quantity can be expressed
in closed form using modified Bessel functions. Thus
one has available the complete asymptotic expansion

of e at low temperatures. Although this expansion is
not convergent (i.e., it is truly an asymptotic one), it
can be seen that successive terms are smaller initially
by a factor of keT/4JS. Thus one might anticipate
that our expansions also have this property, or that the
first neglected term is down by a factor knT/4JS= 4r. —

The same procedure could in principle be used to
evaluate As(o&) and thence, from Eq. (19), Rs(o&).
However, since one obtains rather complicated expres-
sions for As(o&), the following approach was found to be
more convenient.

We define Rs (o&) by

(co—es+ z3
Bs(o&) =Rs(o&) —Zo&(k) —

i

A&'&

2S
(33a)

o&—@+z8
Bs(o&) LZs(o&) —Z&'& (k) j+ 2S

LA, (~) —A&'&)

(33b)
'SIn the regime k&T»eo, in addition to keeping the neglected n{w) term in Eq. (29a), one also must retain the terms

(1+I,~+s,+N, is @) in Eq. (20) for the t matrix. This will be discussed more fully in a subsequent paper.
29 In contrast to the approximation of taking only diagrams for Zz(co) and Ak(co) with one backward line, this approximation is

not essential, and could be overcome at the cost of more intricate numerical evaluation.
R. Silberglitt, Ph.D. thesis, University of Pennsylvania, 1968 (unpublished) .

n T. Tanaka and S. I. Glass (unpublished), quoted by S. H. Charap and E. L. Boyd, Phys. Rev. 133, A811 (1964) .
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Note that since Z'"(k) and A.") are real, one has that ImR), (&o) = ImB), (~). Accordingly, to calculate A),, (~)
we may replace R/, (&u) in Eq. (18) by B/, (&a). In Appendix B we derive the expression for R), (co),

~LP' —2(P+&) 2(P—&) P+»~+~nj
)i~( )=(~/~)(~/2 )'f ~'/ f ~'/'~. * '* '

.
' '-&&la-'+ '—.—~l-') (34)

M+cp E&~
—6~i &~+18

This expression has the virtue that the cofactor of e„ is of order P' so that no gradients of L1—2A(k, &u) j ' are
required for the calculation of the T@' coefficient of Rq(~). Using Eq. (22), we thus find

B),(cv) = —LZ") (m ) /35$ g (sin'-'k ) D,;(k, &u) Pl —2A(k, &u) j" ' (35)

where 5&')(x) is Z&')(k) evaluated for k= (m, m, m).
Let us now consider the bound-state region. As is discussed by Hanus" and Wortis, ' the bound states occur at

the simple poles of L1—2Aj '. For k in the L111jdirection the matrix A;; has only two unique elements, A;,=—Ao
and A;;—=Ao'. In this case (1—2A) ' is readily found to be

(1
(1—2A) '=i 1 1 1

Ei 1 1)

t/ 2 —1 —1)
3(1—2Ao —4Ao')+

~

—1 2 —1
E-1 -») 3 (1—2A0+ 2AO') . (36)

and a doublet bound state which Boyd and Callaway"
show is d-like at orD given by

1—2AO(k, (oD)+2AO'(k, (uD) =0. (37b)

The calculation of the spectral weight function Ai(co)
in the vicinity of the bound states is extremely compli-
cated. In view of the fact that the eGect of thermal
smearing is probably unimportant (this is consistent
with our results) we will calculate the total area under
the spectral weight function (total cross section) near
the bound states. To do this we neglect thermal smear-
ing, i.e., we make the pole approximation for Z), (&u) and
A), (~), assuming them to be of the form

Thus, one sees that there is a symmetric or s-wave
bound state" at co, given by

1—2AO(k, &o,) —4A0'(k, &o,) = 0, (37a)

for co near a bound state at or~. If one substitutes these
three term expansions for Zi(~) a,nd /)).i(~) into Eq.
(14), one finds a Green's function with two poles, one
near e), and one near a&s. To lowest order (T'/2) the
residue of the pole near ~~ is

2S(KE3 6k) [CX+ (25) (Gl/) 6k) 8]~

The factor in the square brackets is just the residue of
R~(a&) or R/, (~) at cu/i in the pole approximation. The
pole approximation is generated from Eq. (34) by
neglecting the dependence of the t matrix on e„, so that
Eq. (35) is suitable for this purpose. Accordingly,
using Eqs. (35) and (36), we find the total areas under
the spectral weight function ai(co, ) and gi(&ui)) near the

&) (~)-~//(~ ~s) +P)+v—~(~ ~s) +. , —(38a)

A), ((u) a),/(co ari))+b),+c).(ra —cv/i)+' ', —(38b)
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FIG. 6. The spectral weight function within the two-spin-wave
band for 4&k,. Note the logarithmic scale for the ordinate.
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bound states at ~, and or~, respectively, to be

sin' —,'k D,;(k, oo,) +2D;;(k, oo,)

(oo.—oo)' $2(B/Bo))Ao(k, oo)+4(B/Boo) Ao'(k, co)7 i, '

sin' —,'k D,,(k, ooD) —D,;(k, ooD)

(~r —oo)' ((&/&~) Ao(k, ~) —(&/cj~)Ao'(k, ~)j ~.,

(39a)

(39b)

When one considers the point &o=- oo, the sum rules on A;;(k, &o) and its derivatives simplify matters, and con-

sequently, as is shown in Appendix C, a compact expression for the self-energy follows. It is the self-energy at
oo=oo that gives the renormalized spin-wave energy oo(T) and inverse lifetime or damping constant I'&(T) through
the relations

oo(T) = oo+ Redo(oo),

I'o(T) = —ImZk(oo) .

The expression for Z&(o&) in the L1111direction was previously reported, "and is the following:

Zo(oo) =Q(k) Zt'&(k),

(40a)

(40b)

(41a)

4Ao(k, oo) 1
Q(k) = 1+ ' ——L1+3(cos'-,'k) Do(k, oo) ]

1—3Ao(k, oo) 3S
(41b)

As we pointed out previously, Eq. (41) is the generalization to finite k of Dyson s Eq. (138) of his second paper.
The Dyson (long-wavelength) result has also been rederived within a Green s-function formalism by several
authors. "We have generalized Eq. (41) to the L11xj direction, 'o and the result is

with

, Z&'&(k)
ZI. (oo) =xo [P(k)+8"&(k)+8&'&(k)j,

Pk

F(k) = —,
' P,'$(a+b+c 1)+b(—a c)$+P,o(a+—c) (a—c)
4

(a—c) (a+b+c 1)—

(42)

(43a)

Btu(k) = —(1/85) (a+b+c 1) 'I2P '—n (D,b+/D, (a+c 1)n,/n, ))+P—.'n, ([D (b—1)n./n j+D.(a+c) )},
(43b)

B~ (k) = —(1/85) (a—c) '[j8 '(D*.—D~) j—(1/85) (a+b+c 1) 'IP 'X [b (—Dsx+Dx, )

+2(a+c—1)D„(n,/n, ) j+P,'$(b 1)D„(n,/n, )—+(a+c)D.,j}, (43c)

where we have used the definitions

a= 1—2A„,
b= I—2A„,
c= —2A~,

&i = COS2~iy
1

P~ = slnokq. (44)

The interpretation of Eqs. (41) and (42) is clear.
Along the L111j direction the doublet bound state
becomes a damped, resonance within the two-spin-wave
band. At co=os, the solution of Eq. (37b) becomes
equivalent to the vanishing of the denominator of Eq.
(41). Thus if the damped bound state may exist at or
near co=ay„corresponding to solution of the real part
of Eq. (37b), it will cause a resonance in Zo(oo). When
we generalize to the L11xl direction, the doublet state
is split, and thus we see two resonance denominators
in Eq. (42). The sum rules on A,; at oo=oo cause the
singlet condition (37a) never to be satisfied in this
region, so that the singlet bound state never approaches

the single spin-wave state and has no effect on Zo(oo) .
Physically the resonance may be viewed as follows.
According to Eq. (29), the excitation energy of a spin
wave is modified by continual collisions with long-wave-
length spin waves. When the energy of the damped
bound state crosses the single-particle energy, there is a
resonance in the sense that the single spin wave can
capture a thermal spin wave and form a damped bound
state so that the two spin waves propagate as a pair
during the lifetime of the damped bound state.

We close this section by noting the necessity of
taking account of the diGerence between the spin and
boson spectral weight functions, denoted by Aos(oo)
and AP (&o), respectively. As is well known, the
stability of the system requires ooAos(&o) &0, whereas
the boson spectral weight (due to the non-Hermiticity
of HDM) does not have this property. For o&~ok the
difference between Aos(&o) and AP(oo) is not very
signi6cant and theories that take account of this
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of the "repulsion" of the energy levels, much like one
finds in simple perturbation theory.

If the temperature is very low, the spectral weight
function in the neighborhood of the damped bound state
is so small that this state is not observable as a bump in
the curve. In this temperature regime there is only a
tiny increase in the area under the spectral weight
function near the damped bound state. However, even
though this area increase is extremely small, it causes
the main resonance to shift upward as we have observed
in Figs. 7 and 8. The upward shift may be understood
if one remembers that there is a sum rule on the erst
moment of As(te) about ce=es."'s The contribution
that a state makes to this first moment is not determined
simply by its area, but by the area times its distance
from e&. While at very low temperatures the amplitude
of the spin-wave resonance may be orders of magnitude
larger than that of the damped bound state, the latter
is orders of magnitude farther from ek, so that both
make comparable contributions to the first moment
about es. Thus the (small) increase in area (far from
es) because of the damped bound state is compensa, ted
by an upward shift of the spin-wave resonance, even at
very low temperatures.

At higher temperatures one may actually observe the
damped bound state as a resonance in As(&o), and its
behavior in this regime is quite interesting. Let us
focus our attention on the spectral weight function
within the continuum for fixed spin and temperature,
and follow the damped bound state as a function of
momentum. We choose k~T= Js and spin —,', so that
T~-,'T, . From Fig. 9 we see that the damped bound
state should enter the continuum at about k=140',
continue inward as k is decreased, and coincide with the
single spin-wave state at k = 124'. In Fig. 11 we observe
this phenomenon occurring. First, for k = 130' the bound
state and single magnon state are both observable as
resonances (shifted away from each other) . They are
coming closer together, with the main resonance

increasing in width, when k= 125'. Then at k = 124',
which represents the intersection of the two modes, vie
observe two peaks of about equal height and width, so
that one state cannot be distinguished from the other.
As the momentum is decreased further, the bound state
passes through the magnon state and then begins to
lose its identity (as the damping increases). At this
point the main resonance is also becoming sharper and
has begun to shift downward, as it must. Finally, at
k=120' the bound state has been reduced to a slight
shoulder in the spectral weight curve, and we are
entering the region of momentum space where the
bound states have no significant e6ect on the single
spin-wave state.

As a check on the accuracy of our calculated spectral
weight function, we have evaluated Eqs. (39a) and
(39b) to obtain the area under the spectral weight, at
the true bound states and then numerically computed
the 6rst two moments of As(re). Comparison of these
numerical results with theoretical predictions from the
sum rules has yielded excellent agreement. We shall
display some results of these sum-rule checks in a
moment, but 6rst we make some comments on the sum
rules themselves.

In our numerical calculations of the spectral weight
function we have neglected terms in both the numerator
and denominator of Eq. (16) of order higher than &""~'.

As we have remarked, this approximation was made for
numerical convenience and is not essential. A more
accurate treatment would thus replace Rz" (re) in Eq.
(18) by R&"(a&) —(1/25) ImZ&~(co) A&(ce). Among the
neglected terms is the term (1/25) Zs" (re) A~" =
—Zs"(o&) (e/5). Inclusion of only this term would
scale the spectral weight function by the factor (1—
m/5) = —(S')/5 near resonance. We have not included
this factor for two reasons: (a) Its inclusion would be
inconsistent in that other terms of comparable order
should be included; (b) this term is actually frequency-
dependent and would not lead to an everywhere positive
spectral weight function. Thus, although our calcula-
tions give a reasonable evaluation" of Eq. (16), we
should expect the sum rules to be satis6ed only to
lowest order in r, in which case (5*)=—S. Defining
~=co/12JS and JI,(~) =JAs(&u), the sum rules to
lowest order in 7- are" "

k = l25
I.O

k= l22
Ckv As(ce) =-', , (45a)

= l24

0.0

2.0

k-"120

Cke ((e—es)Xs(es) =-', (12J5) 'Z"'(k)

= —( /12es5) (1.51)(10 ')r ~'

(451)

(45c)
0.0

FIG. 11. The spectral weight function within the two-spin-wave
band at T~~T, for spin ~, showing the damped bound state
resonance and the breakdown of the quasiparticle picture near
k=124', where the spin-wave mode and damped bound state
mode intersect. Note that ~ =co/12 J'S.

where we have used Eq. (32) for 2&"(0). Some specific
examples of the sum rule verifications are shown in

"In Appendix D we show that the thermodynamics as calcu-
lated using the spectral weight function of Kq. (16) are con-
sistent with Dyson's results (Ref. 7) .
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Table I. The accuracy to which these sum rules are
ful611ed assures us that the low-density approximation
is a good one and that our numerical calculations are
reliable. An important conclusion from Table I is that
the amplitude of the spectral weight function at the
bound states, i.e. Mp""g and Mp '", is so small that
their direct observation in the susceptibility seems to
be a remote possibility. We see also from Table I that
for small k (k(k, ) the contribution to Mr from the
continuum, M~""', is negative, indicative of the fact
that the main resonance occurs below eA, due to renor-
malization. For k& k, the presence of a damped bound
state within the continuum or of true bound states
outside the continuum may push the main resonance
above ~~. In this case the positive contribution to M~
from the single magnon state must be counterbalanced
by the larger negative contribution from the bound
states, so that 3f& is small and negative as required by
Eq. (45c).

We have previously derived expressions for the self-
energy at or =~I„which gives the spin-wave renormaliza-
tion and lifetimes through Eq. (40) . ln Figs. 12 and 13
we have plotted the real and imaginary parts of Zs(@)
in the L111jdirection for spins rs and -'„ from numerical
evaluation of Eq. (41). The dashed curve is Z&'&(k),

the erst Born approximation. Note that, as we have
pointed out previously, there is a resonance occurring
in Zq(e~) in Eq. (41) as ReAp approaches -', . This
corresponds to the damped bound state which we have
just discussed 1—3Ap=0 being the doublet equation
at co=a&. We 6nd that at co=@ the singlet equation
cannot be solved since 1—2Ap —4Ap'= 1.Thus only the
doublet persists far enough into the continuum to
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Fro. 12. The magnon self-energy at ~=sz for spin $ and k=0
(1, 1, 1), showing the resonance caused by the damped bound
state. Here and in Figs. 13 and 14 k is measured in degrees.
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Fro. 13. The magnon self-energy at co=eI, for spin $ and k=k
(1, 1, 1), showing the resonance caused by the damped bound
state.

"Remarkably, the 6rst Born approximation for Zj,"{z,) be-
comes exact as k—+0. For ~~)AT this was shown in Ref. 7. For
~g(&AT see A. B.Harris {tobe published).

affect the spin-wave energy shift and linewidth, as
demonstrated also by Figs. 9 and 10, For spin ~~, the
two modes coincide at 0= 124' from Fig. 9.

We note at this point that the 6rst Born approxi-
mation is quite poor except at very long wavelength. '~

At the zone edge (k=w), Q(sr) = —s(1+1/S), which
for spin -,'is —1, the negative of the 6rst Born result. In
fact, since perturbation theory corresponds to expansion
of (1—3Ae) ' in a geometric series, it converges only
for

~
3Ae

~
(1.However, near resonance Re3A&y 1, and

Im3AO&0 since there is damping of the bound state.
The damping will be reasonably large since the bound
state has emerged quite far into the continuum, so
that

~

3Ae
~

will certainly surpass unity in the region
near the resonance. For example,

~
3As

~

=1 at about
k=120' for spin -', . Thus the resonance in the self-

energy is a nonperturbative eGect. We have obtained
it only through inclusion of all orders in 1/S via the t

matrix. As the spin is increased, one observes the
resonance diminishing in magnitude and moving to
larger momentum. This is as it must be, since for
higher spin the bound states move further out toward
the zone edge, Anally vanishing in the limit of infinite
spin.

In order to investigate the angular dependence of the
spin-wave energy and lifetime, we have numerically
evaluated Eq. (42) for Zs(es) in the L11x7 direction
(k,=k„Wk,) . Figure 14 displays the results for k in the
(11x) plane, at an angle of 8=9' from the $1117
diagonal (8=0' corresponds to [1117, 8=36' cor-
responds to L1107).The plot is for spin —,'. The notable
features are the following: There are now two peaks
in Zs" (es), corresponding to the two states of the (now
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FIG. 14. The magnon self-energy at co=&I„ for spin $ and k=k
(1, 1, k./k, ), showing the angular dependence of the resonance
caused by the damped bound state.

The effect of the bound states on the main resonance
is a specidc example of a more general and familiar
phenomenon. From general considerations it is clear
that the emergence of a new mode or the proximity of
two existing modes in a system will aGect the single-
particle spectral weight function. This is simply due to
the noncrossing of energy levels in quantum mechanics.
Other examples in many-body theory are the electron
gas in the random phase approximation" (RPA) and
the theory of spin fluctuations in nearly ferromagnetic
metals. " In all three cases one may express the single-
particle self-energy in terms of a function that has a
pole reflecting some collective mode of the system (for
us the t matrix and the two spin-wave bound states, in
the RPA the inverse of the dielectric constant and the
plasmons, for nearly ferromagnetic metals the particle-
hole t matrix and the spin fluctuations or paramagnons) .
The renormalization and lifetimes of the quasiparticles
of all these systems will thus show manifestations of
the collective modes.

The analogy to the nearly ferromagnetic meta, l is
particularly enlightening, and we will focus out atten-
tion on it. In the itinerant model of ferromagnetism,

'e D. Pines, Etententary E'xcitations in Solids (W. A. Benjamin,
Inc., New York, 1963).

nondegenerate) doublet. This double peaked behavior
is observed for all spins except ~. Comparison of Figs.
13 and 14 shows that the damped bound-state resonance
is most prominent along the $1117 direction. As one
goes toward (1107,the resonance decreases in magnitude
and moves further out toward the zone edge. Thus we
expect that the easiest place to experimentally observe
the damped bound state will be along the t 1117
direction.

V. CONCLUSIONS
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spin waves are viewed as bound electron-hole pairs, "'
and are manifest as poles in the particle-hole t matrix.
Thus the itinerant spin waves are analogous to our two
spin-wave bound states, which cause poles in our t
matrix. In the case of a nearly ferromagnetic metal
there are resonances (paramagnons or spin fluctuations)
that affect the single-particle properties of the system.
These paramagnons are the analog of our damped
bound states, which appear as resonances in our t

matrix, rather than poles (since they are inside the two
spin-wave continuum) .The transition from the damped
bound state within the continuum to the true bound
state outside is analogous to the transition from a
nearly ferromagnetic to a ferromagnetic metal, or from
paramagnons to true magnons. Thus we see that the
electron mass enhancement caused by the spin Quc-
tuations and the resonance in Zi., (a&) caused by the
damped bound state of two spin waves are two examples
of the same phenomenon. In both cases, we have a
system that in a certain regime is capable of supporting
a collective mode. It then follows that near (but
outside) this regime the fact that the collective mode
can almost exist will have a significant inhuence on the
single-particle properties of the system. In the near
regime one says that a damped collective mode exists,
which interacts with the single-particle excitations.
Then the severity of the damping may be judged by
the width of the corresponding resonance (which in the
case of no damping would be a pole) .

Our calculation of the spectral weight function at
low temperatures has many important consequences:

(a) The area under the spectral weight function at
the true bound states is so small that their direct
observation omtside the two-spin-wave band is a very
remote possibility.

(b) At very low temperatures (perhaps T &0.2T,),
or far away from the damped bound-state region, the
spin-wave energy shift and linewidth are given very
accurately by the real and imaginary parts of the self-
energy evaluated at resonance, thus verifying the quasi-
particle nature of the system.

(c) The presence of the spin-wave bound states
(both true and damped) intimately affects the magnon
renormalization and lifetime. In addition there is a
region of close proximity of the spin wave and damped
bound-state modes, within which the quasiparticle
approximation breaks down.

(d) The damped bound state is observable both
indirectly, through the resonance it causes in the
magnon self-energy, and directly, at least within our
approximation, as a resonance in the spin-wave spectral
weight function (which gives the neutron scattering
cross section) .

In this work, we have treated. for mathematical

9T. Izuyama, D. Kim, and R. Kubo, J. Phys. Soc. Japan
18, 1025 (1963).

convenience a simple cubic magnet, and have neglected
anisotropy and dipolar interactions. The generalization
to more complicated cubic lattices is straightforward
and not very difhcult, merely introducing some numer-
ical geometric factors. The inclusion of an anisotropy
term of the form PS,', where P«1, also presents no
particular problem, since the extra terms in KDM ale
of the same form as those already treated. To include
dipolar interactions would be harder, since one would
first have to transform to a representation that diago-
nalizes the dipolar interaction, ' and this would change
the nature of the diagrammatic series for the Green's
function.
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APPENDIX A: JUSTIFICATION OF NEGLECT OF
KINEMATICAL INTERACTION

In the body of this paper, we have utilized Dyson's
proof that the kinematical interaction contributes
nothing to the low-temperature expansions which we
have employed; i.e., the contribution of the nonphysical
states to the thermodynamic traces considered is always
of the form e ~~ and can thus be neglected in the
temperature regime under consideration. Although
Dyson's proof was conceived for static quantities, the
generalization to the dynamic case is straightforward.
The proof, which is given in Secs. 3 and 4 of his second
paper, ~ is accomplished through a demonstration that
there is a finite energy gap 6 between the lowest physical
and the Lowest nonphysical eigenstates of K». Thus
the contribution of a nonphysical state to the partition
function is smaller than that of a physical state by the
factor e ~~. It then follows (unless the partition sum
itself diverges) that to any finite order in the tempera-
ture the full partition function is equal to that obtained
by summing only over the physical states. To prove a
similar theorem for the spin-wave Green's function, we
note two facts.

(a) We are always concerned with thermodynamic
traces, quantities of the form

P (exp —PE„)(n
~
0(5+, 5 5')

~
e)

(b) Matrix elements of any operator 0 (5+, 5, 5')
from physical to nonphysical states vanish in the DM
representation, since S+= (2S)"a+(1 e/25), so t—hat
5+

~
e) =0 if e= 25.

From (a) and (b) we see that. we may always
separate a trace into a proper and an improper part, the
former from physical states and the latter from non-
physical states. Since a trace is a sum of diagonal
matrix elements, there is no interference between the
physical and nonphysical subspaces, for one would have
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to allow matrix elements both into and out of the
nonphysical space for this to occur. Now we have, for
any operator 0, trpO= (trpO) p+ (trpO) r, and the
improper trace is of order e &~ by Dyson's argument,
since each term in it has the factor exp( —PE„), where

~ P„) is a nonphysical eigenstate. Thus we find to any
hnite order in the temperature that any of the dynamical
quantities we discuss in this paper may be calculated
by summing over all states. The results thus obtained
are identical to those that would be obtained by
restricting the sum to the physical subspace.

APPENDIX B: DERIVATION OF THE
EXPRESSION FOR Ro(o&)

The definition, Eq. (30b), gives It!&,(o&) in terms of
Zo(co) —Z&'&(k) and Ao(o&) —A"&. These functions are

given by Eq. (29) as

Zo(o&) —Z&'& (k) =, d'p np

XItLk(p —k) k(p —k) P+» ~+op3
—VL2(p —k), o(p —k), P+kjI (81)

A&, (&o) —A"' = — d'P d'P' zzp
32+6

t$p' ,'(p+—k—),-,'(p —k), p+k, o&+o„)

oo+op op' os.o pi+18

From the t-matrix equation, Eq. (20), we see that
t V= VGG—t. Substituting this into Eq. (81), and
writing the V's in terms of magnon energies, we find
that

=1 , (I/2~) (oo p+opp -« &-p)— —
Zi(o&) —Z"&(k) =, d'p zzp(1/2zr)' d'p' .

" t/p' ', (p+—k—)&-',(p —k), p+k, oo+opj.
4n' Ql+ op op~ ——op+o p~+zb

(83)
Multiplying Eq. (82) by (io —«+zb)/2S and adding the result to Eq. (83), we obtain

oo —oi+ zb
~o(~) = &o(~) —&"'(k)+ 2S

(Ao(a) —A&'&)

~here

making the separation

tLP' —o(p+k), o(p —k), p+k, ~+opj
32~6 A+op —op~ —op+o p~+zb

F(p, p', k, o)) = (1/25) (oo p +op p
—

op o& zb—);—

25F(p) p', k, o&) oo p+op p
—op op+a „—= —1+

o&+op op o~o p.—+zb- M+op —op~ —op+o pi+zb

(84)

(85)

(86)

and noting tha, t the unity term vanishes when the P' integral in (84) is performed, we obtain finally

(8't)

which is the desired result.

1, tLP ——,(p+k), —,'(p —k), p+k, ~+o„]
~o(~)=, d'P d'P' ~p

' ' ' '
.
' "

X(oo "+o~" " o~o '-), ——-
32~6 M+ op op. —o~—k p~+ zb

APPENDIX C: EVALUATION OF Zo(c~)

In this Appendix we will exploit the simplifications
that occur in the expression for Z&, (o&) when ra =«. From
Eq. (30) we have

Zo((e) = Zo&(k) $1—
y&,.$

'

X I-: Z P.'LI —2A(k, .)j--'+' Z,P, (a/ak, )
2 27

XLI—2A(k, o&)];; 'I, (C1)

where n, = cosJzk; and P;= sin~ok;. To compute the
derivative we use the matrix relation

BM '/Bx M— '(BM—/Bx)-M ' (-C2. )

If we denote the second term inside the brackets of Eq.

(C1) by T, we have

T=x Q n;P LI —2A(k, oo) $;&
—'

2jlm

X (&/Bk;) A i (k, ~) Ll —2A(k, o&)j, ' (C3)

In order to simplify this expression we wiH use the sum
rules' in the D; and D;; for the special case co= ej„g,D,,= g,D, , =D, P;, (C4a)

2

g a,D.;= 1+Do g aP, (C4b)
7 2

g,D,, =D,+D, P,"-. (C4c)

Here the D functions were defined in Eq. (24) with the
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exception of

D;&(k x) ——(8/Bn )D (k x)

cosh; cosh;

L3(x—1)+ Pn~ cosli~+ibj

(C5c)

(C5b) We consider BA(.„(k, (0)/Bk;
(C5d)

D;,'(k, x) =—(8/Bni) D;;(k, x)

=S' cosh; cosh, , cosXl

} 3(x—1)+ gn„cosh +ibf'

8Ai (k, o))/Bk, = ——',p,BAi„(k, (u)/Bn;

=(P /SS). (~/~ )LD-(k, ) —D(k, ) .j
= —(P;/SS) LDi„'(k, 6)) —Dii (k, ei) n +5;Di (k, co) j,

where we have used Eqs. (23b) and (C5). Thus we find

(C6a)

(C6b)

(C6c)

&= ——Q n,pp} 1—2A(k, ee) '7;iLD(~'(k, ee) —n,De(k, ee)+4,Di(k, ei) jL1—2A(k, ee) j~r'.
ijim

Note that

g Ll —2A(k, ee) g„,~,-'= Q IB„,(+L (1—2A(k, ee) )—'2A(k) ee) j„;In(

(C7)

(Cga)

=n„+2 Q Ll —2A(k, ee) j „'A(k, ee) „;n;
st

—(2S) ' g Ll —2A(k, e)g „'}D„;(k, ) —,D„(k, )j;
%n

(C8b)

(CSc)

(CSd)

Here Eq. (Cga) is a matrix identity, and we have used Eq. (23b); to get Eq. (CSd) we have used Eq. (C4a).
Thus Eq. (C7) becomes

1T= ——Z n&P} 1—2A(k e&) 3;&-'LDi„i(k, e&) nDi~(k, e&)+&„;—D, (k, e&)j
jim

1= ——Q PPL1 —2A(k) ek) j,i
—'X LD(, (k, ee) +n,Di(k, ee) ],

jl

where we have used Eq. (C4c). Furthermore, by Eq. (23b) this may be written a,s

1T= ——Q PPLl —2A(k, ee) j;i 'XL—4SAi;(k, ee)+2n, Di(k, ee) j
jl

2= —-' Q P '+-' Q P '} 1—2A(k, ee) j" '——Q Pt2n, } 1—2A(k) ee) j;i 'Di(k, ee) .
j jl

Substituting this result into Eq. (C1), we thus find

Ze(ei) = Z(" (k) L1—yej 'I 2 Q P '—(2/3S) Q P '} 1—2A(k, ee) $ -—'Di, (k, ee) }.
jl

(C9a)

(C9b)

(C10a)

(Clob)

(Cl 1)

For k=k(111) this simplifies further through the use of Eq. (36), so that one obtains Q(k) as given in the text.

APPENDIX D: STATIC CORRELATION
FUNCTION

Ke may calculate the static correlation function
(Se+Se ) from the spectral weight function as

In order to compare our results with those previously
obtained by other authors we will consider (S,+S, ):

(S,+S; )=N ' Q (Se+Se—)=—2SC. (D2)

Wortis40 has calculated this quantity using a static spin
(Se+Se—)= da) Ae(cv) n(e~) . (Dl) 40 M. Wortis, Ph.D. thesis, Harvard University, 1962 (unpub-

lished).
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formalism and finds

(1/25) (5;+5;—)=np —2nP (1—1/2S)
Fro. I6. Leading contribution to

second term of Fig. 15.
k-q
p+q

where eo is the unperturbed value of the number of
spin-wave excitations. Note that the spin kinematics
manifests itself by the term —2m02(1 —1/25) which
for S&—,'is of order T'. Wortis also showed that this
result was consistent with Dyson's' thermodynamics.
The point that we wish to check is that our spin-
spectral weight function gives a correct evaluation of
(S;+S; ).

We use Eq. (16) for A&(~) and will approximate
A& (co) and Z& (ru) by their one-backward-line expressions.
Although we were able to approximate Aq(M) using
Eq. (18) for the dynamical properties, it is necessary to
use Eq. (16) for the static properties. Strictly speaking,
therefore, the dynamical spectral weight function that

Thus, denoting g'(k, m„) —= (ky„—q„)
—'-,

1C= — Q L1+ (1/25) Ai(io)„)]
&P i...

Lg (k, i&a„)+go(k, ice„)Zy(i(v„) go(k, no„)+
X exp(ia)„0+), (DS)

which is justified by the uniform (in both k and o&„)

convergence of the series since
~

Zq(ice„)/ei
~
((1.The

neglected terms are of order T' at least. Therefore

1.C= — —Q }g'(k, i(o„)+5k(is)„) } g'(k, Au„)]'

+ (1/25) go(k, uu„) A.g(ice„)+ (1/25) Lgo(k, ice„)]'
X&a(ia)„)&a (ia)„)I. (D6)

FIG. 15. Diagrams contributing to
the spin correlation function of Eq.
(D2)

k-q
p+q

The last term contains the factors TBI' from &s(m )
and T'~' from ZI, (i'„) and also the sum over uo„ intro-
duces a factor T"'. Also, as is well known, the Qrst two
terms give the Dyson result for the number of excita-
tions,

1
Q g'(k, i(u„) L1+Zp(ia)„) g'(k, no„)]

&P a,...
=&'+LQ(o)/ 5]&(')l(l) (& &/4JS)' (D7)

we have evaluated will not reproduceWortis's results.
However, as mentioned before, the approximation of
Eq. (18) in dropping some of the terms was simply one
of numerical convenience. In principle there is no

difhculty in using Eq. (16) for the dynamics. Accord-
ingly we feel justified in claiming that Eq. (16), when
evaluated using the one-backward-line approximation
for Z&(~) and A&(co), does give consistently both the
static and dynamic properties of the Heisenberg ferro-
magnet. The one missing step in the argument then is
to show that Eq. (D3) follows from Eq. (16).

We note that direct integration of Aq(co) is difficult,
but

We now evaluate

1

2EPS i, ,„„Q Ag(m„)g (k, iso„)

from the diagrams shown in Fig. 15. The 6rst diagram
gives just

2——,g m~0, = 2n 2. —('D8)

We will show below that the full contribution of the

CO

C= Q dro Ai, (co) e((o)
2ES

1
Q gP(uo„) exp( —uo„r) ~,~,

21VSj9 p „„

where

(1/25) gP (no„) =L1+ (1/2S) Ag (ice„)]
X } ~.—"—&a(i .)]-'. (D4b)

P
k-

FIG. 17. Diagrams corresponding to Fig. 16 in
backward-line formalism.
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second diagram to order T4 is obtained only from the
diagram corresponding to t = V. For now, let us examine
this diagram, given in Fig. 16. Its contribution is

1
&

VL~+-'. (P-k), —:(p-k),p+»
p co~,ra i,ra+ 1P yqk (ZMn ek) (ZMl ey+q) (&kqm ek q)—

)( (ZM~+Zoi[ —Zkq~ e&)

Instead of explicitly performing the frequency sums, we
note that the result must just be equal to the sum of the
contributions of all the corresponding diagrams drawn
in the Baym-Sessler formalism-"' which we have dis-
cussed in Sec. III. These contributions are found by
including a factor of mI, for each backward line of mo-
mentum k, 1+nk for each forward line of momentum k,
and energy denominators consisting of

a; for @; b~k

Corresponding to the above diagram,
diagrams in the new forma, lism, shown
giving contributions '

there are two
in Fig. l7, and

2 ~ n„qikVLq+~(P —k), —',(P—k), P+k]
ek+ Sp ek—q en+ q

(D9a)

2 ~ n, lkVL-,'(p —k), q+-', (p —k), p+k]
ek+ ey E'k—q ep+ q

(a)

FiG. 18. Higher-order contributions to the correlation function.

Now we know that

V(kik~q) = —2J

X P cos(ki 5) Leos(ks ~ 8) —cos(—,'q 5) ], (D10)

so that VLq+s(p —k), si(p —k), p+k] contributes a
factor sin(-,'k 6) sin(sp 6) to the sums of p and k.
Since all other factors are even in p and k, this means
that the first nonvanishing term in (D9a) has both k'
and p', or two extra factors of T, since each k or p
factor contributes T" to g„kqi„qikP(P, k). Thus (D9a)
is at least of order T'. However, to lowest order in T
(D9b) gives

2 —2eq/25 2n, '
SySQS' „gq —2e, 2S

One sees that the rest of (D9b) is of order T' from the
fact that the difference between VLs(p —k), q+-', (p —k),
p+k] and. VLq+-', (p —k), -'(p —k), p+k] is just equal
to (2s) '(ek+e„—e!, q

—e~q), so that the contributions
of (D9a,) and (D9b) differ only by the 2nq'/2s term.
Since we have already seen that (D9a) is of order T',
(D9b) must equal (2qiq'/2S)+0(T'). Neglecting all
higher-order terms, which we will show are of order T5,
we have then

25—Q (~k+&k )= —g (rik+rkk)
lV

—2qr '(1—1/25) +0(T'). (D12)

To see that the higher-order terms can be neglected
up to order T, consider any diagram of the form of
Fig. 18(a). By the arguments already given, only the
contributions of diagrams like (D9b) with the back-
ward line vertex on the right need be considered, since
all others are of order T'. The second term in the
series is given in Fig. 18(b), and its contribution is
proportional to

VI:q(p —k), 0+2(p —k), p+k]VR+s(p —k) ~l'+l(p k) P+k]—
NyNQ

(ek+ ep —ek-q —
lEp+q) (sk+ ey —ek-q~ —ey+q~ )

That this is of order T5 is apparent from two facts.
First of all, the lowest-order contribution is obtained
from setting p and k equal to zero, and vanishes since

Pq V(q, q', 0)=0. Second, using the exact same reasoning
as before, replacing VL—',(p —k), q+ —', (p —k), p+k] by
Vpg+s(p —k), —,'-(p —k), p+k] introduces a correction

4'Actually, the diagrams we are considering have not been
explicitly treated in the literature. However, the formalism of
Bloch and DeDominicis for the free energy is extremely close to
that required. Their results may be taken over if one connects
the four free lines to a "dummy" vertex, which has matrix ele-
ment unity. This is described by A. B. Harris PJ. Phys. Chem.
Solids 28, 1579 (1967)g and the result we will obtain is derived
there to lowest order in T.

that vanishes according to our first statement

(ZV(V, C', o) =o)

But when we have Vpg+-', (p —k), -', (p —k), p+k] in
the numerator, the contribution is of order T'. Since all
higher-order terms have the above factor multiplying
them, they may be neglected also. Thus we conclude
that Eq. (D12) is valid. Since this is identical to Eq.
(D3), we conclude that our approximate Green's
function reproduces the Dyson-Wortis results to all
orders in 1/S.


