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In magnetic systems that have been substitutionally diluted there exists a large number of different
magnetic sites the diversity of which is determined by the nature of the magnetic interaction and the
statistical fluctuations in the distribution of the magnetic atoms. We have calculated the magnetic and
exchange field distributions from the magnetic atom concentration, the lattice structure, and the magnetic
interaction potential in a self-consistent way for any temperature below the transition temperature. The
calculation has been applied to the case of the hyperfine field distributions observed by nuclear magnetic
resonance and by the Mossbauer effect in magnetic random substitutional alloys where the interaction is

long-range.

INTRODUCTION

ENTRAL to the problem of metallic magnetism

is an understanding of the existence of magnetic
impurities in nonmagnetic hosts and their interactions.
These two questions cannot be considered independ-
ently, for it is probable that the interactions may,
in fact, stabilize the existence of the localized mag-
netic state.! Unfortunately, it is not possible to de-
termine the nature of the interactions directly. How-
ever, under certain assumptions which can be verified
experimentally,? it is possible to relate the distribu-
tion of magnetic hyperfine fields of the impurity or host
atoms to the impurity-impurity interactions.

Most experimental investigations®$, have focused
attention on the region where the magnetization is
saturated and have investigated the effect of impu-
rities on the hyperfine field. In contrast, this paper
is concerned with the relationship between the dis-
tribution of hyperfine fields and the magnetic inter-
actions in the region where the magnetization is not
saturated. The view taken here is that each mag-
netic atom produces an exchange field proportional
to the polarization of that atom. Each magnetic atom
aligns itself in the exchange field at its site. Statis-
tical fluctuations in the density of the magnetic atoms
produce fluctuations in the exchange field which in
turn produce a distribution in the magnetization.

* Workiperformed in part under the auspices of the U.S. Atomic
Energy Commission and the Air Force Office of Scientific Re-
search, Office of Aerospace Research, U.S. Air Force, under
AFOSR Grant No. AF636-64.
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This distribution is generally broad near the transi-
tion temperature and narrow at low temperatures as
all the magnetic atoms become completely polarized.

When the interaction is short-range only the first
few sets of nearest neighbors are involved and the
number of significant moment configurations is small.
In this case the atoms contributing to the exchange
field are small in number and may be directly sum-
med. In contrast, this paper will be concerned with
long-range interactions and the attendant problem
of numerous moment configurations.

Woodhams, Meads, and Carlow’ have also sug-
gested this mechanism as the cause of the observed
hyperfine field distribution in iron-palladium alloys.
Dunlap and Dash® have taken a similar view and
have determined the exchange energy and range pa-
rameter by applying a cell model to the Mossbauer
data on CoPd alloys. Takahashi and Shimizu® have
considered the same problem using an itinerant elec-
tron model which does not take into account the
magnetization distribution. In a preliminary Monte
Carlo approach? to this problem, the distribution of
hyperfine fields in the ferromagnetic dilute FePd al-
loys was shown to be consistent with a random dis-
tribution of iron atoms and an exchange field pro-
portional to the electron polarization determined by
diffuse neutron scattering from FePd alloys.’® This
work also presented some evidence of short-range
metallurgical ordering and discussed the shortcomings
of the Monte Carlo  calculation, primarily the lack
of self-consistency.

In the first section of the present work a general
calculation of the probability distribution of the ex-
change field P(J) is made, an analytic calculation

"F. W. D. Woodhams, R. E. Meads, and J. S. Carlow, Phys.
Letters 23, 419 (1966).
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174 MAGNETIZATION
is performed for a few restricted cases, and the re-
sults are compared with previous work. In the second
section the general calculation is expanded to achieve
self-consistency and to account for short-range order.
In the third section the P(J) for dilute FePd alloys
is determined and the results are compared with the
earlier Monte Carlo calculations. The calculation is
done by assuming that the exchange field about an
Fe atom is Gaussian and determining the width of
the Gaussian by the x? test from the Mossbauer
hyperfine field spectra. From this P(J), as determined
from the Mdssbauer experiments, the low-temperature
iron NMR spectra and the average magnétization
are calculated. These are compared with experimental
results. The expected NMR spectra of palladium are
also calculated but do not agree with the experimental
results for any simple assumptions. In the final sec-
tion the assumptions and results of this work will
be compared with those of other approaches to this
and similar dilute alloy problems.

FORMULATION OF P(J)

Consider the simple case of a random substitutional
alloy composed of two types of atoms, one of which
is magnetic and the other is not. If a magnetic atom
is selected at random, what is the probability P(]J)
that this atom experiences an exchange field J?!
This question will be investigated under the follow-
ing assumptions:

(1) The exchange field J at a particular atomic
site is the vector sum of the exchange fields origi-
nating from the neighboring magnetic atoms.

Consider that there are various classes of neigh-
boring atomic sites which when occupied with a mag-
netic atom produce a contribution v; at the given
site. The kth class has my sites and contains »; mag-
netic atoms, and this class provides a contribution
mV; at the given site. The probability P(J) is then

given by
P())= (ZH Pi(m)o(J— Z Vi) 5 (1

where Pj(n;) is the probability that the kth class
of sites contains #; magnetic atoms, the primary sum
is over all possible configurations 7, and 8(x) is the
Dirac ¢ function. If the alloy is a random substitu-
tional alloy,

Pi(m) =mylen (1 —c) ™8 [y | (mg—mi) |, (2)

where ¢ is the fraction of atoms which are magnetic.
Using the Fourier integral representation of the
d function,

o(J— Z nv;) = (2 )3

X [ explio-DIT exp(—ing-v)do, (3)

( 1T, A. Kitchens and W. L. Trousdale, J. Appl. Phys. 39, 1321
1968).
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Eq. (1) becomes
PO = Gogs | explieD
X T 22 Pe(m) exp(—img-vi)dp. (4)
k npg
Pi(m) is the mth term of the binomial expansion of
[(1—=¢)+c]m*, and similarly Py(m) exp(—ingg-vy) is

the mth term of Aip=[(1—c)+cexp(—ip-vy) ]~
From this

P(J) =

o | e
XTI

an exact result.
It is useful to write
Ak= exp(lnAk),

which for ¢<K1 becomes

{1—c[1— exp(—ip-vi) J}™*dp, (5)

A= exp{ —cmi[1— exp(—ip- V)]
X [14-c[1— exp(—ip-vy)]/2]}. (6)

By retaining only the exponential term linear in c,
the binomial distribution Py(7) has been approxi-
mated by the Poisson distribution.

It should be noted that the case ¢<1 is not neces-
sarily the low-concentration limit of only a few inter-
acting magnetic atoms since the range of the inter-
action may be quite large. Nevertheless the expansion
is valid.

(2) The exchange field at a particular atomic site
is parallel to the exchange field at any other site.

Thus v, and g become scalar quantities and the
normalizing factor in the Fourier transform goes
to 1/2w. The effect of this Ising approximation is to
impose a strong correlation on the z component of
the exchange field while ignoring correlations in the x
and y components. This assumption is not unreason-
able for simple ferromagnetic and strict antiferromag-
netic alloys not too near the transition temperature.

(3) The v; are real.

Using the Poisson approximation

1 (e}
P(J)E—/ exp[—¢ 2, mi(1— cospwy) ]
271' —c0 k
X cos(pJ— D cmy sinpwg)dp, (7)
k

a rather simple result. An even simpler result holds
for random spin orientation. In this case for every
class & there is a class &’ such that my =my and
Vgr = — U, SO

P(J)== 11rf exp[ — chk(l-— cospur) ]

X cos(p)dp. (7')
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This equation is analogous with Eq. (2.8) of Klein
and Brout.’? Equations (7) and (7’) yield nearly the
same result at the Monte Carlo calculation presented
earlier.?

Now consider the sum in the exponential in Eq. (7),
each term of which is positive. The sum is always
nonzero unless p=0 or p takes on a value p, such
that pVr=0 (mod2w) for all k. This second con-
dition is unlikely in any realistic problem, so the
major contribution to the integral arises from small p,
especially if the m; are large or numerous. Thus, for
long-range interactions where ¢ ) m (1— cospu) is
large for large p, the trigonometric functions of pV;
may be expanded about p=0. Equation (7) becomes

P(J)= % /m exp(—p% 2, mu2/2)

— k

X cos[p(J—c D, muve) Jdp

=1/ (27) V%] exp[ — (J—J)%/2¢%]. (8)

This result is exactly the intuitive answer; the dis-
tribution is Gaussian with J=¢ D ; mn, the aver-
age exchange field, and o*=c¢ D ; muu?, the square
of the standard deviation. For random spin orienta-
tion J =0, as explained above.

Although the present result is Gaussian we see
P(J=0) « 1/4/c rather than 1/c, the dependence sug-
gested by Marshall® and calculated by Klein and
Brout? for the RKKY"1 interaction where J=0.
The difference arises because the interaction is as-
sumed to be sufficiently long-range that even for
small ¢ many atoms contribute to the exchange field
at the origin. This means that, despite the small ¢,
this analytic result is still in the ‘“high-concentration
region” discussed by Anderson’ and by Kittel and
Abrahams.®®

SELF-CONSISTENCY AND SHORT-RANGE
ORDER EFFECTS

The calculation in the previous section was not
done in a self-consistent way. Previously the exchange
field distribution at the origin has been calculated
assuming that each magnetic atom made a unique
contribution to the exchange field at the origin. In
this section, self-consistency will be introduced by
assuming that every atom has the same probability
distribution as the one at the origin, P(J).

Also in this section we will account for metallur-
gical or chemical spatial short-range order. There is
some evidence for such ordering in metallurgical solid
solutions such as FePd.? Magnetic correlations, i.e.,

12 M. W. Klein and B. Brout, Phys. Rev. 132, 2412 (1963).

18 W, Marshall, Phys. Rev. 118, 1520 (1960). )

14 M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).

1 T, Kasuya, Progr. Theoret. Phys. (Kyoto) 16, 45 (1956).

18 K. Yosida, Phys. Rev. 106, 893 (1957).

17 P, W. Anderson, Phys. Rev. 82, 342 (1951).
18 C, Kittel and E. Abrahams, Phys. Rev. 96, 238 (1953).
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short-range order which depends on the polarization
of the atom at the origin, will be considered in the
discussion.

In order to account for the effects of self-consist-
ency and short-range order we expand on the formu-
lation given in the last section. Equation (1) can be
written as

P =112 LPi(n)o(Ti—nv) o(J— 22T, (9)

which can be generalized to

PN =]1 Z [Pj(”j)li [ P;f (v;)

X 8= L v)imdd- T1), (10

where P;/(v;;) is the probability that the ith mag-
netic atom placed in the jth class produces a con-
tribution v;; to the exchange field at the origin. Let
Pi(vio) =8(Vjo), Pji (v;i) =Pj(v;i), and v;=v;;. These
restrictions mean that all spatial ordering is accounted
for in P;(m) and that the probability that a mag-
netic atom produces a certain contribution to the
exchange field is not dependent on the number of
magnetic atoms already in that class. We replace
8(J— 2_;J;) with its Fourier representation:

()= o5 ] etio- DL Z Pitw)0s(o)da, (11

where

1) = [ exp(—igv) P/ (v)avf.  (12)

By looking at Eqgs. (4) and (11) it is easy to see
that y;(o) has replaced exp(—1ip-v;). Thus the equa-
tions assuming random substitutional alloys in the
previous section can be made self-consistent by mak-
ing this substitution.

Finally the polarization of any atom is assumed
to be proportional to the Brillouin function, Bg(J/kT),
for an atom with spin S in an exchange field J at
temperature 7. In this case

P{v) = [ Po@y~vBs(T/RT) )T, (13)
where v;0 is a constant vector collinear with J.

APPLICATION TO DILUTE FePd ALLOYS

In this section the self-consistent formulation is
used to calculate the hyperfine field in dilute FePd
alloys. This is accomplished by assuming that the
spatial shape of the exchange field produced by an
Fe atom is an isotropic Gaussian. The width of the
Gaussian and a scaling parameter Jo are found by
the method of least squares (x? test) from the Moss-
bauer hyperfine spectra at a given temperature 7.
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The predicted spectra for various temperatures are
found to agree with the experimental spectra except
near the ordering temperature. This behavior is, how-
ever, expected because correlations in the motions of
the moments are expected to have a large effect near
the ordering temperature and correlations have been
neglected. The P(J) derived in the above calcula-
tion is then used to predict the average or bulk
magnetization in dilute FePd alloys and comparison
is made with experimental data. The P(J) is also
used to calculate the nuclear magnetic resonance line
shape for the Fe and also for the Pd and these pre-
dictions are compared with the data of Budnick
et al.®

Again, as in the earlier Monte Carlo calculation?
the exchange field surrounding the magnetic Fe atom
is assumed to be carried by the electron polarization
which has been observed by neutron scattering to be
almost Gaussian, i.e., p~ exp(—7%?/2¢%).1® Thus the
physical picture used is a localized model where the
localized moment is of large spatial extent due to
the high polarizability of the Pd host. Simple band
theory would suggest a uniform polarization of the
Pd host and this uniform polarization would not be
observed by the neutron scattering experiment. Using
the localized model, the exchange is proportional to
the three-dimensional overlap integral or

w0 =J, exp(—72/a?), (14)

where 7, is the distance to the kth-nearest-neighbor
class, and ¢ is the width of the electronic polariza-
tion. We account explicitly for the first 16 nearest-
neighbor sites and then take mean #’s for groups
of 50, 100, 150, etc., atoms until 95% of the con-
tribution to the average exchange field is included.

In order to illustrate the effect of self-consistency
we have assumed the alloys to be random substi-
tutional and have calculated P(J) by iterating Egs.
(11)-(13), where

Z_ Pj(n;)¥;(p) = {1—c[1—¢:(p) J}™

was approximated by its expansion to second order
in ¢. Once P(J) is determined we can calculate the
distribution of the hyperfine field D(H) by assuming
that the hyperfine field H is proportional to the po-
larization of the atom,

D)= [ PU)S(H—HowBJT/ET))T, (15)

where H,, is the experimentally determined satura-
tion hyperfine field and the spin S=3.5, in agreement
with the experimentally determined value.® It has

19 We are grateful to J. I. Budnick and co-workers for unpub-
lished data on the temperature dependence of the palladium
resonance in Feg gsPdgg.s.

2 M. P. Maley, R. D. Taylor, and J. L. Thompson, J. Appl.
Phys. 38, 1249 (1967).
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Fic. 1. The experimental and calculated Massbauer spectra for
Feo.40Pdgs.60 at various reduced temperatures.

been shown earlier in this laboratory that the aver-
age hyperfine field is proportional to the bulk or
average magnetization for a particular dilute FePd
alloy, Fe;.esPdgr.5.2

Mossbauer spectra can be calculated from this dis-
tribution function by

M(v)= [ " p) ¥ LiHl-a0)aH,  (16)

where L; is the line function, a Lorentzian for ideally
thin source and absorbers, the «; are known from
the nuclear excited- and ground-state magnetic mo-
ments for Fe¥, and v is the velocity. In this calcula-
tion there is an implicit assumption that there is
a distribution of ferromagnetic domains sufficient in
size and number to justify the Ising-model assump-
tion and the summation over all possible configura-
tions in P(J) in every direction.

Mossbauer data for Fey4Pds g was used to deter-
mine the two free variables of this calculation, J;
and o, by the x* test. The experimental spectra and
calculated spectra for the best values of J, and «
are shown in Fig. 1. The exchange distributions cor-
responding to the calculated spectra are shown in
Fig. 2. The best J, and ¢ are plotted in Fig. 3 as
a function of the reduced temperature, 7/6, and the
results from the Monte Carlo calculations are shown
for comparison.

The x? of the new calculation of the Mossbauer
spectra is not significantly better than the Monte
Carlo calculation. It is reassuring that the calcula-

#P. P. Craig, R. C. Perisho, R. Segnan, and W. A. Steyert,
Phys. Rev. 138, A1460 (1965).
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Fi1c. 2. The exchange field distributions P (J) for the same
reduced temperatures used in Fig. 1.

tions agree at low temperatures where the effects of
self-consistency are less important and that the new
o and J, remain constant to higher temperatures
than did the values calculated from the non-self-
consistent Monte Carlo method. The values of o at
T/6<0.7 are in excellent agreement with the o de-
termined by neutron scattering for the electron po-
larization. This strongly supports the basic assump-
tions made in the calculation. The deviations are,
however, severe at 7/6>0.7, indicating that effects
of both static and dynamic correlations are important.
The decrease of ¢ as T approaches 7', was discussed
previously.?
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Iic. 3. The exchange constant and range parameter as a function
of reduced temperature for Feo.4oPdgs.s0.
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In Fig. 4 is presented the reduced average hyper-
fine field (H)/H,., which has been shown to be
equal to the reduced average magnetization (M )/Mat
as calculated from the low-temperature values of J
and ¢ derived from the Feg 4Pdg.gg Mossbauer data.
This calculation predicts a critical temperature 6=
14.4°K rather than 16.6°K, a discrepancy expected
from the fact that within the model J, and ¢ are
not independent of 7. (See Fig. 3.) For comparison
the reduced average magnetization from the molec-
ular-field model for S=3.5 is shown. Magnetization
measurements by Crangle? for 1.25, 3.15, and 5.11%
Fe, Mossbauer hyperfine field measurements for 2.65%,
Fe® and for 0.509% Fe® and average NMR hyper-
fine fields® for 0.509 Fe are also shown in Fig. 4.
Within the experimental accuracy higher concentra-
tions tend toward the molecular-field result as ex-
pected. The Craig et al.®* Mossbauer data are high
because they have measured the most probable hyper-

T T T T i T T T T '
1.0 -~
3
S 0.8 .
~
Pay
=
< 08 -
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o CRAIG et al 0 2.65% M
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.~V ° 1.25% LN
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~ a5.1% },\
D Q.20  THIS CALCULATION 0.40% &
i MOLECULAR FIELD ===~ — S=3.5 \e
\
0 L L ! L | 1 1 L 1 ‘
5 1.0
/6

Fic. 4. The reduced magnetization (or hyperfine field) versus
the reduced temperature for dilute FePd alloys from this calcula-
tion and for the molecular-field approximation (dashed line).
Mossbauer data for 0.40 and 2.659%, Fe, magnetization data for
1}.125, 3.16, and 5.119, Fe, and NMR data for 0.509, Fe are also
shown.

fine field rather than the average hyperfine field. This
is expected as shown by the NMR results and cor-
rectly predicted by the model as shown in Fig. 6.

Nuclear magnetic resonance for Fe¥ in Fep sPdgg.s0
has been observed by Skalski et al.® at low 77/6.
They have observed that the hyperfine field varies
as T3 behavior characteristic of spin waves. Although
the present model has neglected correlations such as
spin waves, the average magnetization varies as 7™
where 7 is approximately 2 over the extraordinarily
long region of 7/6 <0.5. Their average hyperfine field
measurements are compared with the model calcula-
tion on a reduced temperature scale assuming 6=
22.0°K for their sample and their extrapolated value
of Hgu=—301.2 kOe, in Fig. 5. The scaling of the
NMR data depends in a rather sensitive way on the
choice of . The transition temperature was not meas-
ured for this sample but a choice of 22°K does not
seem unreasonable based on a determination of 6=

2. Crangle, Phil. Mag. 5, 335 (1960).

%S, Skalski, J. I. Budnick, and J. Lechaton, J. Appl. Phys.
39, 965 (1968).
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23°K by Crangle and Scott? from susceptibility for
Feg 53Pdgo.47. This determination of the transition tem-
perature is based on an extrapolation method which
has led to larger values of 6 than that measured by
the Mdssbauer method. It should be noted that the
low-temperature NMR data on Fe and our calcula-
tion are in excellent agreement.

In addition to the magnetization versus tempera-
ture as measured by NMR it is also possible to cal-
culate the line shapes of the NMR resonance. Under
the assumption that instrumental line broadening is
small compared with observed linewidths, the NMR
line shape for the iron atoms and the probability
distribution of fields [D(H)] are the same. It is
known, however, that the average saturated hyper-
fine field H,q is dependent on the average concen-
tration in dilute FePd alloys,® and this implies that
H,,: is a function of the local environment. Evidence
for this is seen in the low-temperature NMR data
illustrated at the top of Fig. 6. The present model
has assumed that H,, is independent of the local
environment. It therefore predicts a line that is nar-
rower but of the correct shape. If the predicted line
were folded into the low-temperature NMR data, it
would agree well with the observed NMR line pro-
files. Furthermore spin-wave excitations have been
neglected in this calculation. These excitations are
expected to affect the regions of highest magnetic
order to a greater degree than regions of low mag-
netic order. For this reason the most probable value
of the D(H) will occur at lower H but the average
H will not be so strongly affected.

This model does not predict the position and shape
of the Pd NMR line without further assumptions.
The simplest postulate is that the palladium resonance
is linearly dependent on the local electron polariza-
tion p. In this case it is implicitly assumed that any
p- or d-electron polarization would only amplify the
s-electron polarization in a linear manner. The proba-
bility distribution of electron polarization P(p) can
be calculated in the same way as P(J) from Egs.

T T T T T T T
10O o= ~————m .
.98 i
T g _
X §SKALSKI et al NMR
z o Feg s0Pda0,5087 22.0 °K, Hyqy=301.2 kOe )
’ oMODEL CALCULATION
Fe , Pd__8:16,6 °K
92 0.40" 9960 _
90! 1 | | |
i) 0.010 0.020 0.030 0.040
(1/8)®

F16. 5. The low-temperature reduced hyperfine field from this
model and NMR data. The model calculation dependence for
Feo.50Pdge.50 has been checked at (77/8)2=0.0037 and agrees with
that calculated for Fe 4Pdes.eo.

24 J. Crangle and W. R. Scott, J. Appl. Phys. 36, 921 (1965).
% P. P. Craig, B. Mogzer, and R. Segnan, Phys. Rev. Letters
14, 895 (1965).

MAGNETIZATION DISTRIBUTION

IN Fe-Pd 611
' l T
T=1.26°K
Fe s Pdog.s -
I\
——— CALCULATED /|
[ ——— SKALSKI ef a/ A _
{Hsat) =41.37 Mc/s /p_- 4
\
\
\
\
N
L -
T=2.99°K
>
=
=
2 I -
<
[19)
(o]
1
[+ 8
\\
T:4.20°K
\\
0.85 0.90 0.95 1.00 1.05
H/<Hsar

Fic. 6. The calculated and experimental NMR spectra for
Fey sPdes.s. The low-temperature Jo and o found by the x? test
for Feop.40Pdgs.c0 were used in the model calculation.

(11), (12), and (13), except that v, is replaced by
po exp(—7#/2¢%). This comparison has been made
with NMR data for FeysPde s at T'=4.2 and
3.25°K. The asymmetry of the NMR line and its
temperature independence at low temperatures is cor-
rectly predicated but the experimental linewidth is
three times narrower than the one calculated by
this model.

A second simple postulate is that each palladium
atom has an associated moment whose value is inde-
pendent of the local environment. This moment could,
for instance, arise from the changes in electronic band
structure due to alloying, since local moments appear
to be absent in pure palladium. The alignment of
these moments could be calculated by assuming, for
example, a local polarization field as above. Now
either (1) the Pd moment is small and is not satu-
rated at 7<#, or (2) the Pd moment is large and
saturated at 7'<6. In the first case the NMR line
would have the same asymmetry as the P(J) curves
but would be temperature-dependent. In the second
case the NMR line would have the asymmetry of
the Fe NMR lines and would be temperature-inde-
pendent. Since the NMR lines have the P(J) asym-
metry but are temperature-independent, the postulate
of an environment-independent moment is not correct.
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A third possibility is that in addition to the P(J)
that we have calculated there is a uniform polariza-
tion of the band which is principally responsible for
the palladium resonance. P(J) then produces a broad-
ening of this resonance. Again in view of the excellent
agreement with the magnetization, NMR on iron
transition temperatures, and Mdssbauer spectra from
the calculated P(J), this postulate seems unlikely.
In reality there are probably moments induced on
the Pd atoms dependent upon the local environment
as has been suggested by Skalski et al.2

The specific heat of iron-palladium alloys has been
measured by Veal and Rayne We have not at-
tempted to fit this calculation to their data since
the major portion of the contribution to the specific
heat comes in the region near 6§ where the calculation
is not valid, as discussed above.

SUMMARY AND CONCLUSIONS

A phenomenological theory of the probability dis-
tribution of local magnetization of dilute magnetic
alloys has been developed which can be regarded as
two steps closer to reality than the molecular-field
approximation. The theory has been applied to the
dilute FePd alloys assuming the magnetic interaction
is an overlap of the host polarization localized about
the Fe atoms. This polarization is assumed to be
Gaussian in spatial extent [p~ exp(—72/2¢%)]. From
applying the x? test to Mossbauer magnetization dis-
tribution measurements ¢ is determined and found
to agree with ¢ determined by diffuse magnetic neu-
tron scattering. This model neglects the effects of
itinerant electrons except in the sense that the mag-
netic interaction is assumed to be an RKKY inter-
action which has been enhanced so strongly as not
to oscillate in sign until it is weak enough to be neg-
lected. Since dynamic fluctuations, a subject discussed
in a more elegant theory by Doniach and Wohlfarth,?
have been neglected, it was expected that the pre-
dictions made from this model were poor for tem-
peratures greater than 709 of the ordering tempera-
ture. For this reason no meaningful comparison could
be made to the specific heat. It was found that,
under some simple assumptions, this model could not
predict the correct line shapes or temperature de-
pendence for hyperfine fields of palladium atoms in
dilute FePd alloys. Some explanation of these diffi-
culties will, no doubt, come from an understanding
of the nearly ferromagnetic palladium host. This
question is discussed in some recent work of Doniach
and Murani® and also by Shimizu and Takahashi.?®

26 B. W. Veal and J. A. Rayne, Phys. Rev. 135, A442 (1964).

27 S, Doniach and E. P. Wohlfarth, Proc. Roy. Soc. (London)
296, 442 (1966).

(1336%) Donijach and A. P. Murani, Solid State Commun. 4, 525

29 T. Takahashi and M. Shimizu, J. Phys. Soc. Japan 20, 26
(1965) ; 23, 945 (1967).
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Both of these groups have given an explanation of
how the Moéssbauer and susceptibility data can sug-
gest a spin value >3.5,% while the specific-heat data
are consistent for a spin value of less than .2 The
exact spin value does not change the present calcu-
lations in any significant way.!!

On the other hand, this model has been successful
in explaining both the line shape and the temperature
dependence of the NMR and the Méssbauer hyper-
fine spectra for the iron atoms in dilute FePd alloys.
The model has also predicted, with surprising success,
the temperature dependence of the average hyperfine
field at low temperatures with no additional free
parameters.

Klein and Brout? have also calculated the P(J)
in random magnetically dilute systems for the case
of oscillatory RKKY interactions. This work can be
regarded as complementary to the present approach
since the effects of correlations have been emphasized
while the combinatorial problem has been avoided by
considering only the very dilute case. Klein® has
worked on the difficult task of extending this ap-
proach to nonzero temperatures and has predicted
the very-low-temperature properties. The general fea-
tures of systems such as dilute MnCu which have
no discrete ordering temperature are in a qualitative
agreement with these calculations.

It is clear that our general approach could be ex-
tended to such systems and the temperature depend-
ence enters in a reasonable and direct way. Very
recently Klein® has, in fact, independently developed
the approach that was used in this work and has
specialized it to oscillating exchange fields and very
dilute concentrations. With this specialization Klein
has again neglected the combinatorial problem and
has found analytic expressions for the high- and low-
temperature values of the magnetic susceptibility, the
specific heat, and the width of the P(J) distribution.
This work also illustrates the power of this formula-
tion, which is an extension of the Bethe-Peierls-Weiss
method but does not have the “anti-Curie-point”
difficulties.®? It is anticipated that the method will
be of significant value in leading to an understanding
of the nature of the magnetic ordering process in
a number of materials.
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