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Bounds for the Isothermal, Adiabatic, and Isolated Static
Susceptibility Tensors
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Quantum-statistical proofs are given that the isolated (or Kubo) susceptibility tensor is positive in-
definite and is bounded from above by the adiabatic susceptibility tensor, while the isothermal susceptibility
tensor is positive definite and is bounded from below by the adiabatic susceptibility tensor. The results
apply to either the static dielectric or magnetic cases. Biasing fields and permanent dipole moments may be
present if desired. Criteria for equality of the various susceptibilities are established. Contact is made
with work of Falk, Caspers, Mountain, Klein, Rosenfeld, and Saito,

1. INTRODUCTION

'T has recently been shown by Falk' that the zero-
„.frequency magnetic susceptibility defined by Kubo'
(also called the isolated susceptibility) is bounded
from above by the isothermal susceptibility. In this
paper, our main result is to prove that the isolated
susceptibility is also bounded from above by the
adiabatic susceptibility. This is a stronger result than
Falk's since it is already known from thermodynamics
that the adiabatic susceptibility is bounded from above
by the isothermal susceptibility. (In this paper, the
word "susceptibility" will always mean "static dielectric
or magnetic susceptibility" unless stated otherwise) .

In order that our results may be applied to a variety
of experimental situations regardless of symmetry
considerations, we treat the tensor case. If desired, the
system may have a permanent dipole moment (either
electric or magnetic), and constant "biasing" fields may
be present. Although the relationship between the iso-
thermal and adiabatic susceptibilities is known from
thermodynamics, we believe that it is obviously desir-
able to treat all three susceptibilities systematically
from a quantum-statistical point of view.

In Secs. 2, 3, and 4, respectively, the isothermal,
adiabatic, and isolated susceptibility tensors are deGned
and calculated in a manner which makes clear the
differences between them. Although everyone under-
stands the diGerence between an isothermal and adia-
batic process, the distinction between an adiabatic and
isolated process may not be widely appreciated.

In an isolated process, it is assumed that a perfectly
isolated system undergoes a change due to some very
slowly varying externally controlled parameter of its
Hamiltonian. According to the quantum-mechanical
adiabatic theorem, ' the eigenstates and eigenvalues
change continuously as the parameter (assumed here to
be the applied field) changes with time, but the prob-

' H. Falk, Phys. Rev. 155, 602 (1968).
2 R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).
'This adiabatic theorem is the quantum analog of the classical

Khrenfest adiabatic principle. See, e.g., Richard C. Tolman, The
Prince ples of Statistical Mechanics (Oxford University Press,
London, 1938), 1st ed. , Chap. 11, Sec. 97, p. 414. A more mathe-
matically sophisticated treatment is given in Albert Messiah,
QNantgm Mechanics (North-Holland Publishing Co., Amsterdam,
1962),Vol. 2, Chap. 17, Sec. 10, p. 744.

ability of being in a given eigenstate remains constant.
Unless rather stringent restrictions are satisGed by the
Hamiltonian, an initially canonical ensemble will not
remain canonical, 4 i.e., describable by a Boltzmann
distribution.

In an adiabatic process, on the other hand, it is
assumed that the behavior of the system may at all
times be described by a canonical ensemble. Such a
system is no longer perfectly isolated but, in Tolman's
terminology, is only essentially isolated; i.e., although
necessarily in contact with its immediate surroundings,
no net interchange of energy takes place on the average.
Tolman has argued persuasively that, for the long-time
behavior of supposedly isolated systems commonly
encountered in the laboratory, the concept of essential
isolation is often the most appropriate. '

The susceptibility formulas obtained in Secs. 2—4 are
expressed in a convenient "scalar product" notation
defined by Eq. (Al) of the Appendix. In Sec. 5, these
formulas are compared by means of the Schwarz in-

equality, Eq. (A4). In Sec. 6, conditions under which
the adiabatic and isolated susceptibilities will be equal
or unequal are discussed and are related to previous
work on this subject.

2. ISOTHERMAL SUSCEPTIBILITY TENSOR

Consider a system described by a Hamiltonian Ko
subject to a slowly varying applied Geld P. Then in the
presence of the Geld, the total Hamiltonian X is given by

3'.=xp —M.F

where M is the dipole moment operator of the system.
If the system is in thermal contact with a heat bath

' It can be shown (see, e.g., Mountain, Ref. 16) that the con-
dition for an initially canonical ensemble to remain canonical as
the external parameter in the Hamiltonian is varied is that the
ratio of the separations between any two different pairs of energy
levels remain constant. In other words, the energy-level diagram
can undergo at most a displacement plus a uniform expansion or
contraction. This condition is satisfied by (2) a system of inde-
pendent harmonic oscillators with linear dipole moments in the
presence of an electric field, (2) a system of independent spins in
a magnetic field, (3) an ideal gas enclosed in a box of adjustable
volume. However, it is not diflj.cult to find systems which do not
satisfy this condition.

Richard C. Tolman, The Principles of Statistical Mechanics
(Oxford University Press, London, 1938), 1st ed. , pp. 498—501.
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which maintains its temperature constant at all times
as the field is varied, then the thermally averaged dipole
moment (M) is given by

Writing

d(x) = (a(x)/aF) dF+ (a(x)/ap) dp (12)

where

(M)= Tr(pM),
and carrying out the indicated differentiations by means
of Eq. (5), one obtains

One obtains

3C
X exp( —ux) . (5)

BP

7t;;r=P(M;
I M;)—P(M;)(M;), (6)

where the "scalar product" (M, I M;) is defined by
Eq. (A1) of the Appendix.

Defining

hM—=M —(M),

p= few( —PX)/Tr[em( —Px) 3) (3)

The isothermal susceptibility tensor x;, is then
defined by

'; = a(M;)/»'I.
where the differentiation is to be carried out at constant
P (= 1/ET) . Substituting Eqs. (1)—(3) in Eq. (4), the
di6'erentiation may be carried out by using the formula
for the derivative of an exponential operator with
respect to a parameter:

a exp( —PX)
du exp[—(P—u) X)

BIi;

(ap/az, ),=p(~x I ~M;)/(~ I ~x). (13)

Substituting Eqs. (8) and (13) into Eq. (9),one obtains

p(z x
I m;)(Ax I aM;)

7tg =P hM; hM; — ' . 14

T aM;i (aM;
cp aTjr&aT i

'

where C& is the heat capacity at constant Geld.

(15)

4. ISOLATED SUSCEPTIBILITY TENSOR

Now consider the system to have been initially (long
ago at t = —oo ) in thermal contact with a heat reservoir
so that initially the system has a density matrix de-
scribed by Eq. (1). (All constant electric or magnetic
"biasing" fields or other constant externally controllable
parameters are assumed to be contained in X.) The
system is then perfectly isolated and the Geld turned on
very slowly so that the density matrix evolves according
to the standard equation

Although not essential to our arguments, it is never-
theless reassuring to note that Eq. (14) is equivalent to
the thermodynamical identity

Eq. (6) may also be written

x,,r=p(~M;
I ~M, ).

3. ADIABATIC SUSCEPTIBILITY TENSOR

ifi[ap(t)/at7= [x(t) p(t) 7.

In Eq. (16),X(t) is assumed to have the form

(16)

Now consider the system to be essentially isolated as
explained in the Introduction. As the Geld is slowly
varied, the temperature must change in such a way that
no net energy transfer with the system's immediate
surroundings takes place. In place of Eq. (4), the
adiabatic susceptibility tensor y;,' is thus defined by

x,; =a(M;)/aF, I,

=a&M )/'a~'
I +(a &M &/ap) (ap/'a~').

=x;,'—(ax I ~M;)(ap/az;), (9)

The quantity (aP/aI';) „ is calculated from the energy-
conservation condition that the increase in the average
internal energy of the system equals the average work
done by the applied Geld,

X(t) =X—e"f.M (17)

where e is a small positive number which is to go to
zero at the end of the calculation, and f represents an
incremental deviation of the applied field from its
biasing value F. The isolated static susceptibility
tensor is then defined by

[Trp(0) M;—Tr(pM;) j
y;,I= hm

f-+Q

where p (0) is the solution of Eq. (16) at 1=0 subject to
the initial condition p( —oo) =p.

It is well known and easy to verify that the solution
of Eq. (16) to terms linear in f is given by

p(t) =p+pi(t)
d(Xs) =F d(M).

With the aid of Eq. (1), this may also be written

d(x)= —(M) dF.

s See, e.g., R. M. Wilcox, J. Math. Phys. 8, 962 (1967).

(1o) where

pi(t) = —(if&) '
(11)

dr e"exp[x(t —r)/i5j[f M, pj

X exp[—X(t—r)/itsj. (20)
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Setting t=--0, using the well-known identities

[M, p]= —p f dw exp(aK) [M, x] exp( —sx) (21)
0

symmetric tensor y;, is said to be positive definite if for all
real nonzero vectors V the quantit;y

p v, &, ,v, (28)

x"', =p
8

dr e" —Lexp( —Kr/iA) M,
f97

and

Lexp( —Xr/ih, ) 3II exp(Xr/N), Xj
8

=ih ——Lexp( —Xr/iA) M exp(3('.r/if') ],
O'T

and substituting into Eq. (18), one obtains

(22)

. .1 . .2Xij =Xij Xij (2V)

is always positive. If instead this quantity is always
non-negative, it is said to be positive indefinite It. is
easily shown that the diagonal elements and eigenva, lues
of a positive-definite tensor are all positive, while those
of a positive-indefinite tensor are all non-negative.

In comparing two tensors, we will say that the tensor
y;,~ is "no larger than" the tensor x;,' if the difference
tensor

X t:xp(R j~fi) j ~ M;) . (23)

After an integration by parts, Eq. (23) becomes

y;ir p(M,
~

M——, ) pe—

y (exp( —Kr/N) M; e px( 3r(/i )(r(~ M, ). (24)

In the second term of Eq. (24) we set

M= M'+M", (25)

where M' connects eigenstates of X having the same
energy, while M" connects states having different
energies. Then after performing the time integration and
letting e approach zero, one finds that the terms
involving M" vanish, r so that Eq. (24) becomes finally

x;,&=P(iV,
~
m, )—P(m, '

~
~,') (26a)

=pcs,"
~
m, "). (26b)

(M'
i
M")=0. (27)

It may be verified that the diagonal elements x;,~ as
given by Eqs. (26) are equivalent to Falk's result for
the zero-frequency limit of the Kubo susceptibility. ' If
one also makes the "high-temperature approximation, "
as in Eq. (A8), then Eqs. (26) may also be shown to
be equivalent to expressions obtained by Caspers for
the paramagnetic isolated susceptibility, provided that
the latter are properly interpreted. '

5 "SIZES" OF THE TENSORS

Ke first note that all of the susceptibility tensors are
real and symmetric, as follows from Eqs. (A6). A real

~ This may be seen by taking matrix elements iri a representation
in which 3C is diagonal.

s W. J. Caspers, Theory of Spig Relaxatioa (Interscience Pub-
lishers, Inc. , New York, 1964), Chap. 1, pp. 29—30, Kqs. (I.4. 21)
and (I. 4. 23). In Eq. (I. 4. 23) it must be assumed that de-
generate eigenstates are so chosen that the matrix elements of
M, vanish between di6erent states of the same energy. This can
always be done.

The last line follows from Eq. (25) snd the "ortho-
gonality" of M' and M",

is positive indefinite. (We use quotes to indicate that
although the statement is always literally true for the
diagonal elements of the two tensors, this need not be
the case for the off-diagonal elements. ) Note that if

x ' "&"x ' and x ' "&"x ' then x ' "&"x '.
Now consider the isothermal susceptibility tensor

y;;r. Equations (8), (28), and (A2) show that it will

always be positive definite since

((V ~M) i
(V.~M) )&0. (30)

This is true since M is an omnidirectional operator; i.e., it
is impossible to find a nonzero vector V such that
(V M) =0.

Next consider the adiabatic susceptibility tensor x; .
From Eq. (14) and the Schwarz inequality, Eq. (A4), it
is apparent that (assuming finite heat capacity) x,,' is
"no larger than" x;j~. The two tensors will be equal
iffM (hK

~
22lll) vanishes. This occurs for unpolarized

materials in the absence of biasing fields, since the same
symmetry conditions which cause (M) to vanish also
cause (AK

~
AM) (= —8(M)/Bp) to vanish. It is also

easily seen from the Schwarz inequality that x;,' is
positive indefinite. For a given direction n, iff (bM n)
is proportional to hX, then the diagonal component in
that direction, x„„',vanishes. "

Finally, consider the isolated susceptibility tensor
Equation (26b) implies that x,,h is positive

indefinite since

((n M")
~

(n.M"))&0.

Although M is always omnidirectional, this may not be
true for M' and M" separately. Even if M" is nonzero,
there may be a direction n for which (n M") vanishes.
For a particular direction n, y„„will be positive
iff (n M") is nonzero. Note that iff (n.M) commutes
with X, then (n M") (and hence also y„r) vanishes.

To compare x;,' with x,,J, we first convert Eq. (26a)

Richard Bellman, Introduction to Matrix Analysis (McGraw-
Hill Book Co., New York, 1960), Chap. 3, Sec. 7, p. 40.

~o The word "ifP' means "if and only if."
"The treatment given to this point on the isothermal and

adiabatic tensors is essentially the same as that given in an un-
pu¹&i&ed manuscript by the author on the quantum theory of
the static dielectric susceptibility tensor.
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to the form

x;j=p(63II;
~

d M ) p(EM—
~

DM ).
This follows since

(M') = (M).

(32)

(33)

In concluding this section, we point out that. the
treatment given in the Appendix for the "Van Vleck"
and "high-temperature approximations" implies that if
these approximations are made consistently, all of our
criteria and conclusions regarding "sizes" of the various
tensors will remain valid.

Also, in Kq. (14) we may replace (AK
~
hM) by

(g~
~

hM') (since (R
~

M") vanishes) and then sub-
tract Eq. (32) to obtain

s Igfl 7l +7t7l (35)

(n SM') =~ax (36)

for some scalar n. By taking matrix elements, Eq. (36)
may be shown to be equivalent to the Klein criterion for
equality of adiabatic and isolated susceptibilities. "

The Klein criterion is, in a sense, equivalent to the
criterion mentioned in Ref. 4 for the density matrix in an
isolated process to remain canonical. If (during an
isolated process caused by a changing field) an initially
canonical ensemble remains canonical, then from their
definitions it is apparent that the adiabatic and isolated
susceptibilities are equal; hence the Klein criterion
must be satisfied. Conversely, if the Klein criterion is
satisfied during an isolated process, it may be shown that
the criterion mentioned in Ref. 4 is satisfied.

It has been pointed out by a number of authorss, i3—i6

that even when the Klein criterion is not satisfied exactly,
it is still possible that the isolated and adiabatic sus-
ceptibilities regarded as intensive quantities (7t/V) will
be the same in the thermodynamic limit in which the
volume V becomes arbitrarily large:

lim (x, '/V) = lim (x „r/V). (37)

From Eq. (34), this condition may also be written

(R') & (const) V~, (38)

where E. is defined by

((n hM')
~
AK)DX

(~x
~
~x) (39)

and I' is some number less than unity. A sufhcient con-
dition for Eq. (38) to be satisfied is that

((n AM')')&(const) V . (4O)

"M. J. Kiein, Phys. Rev. 86, 807 (1952). LSee Eq. (13).g'3 L. Rosenfeld, Physica 2'V, 6'7 (1961).
'4 N. Saito, J. Phys. Soc. Japan 10, 621 (1961).
'& L. J. Broer, Physica 1'7, 531 (1951)."R. D. Mountain, Physica 30, 808 (1964).

—(p(AK
~

d M, ')(AK
~

AM )/(hK
~
AK)). (34)

From Kq. (34) and the Schwarz inequality it is apparent
that y;;I is "no larger than" y;,'. For a given direction n,
the diagonal elements will be equal,

6. DISCUSSION

From the preceding section, we see that it is quite easy
to find models such that x„~vanishes while x„'does not.
All that is necessary is to find a Hamiltonian which
commutes with M, without being a linear function of
M, . One such case is the exactly soluble X-I' isotropic
linear Heisenberg model treated by Katsura iv Falkis has
previously explicitly calculated that for this model x„
vanishes while x„' does not. Other cases are systems of
spins having isotropic exchange interactions, and the
Ising model in one, two, and three dimensions.

Explicit calculations readily show that (x„'/V) is also
nonhero ie the thermodynamic limit for the following
cases: (1) the model treated by Katsura; (2) the one-
dirnensional Ising lattice; (3) a Bravais lattice of spins
in the approximation in which the Hamiltonian may be
represented by a collection of noninteracting magnons.
We believe that the same is likely to be true for other
Inore complicated models described by a Hamiltonian
which commutes with 3f, without being a linear func-
tion of 3f,. In particular, if the model has no permanent
dipole moment in the absence of a biasing field, then
(7t„'/V) must equal (x„r/V), a quantity which is
positive in the thermodynamic limit, while y„vanishes.

On the other hand, one can easily conceive of systems
for which the Klein criterion is satisfied. , so that
x„„~=g„„'.For example, if the Hamiltonian has a non-
degenerate energy spectrum and is invariant to rejec-
tions in a plane perpendicular to n, then (n M') must
vanish. In this case, Eq. (36) will be satisfied by setting
0.=0. It is possible that this situation may be satisfied
by some real many-body systems, since it is expected
that the effect of interactions between dipoles is to
remove degeneracy.

As mentioned previously, even if the Klein criterion
is not satified exactly, it is still conceivable that isolated
and adiabatic susceptibilities becomes equal in the
thermodynamic limit. In his treatment of paramagnetic
spin systems, Caspers' has argued that this should be
the case for real systems. He has formulated two
plausible but unprovable hypotheses such that the
Klein criterion is satisfied in the thermodynamic limit.

Rosenfeld" and Saito," independently improving
upon earlier work of Broer, i5 have given quite general
"proofs" that adiabatic and isolated susceptibilities
become equal in the thermodynamic limit. (A similar
proof has been given by Mountain' for the case of the
compressional susceptibility. ) Since, as we have seen,

D S. Katsura, Phys. Rev. 12'7, 1508 (1962).
"Reference 1, Sec. IV.
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there exist model systems for which p /p' in the thermo-
dynamic limit, we believe that it is desirable to re-
examine the assumptions (explicit or implicit) made in
these works. We will do this by giving a similar "proof"
which we believe contains the essential features, even
though it admittedly oversimplifies or bypasses many
arguments and detailed considerations of these authors.

We assume that for a large many-body system the
energy levels become suKciently close together so that
we may replace the sum over states implicit in the
definition of our thermal averages by an integration
over energy E with a density function f which is highly
peaked near the average energy (E= &X)) of the system.
We assume that this density function has the functional
form

f=fL(») v "'7, - (41)

where»= E E. T—he f—unction f is non-negative and is
assumed to approach zero rapidly for large positive and
negative values of its argument so that the ensemble
average of any diagonal operator Q may be represented
as

(Q) = Q(E+»)ff(») V 'I'7d(») V —'I'. (42)

M '= Vu(e), (44)

where p is an intensive differentiable function of the
energy density e =E/V:

p, (e) =u(e) +u (e) Be+su (e) (Ae) + ' ' ') (45)

where e—=E/V and L4=»/V. Then ((e) )=u(e)+
O(V ') and

hM„'= u'(e)»+ ,'p" (e) (he) 'V+O(V'-) . (46)

Substituting Eq. (46) into Eq. (43), one finds that the
terms in u'(e) cancel and

(»)' &(»)')»
V V&(»)')

=O(V—') (»)'+O(V—"')»+O(V'). (47)

Hence (R')=O(Vs), so that the criterion of Eq. (38) is
satisfied with I'=0. Therefore, adiabatic and isolated
susceptibilities should be equal in the thermodynamic
limit.

Where does our "proof" break down in the case of

Of course, it is required that f be normalized such that
(1)=1.Then the assumed functional form of Eq. (41)
ensures that the heat capacity ~

&(») ') is an extensive
quantity.

The quantity R defined by Eq. (39) may now be
rewritten

R= hM„' —L((AM„') (AF) )»/((») s)7. (43)

We assume also that the diagonal operator 3f„' can be
represented as an extensive quantity of the form

the models cited previously' One possible place may be
the form assumed for Eq. (44), since really all one has a
right to require is that the average dipole moment

&M„)= (M„') be an extensive quantity. Although
Eq. (44) assures that this will be the case, it is not
obvious that Eq. (44) is the only possible form which
will accomplish this. We note that if, instead of Eq. (44),
one makes the slightly weaker assumption that M„'
Vu(e)+V'~'v(e) (in order to account for fluctuations
from the mean), the conclusion of our "proof" remains
the same.

Even if Eq. (44) is valid, it is still possible that u(e)
is not differentiable as assumed in Eq. (45) . Rosenfeld
has previously pointed out that such an assumption may
not be justified for cases where the energy levels are
degenerate. "The fact that much degeneracy occurs in
the models for which we have found y /g' appears to
confirm Rosenfeld's warning. The paper by Saito, ' on
the other hand, does not note this possible difhculty
and concludes that adiabatic and isolated susceptibilites
will always be the same in the thermodynamic limit.
While it is possible that this may be the case for all real
systems, it is certainly not the case for all model
systems.
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APPENDIX

Let A and 8 be any two operators, and define"

(A
~
8)=P'du (exp(uX)A—' -exp( —uX)B). (A1)

Then it is easily verified that (A ~ 8) satisfies all the
basic properties of a complex scalar product for a space
whose "vectors" are operators in the usual sense. In
particular, for nonzero A and 8, (A

~
8) satisfies

(A iA)&0, (A2)

&A
~

a)*=&a
~
A), (A3)

as well as the usual linearity properties. Hence it im-

'9 Reference 13, Sec. 6.
"A similar scalar product has been used previously by H.

Nakano, Progr. Theoret. Phys. (Kyoto) 23, 526 (1960); Proc.
Phys. Soc. 82, 757 (1963); H. Mori, Progr. Theoret. Phys.
(Kyoto) 33, 423 (1965); H. Prirnas and J. Riess, in Qgaruum
Theory of Atoms, Molecgl'es, amd the Solid State, edited by Per-
Olov Lowdin (Academic Press Inc. , New York, 1966), p. 332.
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mediatelyfollows that the Schwarz inequalityis satisfied: be real and symmetric,

I &~ I
~)l'«~ I ~)&& I &). (A4) &a I

a)= &a I
a)*=&a I

a). (A6)

The equality holds iG the operators A and 8 are pro-
portional to each other.

I To prove Eq. (A2), evaluate the trace in a represen-
tation in which K is diagonal and note that the inte-
grand is positive for all values of the integration
variable tt. To prove Eq. (A3), use the fact that the
complex conjugate of a trace equals the trace of the
Hermitian conjugate, and make use of the cyclic
property of the trace. 7

In addition to these properties, one can prove the
relation

&~ I &)= (~'
I
~'). (AS)

t To do this, change the integration variable in Eq. (A1)
to st'=P —I and make use of the cyclic property of the
trace. $ If 2 and J3 are both Hermitian, it follows from
Eqs. (A3) and (AS) that the scalar product will then

It is easy to verify that this scalar product has all of the
properties mentioned above.

In the high-temperature approximation, it is further
assumed. that P may be set equal to zero in the definition

of p, Eq. (3), so that Eq. (A'I) may be approximated by

&A I a)= LTr(Ate)/Tr{1) 7. (Ag)

This scalar product also has all of the properties
mentioned above.

In the Van Vleck approximation, it is assumed that
A and J3 have matrix elements diferent from zero only
for states whose energy diQ'erence is small compared
with 1/P. The scalar product defined in Eq. (A1) may
then be approximated by

(A/)
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Diffuse and Propagating Modes in the
Heisenberg Paramagnet

HERBERT S. BENNETT
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(Received 22 January 1968)

The spectral weight function of the frequency co and wave number g for the spin pair correlation function
in a Heisenberg system is studied in the paramagnetic region. It is suggested that this function will exhibit
propagating modes at short wavelengths and at temperatures T not much greater than the transition
temperature T,. This suggestion follows from the approximation used to evaluate the moments of the
spectral weight function and from the assumption that the generalized diGusivity, of which the pair cor-
relation function is a functional, contains no 8-function terms 8 (co) and is a smooth monotonic function. The
region for which the dispersion equation has real solutions (propagating modes) u=catt(q) is obtained by
estimating the moment-fiuctuation ratio R(q) = (~')~'/((~' —(oP)~)')~ for the pair correlation function.
When 7& 7, and when g is greater than a critical wave number g„ the estimate gives E(q) & 1 and thereby
predicts propagating modes. An approximate nonlinear integral equation for the susceptibility is used to
estimate E(g). It is shown that the critical wave number g, is proportional to the inverse square root of
the static susceptibility, q, g '"(T). This approximation yields an expression for E(q) at high tem-
perature which is in substantial agreement with the exact high-temperature evaluation of R(q) . The exact
and approximate evaluations of R(q) for high temperature predict that R(q) (1 for all values of wave
vector q in the first Brillouin zone, and consequently suggest that there are no high-frequency propagating
modes at high temperatures.

I. INTRODUCTION

i~ lHE Heisenberg model of magnetism may be a
suitable model with which to study some of the

magnetic insulators such as the ferromagnets EuO and
EuS and the antiferromagnets RbMnF3 and MnF2.
Among these four magnetic insulators, the perovskite
RbMnF3 comes closest to the idealized isotropic Heisen-
berg magnet with only nearest-neighbor exchange inter-
actions. The magnetic Mn++ ions form a simple cubic
lattice. When we discuss such magnetic insulators within
the framework of the Heisenberg Hamiltonian with no

external fields and above their critical temperatures
T„we call them Heisenberg paramagnets.

We shall propose that the generalized diffusivity
I'(q, to) for the paramagnetic state contains no il func-
tion of frequency terms 8(to) and is a smooth monotonic
function. We shall also present a nonlinear approxima-
tion for the spectral weight function. The spectral
weight function of the spin pair correlations is directly
proportional to the absorptive response of the Heisen-
berg paramagnet to weak external magnetic 6elds. This
nonlinear approximation arises within the context of a
microscopic theory and is exact at zero temperature


