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8= —0.76rp/r, (low fields) . (A3b)

8= 0.8r—p/r. (A3c)

This shows that the correction 8 depends only weakly
on field and temperature. We have therefore used

does not hold in this case either can immediately be
seen if Ap„ is described by an additional scattering
rate 1/r„, which is field-dependent but equal forI, the
conduction electrons of either spin direction. The de-
viation b„ from Mathiessen's rule is obtained by re-
placing r, by r„. With the same values for f, g, and rp

one then obtains

8„—0.7AP /p (A5)

(A4')

It is interesting to consider the case 1/r, ))1/r,p which
might occur in ternary alloys or in the case of very
large positive magnetoresistance. One Gnds from Eq.
(Al) that the interference terms no longer contrib-
ute to the negative magnetoresistance and one has
Ap„= f/2. —

(Ap-/p) E. (s.) = (.Ap-/ps. 4)-.s(1+1 8«/r. ) (A4)

as long as rp/r, &(1.
A second, similar correction factor is due to Ap„

and Ap not being additive. That Mathiessen's rule

for all values of Geld and temperature.
The magnetoresistance calculated by Eq. (3a), provided Ap„/p&(1. Ap„and Ap are then related by

(Ap /p) Eq. (3a), and the experimentally determined
magnetoresistance (Ap /pt, ~),„p,, of Figs. 1 and 2 are Ap (Ap —hp„) (1+0.7AP„/p).

then related by
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The electronic spin polarization p (r) arising from the s-d exchange interaction is computed using iterated
solutions of Nagaoka's truncated equations and direct perturbation theory. Most of our detailed calcula-
tions are only to order Js (where J is the exchange constant) . However, arguments are given to suggest
that certain qualitative features Lsuch as the oscillatory behavior of p(r) $ will remain even if we work to
aH orders in J.%e critically discuss the work of Falk and Fullenbaum as well as Suhl, whose results agree
with ours apart from the important difference that our Ruderman-Kittel-Kasuya-Yosida term is pro-
portional to the average of an effective spin rather than the bare impurity spin. This eGective spin also
enters the static susceptibility X. In one of the Appendices, we briefly consider the e6'ect of potential scattering
on the spin polarization.

I. INTRODUCTION

T seems natural to expect that one of the most impor-
.. tant manifestations of the Kondo eGect' will be in
the conduction-electron spin polarization p(r) around
a magnetic impurity. Historically, the first such study
was made by Nagaoka' using a self-consistent solution
of the decoupled equations of motion for retarded
double-time Green's functions. He found that in con-
trast to the Born approximation for the polarization
(associated with the names Ruderman-Kittel-Kasuya-

~This research was sponsored by research grants from the
National Research Council of Canada.

t One of the authors (H.U.E.) gratefully acknowledges a travel
grant from the Deutsche Forschungsgemeinschaft.

1 Present address: Department of Physics and Astronomy,
Louisiana State University, Baton Rouge, La.' J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).' Y. Nagaoka, Phys. Rev. 147, 223 (1966); Progr. Theoret.
Phys. (Kyoto) 36, 875 (1966).

Yosida' and thus referred to as RKKY) his result had
a much longer range and moreover the electron spins
were favored to align antiparallel to the impurity atom
spin. This result led Nagaoka to the conclusion that
below a critical temperature T~ there exists some sort
of quasibound state between the electron spins and the
impurity spin. The coherence length of this quasibound
state was estimated to be 10 4 cm. It has since been
realized that Nagaoka s original solution of his equa-
tions was incorrect and that his equations do not give
rise to any bound state. As a consequence the result for
the electron spin polarization given in Ref. 2 should be
disregarded. In contrast, Suh14 ' made use of his alterna-

' M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954);
K. Yosida, ibid. 106, 893 (2957) .

4 H. Suhl, in Proceedhngs of the International School of Physics,
"Enrsco Forms" 1966, edited by W. Marshall (Academic Press
Ltd. , London, 2967), pp. 226-205.

s H. Suhl, Sond State Commun. 4, 487 (1966).
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tive S-matrix theory and deduced that the Rondo
eGect would have little influence on the conduction-
electron spin polarization at distances r&ro from the
impurity atom, where rp is of the order 1/k&. We shall
discuss Suhl's work later on in this paper. For now, we
simply call attention to the fact that both Suhl and
Nagaoka discussed the spin polarization using results
which, in a certain sense, were correct to all orders in
the exchange interaction J. More recently Falk and
Fullenbaum have calculated p(r) by extending the
Nagaoka equation-of-motion method to the case where
rotational symmetry is destroyed by a magnetic field.
A perturbational solution of the truncated set of equa-
tions of motion led them to an expression for p(r)
which involves a term ~J lnkpr. This was interpreted
as a manifestation of the Kondo effect in p(r) .

In this paper we reinvestigate p(r) and related func-
tions such as the susceptibility on the basis of Nagaoka's
decoupling procedure. In Sec. II we compute p(r), but
instead of including the magnetic field in the equations
of motion we shall start from a linear response formula
for p(r). Our result consists of three parts, pp(r), pi(r),
and p&(r), where pp(r) has the same r dependence as the
R.KEY polarization. However, instead of being pro-
portional to (Sz) (the thermal average of the impurity
spin), it contains a more complicated function of the
temperature. However, this function may be inter-
preted as the average of an effective spin, the magnitude
of which varies with temperature. In this aspect our
result differs from that of Falk and Fullenbaum, '
who obtained the RKKV polarization instead of
pp(1) . The two other contributions to p(r), pi(r)
and pp(r), agree exactly with the corresponding expres-
sions of Ref. 6. pi(r) contains the term ~J inkrr that
we mentioned before. In Appendix C, we compare our
work with that of Suhl, as well as Falk and Fullenbaum,
showing where the differences come from.

In Sec. III we discuss the relation between pp(r) and
the static susceptibility X. The most important new
result is that both functions have the same temperature
dependence. Furthermore we show how the logarithmic
singularity, which occurs in the second-order expression
for the susceptibility, comes from a certain part of
(S"(r) ~ S' p), the electron spin-impurity spin correla-
tion function. The latter function was erroneously
identified with the conduction-electron spin polarization
in Ref. 2. A direct second-order perturbation calculation
for (S'(r) S' &) is presented in Appendix D. Finally,
in Sec. IV we briefly compare our result with some
recent experimental work. In particular, the fact that y
and pp(r) have the same temperature dependence
seems to be well established experimentally. In Appen-
dix E we discuss the charge oscillations induced by the
impurity ion.

X
Tr {expt P(Hi .+—H.e+Hp) ]C~."e,.pCk p} 2.2

Tr exp{ —P(H~;„+H,„+H„)j
Here 0 is the volume of the system, P=-(k&T)
Boltzmann's constant being generally set to unity.
H&;„ is the kinetic energy of the conduction electrons;
B& is the magnetic energy of the system in an external
magnetic held h which is assumed to be in s direction.
That is,

gk(S el+ S imp) (2.3)

where p~ is the Bohr magneton; the Lande g factor is
assumed to be the same for both conduction electron
and impurity spin. Ke assume that the magnetic field is
suf6ciently weak so that the magnetic energy is small
compared to the thermal energy. This allows us to
expand p(r) in terms of the magnetic field k and to
retain only the term linear in h, with the result

p(r) = (3&) 'gl ek—
&& {(S~'(r)~ Se')i=p+(S~'(r) ~ S~~p)p=p}. (2.4)

Ke have made use of the rotational invariance of
thermal averages in the absence of a magnetic field.
From now on, ( ~ ~ )i=p—= ( ~ ~ ). Thermal averages over
two equal-time operators may be conveniently rewritten
as

(~a) =~- d y(~) 1m&a { ~ ).,

II. EVALUATION OF (S"(r)~ (S"+S' &) ) USING
NAGAOKA'8 TRUNCATION

The interaction of conduction electrons wi. th the
localized magnetic moment is assumed to be described
by the s-d exchange interaction Hamiltonian:

H, e —(—J—/21V) QCg. td. p
S' 'Ci, p. (2.1)

k, k~

We introduce the convention that repeated spin indices
are summed. The operator CI, ~ creates a conduction
electron in the state

~
kn), where k denotes the wave

vector and o. the spin quantum number; 0 are the Pauli
matrices, and the operator S' & represents the localized
magnetic moment. The exchange coupling constant J
is positive for ferromagnetic interaction and negative
for antiferromagnetic interaction. S is the number of
atoms in the lattice.

In order to obtain a hnite spin polarization of the
conduction electrons, we have to apply a magnetic
held which polarizes the impurity spin. The conduction-
electron spin polarization Lhenceforth referred to as

p(r) $ is then given by

p()—= (s,'())
=(2Q) 'g exp{ i(k —k') r]

6 M. S. Fullenbaum and D. S. Falk, Phys. Rev. 15'/, 452 (1967). where (8
~
A)„denotes the Fourier transform of a
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F .( ) =-'&s-'8.,c,.I
c„t&, (2.s)

8kk (~) =—4+&8.s 8...I.C~C, ci i'
I
ck -'i 2.9

1,1I

It so happens that I'kk. (oi) is one of the natural func-
tions occurring in Nagaoka's truncated equations of
motion, and thus his theory implies a specific approxi-
mation for Fkk. (oi). In order to evaluate the Green's
function 8i,k (kd) in terms of the Green's functions

&S"(r) S ')= —(irQ) 'g expIi(k —k )'r$

X doi f(oi) ImI'kk. (oi), (2.6)

&S"(r) S")= —(irQ) 'P expLi(k —k') ~ rj
k, k~

Gkk (~) =-', &Ck. I Ck.')
and Fkk (ko), we follow Nagaoka's procedure. '

The exact equation of motion for 8kk (ko) is given by

(2.10)

X dko f(ko) Im8kk (oi), (2.7)

double-time Green's function. ~ We can express the where
correlation functions in Eq. (2.4) by means of ap-
propriate Green's functions:

4(oi —ek)8ki, (~) =3f28k» —&Ck' Ck )I —3(&/&) QFk i(~)

s(&l&) Q&L8 (8.s'-") j-p8- s ci-'ci i ci I ck - )—(~/2&) Z&~-s
1,1/

ation E . (2.11) takes the formSubjected to Nagaoka's type of decoupling approximation, q

8- -)=L4(--")rI3(»--&C'.'C..))-(~/&)Z F'()+l(»~'» G'-

where

—(J/1V) g&(d S) sci "'Cip) QGk i(oi) —2(J/Ã) 5(5+1)QGk i(kd) j—Fkk
1

dke f(kd) ImGki(ko), (2.13)

mk= —(2/s) Q dko f(oi) ImFki(ke).
1

Making use of the Eqs. (2.6), (2.7) and (2.12) in Eq. (2.4), we obtam

(2.14)

r = —(giiiih/3T)(4irQ)
—'QexpIi(k —k') rj 6fk(bkk. ', (ck„t k.—))-

k, k~

Gk' i' (ko)—2(J/S) L'5(5+1)+g&-', (8 S).pci.tcip)) Q dkd f oi Im
1

5$]
d f(~) Irn I'~ i( ) + - —Q d f( ) Im — Gvl(rs)I . 2.15

We wish to emphasize that the last term of Eq. ~ .
and &S"(r) S™)have cancelled each other in Eq.
(2.15). This clearly shows that the spin polarization of
the conduction electrons is not given by

7i( ) = ( —~ g&/32') (S"( ) S' '» (2 16)

as implied in Refs. 2 and 5. The diGerence between

p(r) as defined by (2.16) will become apparent when
we discuss the connection between the spin polarization
and the susceptibility in Sec. III.

See, for example, D. N. Zubarev, p.rev Us . Fiz. Nauk 'Fl, 71
(1960) )English transl. : Soviet Phys. —Usp. S, 32. 3 320 1

The second term in (2.15) is very similar to the
Ruderman-Kittel type of oscillatory polarization. Let
us introduce the function C'(2') by

C'(2)=—-'( )L5(5+1)+Z(-'(8'S'"')- C 'C )j
1

=-;(„.) L5(5+1)+&s's™)j. (2.17)

Furthermore, we express the Green's function Gk k(ko)

in terms of the non-spin-Qip scattering amplitu e i(oi):

Gkk' (ko) =8kk'/(oi ek) + ( ek) 1(oi) (ko ek')

(2.18)
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Gkk'o)(to) =~kk (o&—ek) ',

We note that the free-particle energies &~ are measured where
with respect to the Fermi energy.

Then, the second term in (2.15) takes the form

pp(r) = (4zrQ)-' P exp[i(k —k') rjC'(T)gp, gk

T k,k~

X Q tie f(to) Iin

J C'(T)
tz Q ' P exp[i(k —k') r]2X T

X Cho f(o&) Im . (2.19)
1 izrt(—o&)

M —6k M —
Eked

I«kk, (0)=0 G k, «) ((o) —() (2 24)

r», «)(„)= (J/2E) S(S+1)[(„,„)(„,„,)j-,
(2.25)

Gkk "'(to) = —zzr(Jp /2N) 'S(S+1)[(to—ek) (co—sk.) j-'.
(2.26)

In view of (2.15), it is clear that to find p(r) —P, (r)
to order J, we do not need I'kk tz) (o&) . Furthermore, we
need only calculate nk and mk to 6rst order in J. It is a
trivial matter to verify that

tzkts) =f&„
If we neglect all scattering eGects in the integral in
(2.19) [i.e., t(to) —=0; the justification for this is given On the other hand, using Eqs. (2.24) and (2.25), we
in Appendix Aj, we obtain And

C'(T) jt(2hrr)
2A7 T (err) ' (2.20)

mk(O) =0)

where

itiki') = (Jp/ft'f) S(S+1) Reg(ek), (2.27)

Here Eo ——i'ers/6zrs is the average density of electrons
(per spin) and ji(s) denotes the spherical Bessel func-
tion of order 1. If we consider tz[C'( T) /Tjto be the
"e6'ective" value of the s component of the impurity
spin we may interpret the expression (2.20) as the
Ruderman-Kittel polarization induced by an impurity
spin, the magnitude of which is modi6ed due to its
interaction with the conduction electrons. The tem-
perature dependence of C'(T) is closely related to the
temperature dependence of the susceptibility. The rela-
tion will be worked out in Sec. III.

The physical meaning of the remaining terms in
(2.15) is not so obvious. In order to get some insight into
their structure, we shall resort to perturbation theory.
We obtain an expansion in powers of J simply by iter-
ating Nagaoka's approximate equations of motion,
which are

g(ek) —=p 'Z[fk/(ek —ek+zb) &
k/

-r& ek ek'+st)

g (ek) —ln[(ek+ iT) /iD). (2.28)

This expression exhibits the correct behavior in the
limit T—+0 as well as in the limit ok~0.

Subtracting Ps(r) from Eq. (2.15) making use of
Eqs. (2.24)-(2.28), we obtain to second order in J

The latter equality holds for a constant density of
states in a conduction band of width 2D. For values of
ek such that

~
ek

~
&&D, the function g(ek) has the same

analytic structure as the digamma function (see, for
example, Ref. 8). For

~
ek

~
))D, however, it behaves

like 1/ek. Frequently we shall make use of an approxi-
mation for g(ek) due to Hamann, ' namely,

P(r) —Ps(r) = —(gttt&h/3T) (4Q) 'g exp[i(k —k') r)
(2.21a) k,kI

I'kk (to) = ( —k)-'I (J/2Ã) [trt —S(S+1)g+G, .( ) X Qkk"fk(1 —fk)+2(J'/1P) pS(S+1)[ek.—eke'

—(J/2A') (2zzk 1) Qi'lk'(to) I . (2.21b)

The results of this iteration may be expressed as follows:

Gkk«(co) =Gkk« '(co)+Gkk« ' (co)+Gkk«(o&)+' ' '

(2.22)

«"+w'" «'+r )"'X fk»
~

f&»—
D2 ) D2

=—Pp. u+Pi(r)+Ps(r)

+ ——,pS(S+1) dto f(oo) Im z[f(~)+1j
2%2 CO

—Cg (d —6kr

(2.29)

Ikk'(to) = Ikk' (to)+Ikk' (to)+I kk' (to) + '

(2.23)

P. J. Davis, in Hartdbooh of Mathematical FNrtctiole, edited by
M. Abramowitz and I.A. Stegun (Dover Publications, New York,
1965), P. 258.

s D.tR. Hamann, Phys. Rev. 158, 570 (1967).
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In deriving (2.29) we have carried out the a& integra-
tion in the first three terms utilizing the approximation
(2.28) . In the last term it is advisable to do the Ir, ir'

summations first, carrying out the 4d integration after-
wards. The first term denoted by pp, „&; is the Uniform
Pauli polarization

pp-i'= (gl o&/2T) v,

which)is of no interest in the present context. To
proceed with the evaluation of the other terms in Eq.
(2.29) we replace the Fermi functions by their zero-
temperature limits. This is possible since it turns out
that no divergence occurs in the low-temperature limit
of (2.29). The neglected temperature dependence in-
volves terms of order T/er and can therefore be dis-
regarded completely in the temperature region we are
interested in. Straightforward integration then leads
to the following results:

pi(r) = ( g»&/T) 4—~No(~P/N) 'S(S+1)

X I 2[ji(2krr) /(krr) '] ln(T/D) +2[je(2krr) /(krr) ']
+[(krr)'] ' Z x,'-[»[2r(kr+x. )]

vM, l

+Si[2r(kr —x„)]]ni(2rx.)+[(krr)'] ' P x„2
v=4, 1

X [Ci[2r(k&+x„)]—Ci[2r(kr —x„)]]ji(2rx„) }, (2.3Q)

where

xp —= [kpi+ ( —1)"2imT]i~'
and

X S(S+1)[(krr)'& 'ni(2rkF). (2.31)

Here Si and Ci are the sine and cosine integral func-
tions (for their definitions see Ref. 10), while j and

are the spherical Bessel and Neumann functions of
of order m.

The temperature dependence of pi(r) contained in
the arguments of the Si and Ci functions is very weak.
Provided that

a,r=k, r(T/e, )«1,
which is a very weak condition since T/er 10 4 10 ', —
we may expand pi(r) in terms of A&r. Retaining only
the zeroth-order term, we obtain

pi(r) =( g»k/T) k~NOS(S+—1) (~P/N) '

X I [ji(2krr) /(krr) '][Ci(4ki r) —in((yD/2e&) k&r)]

+ni(2krr) Si(4krr)+je(2krr)/(krr)'}, (2.32)

where lny=0. 577 (Euler-Mascheroni constant). The
ln(T/D) «rm appearing in (2.30) has cancelled with
the leading term of the asymptotic expansion of the

' K. Gautschi and W. P. . Cahill, Ref. 8, pp. 227—252.

function Ci[2r(kr —y„)], which is given by

Ci[2r(kr —x„)]= ln[( —1)"i(yT/2') krr]

+0[(kr r)'(T/e, )'],
for kyar(((er/T) . Collecting our results, we have

pi(r)+ pi(r) =p(r) po(—r) —pp-~

= —(gl4iih/T) ', 7rNeS-(S+1) (Jp/N) '

ji(2krr) (~DX, Ci(4krr) —ln
~

krr
~(krr)' (2er j

%ith the further restriction kyar))1, this may be
approximated by

p(r) pp'. ~
—pe(r)—=(g»k/T) S(S+1)kxNe(~v/N) '

X [cos2krr/(4r) '] in[(yD/2er) krr]. (2.34)

Although the right-hand side of Eq. (2.34) divers
from the RKKY polarization through the presence of
the logarithmic factor, it does not show a totally
dissimilar behavior. In particular, we do not find any
indication of a nonoscillatory contribution to the polar-
ization as Nagaoka' did in the quantity that he iden-
tified with the electron spin polarization. Since the
result in (2.34) was obtained by second-order perturba-
tion theory, one might object that higher-order terms
could still lead to a qualitatively diGerent result.
Although we have not been able to rule out this possi-
bility entirely, we give an argument in Appendix 8
based on nonperturbative methods which makes it
seem very improbable.

We should also mention that our result (2.34) agrees
with that given in the paper by Falk and Fullenbaum'

ij we rePlace Pe(r) by the usual first-order RKKY
polarization. As we shall see, however, the temperature
dependence entering pe(r) through C'(T) is important
in explaining the available experimental data.

Recently Heeger et al."have calculated the polariza-
tion on the basis of the Applebaum-Kondo" approach.
They also found the modified RKKV polarization
po(r). However, in addition to that, they also obtained
a negative term which varies as (sin2krr/r)'. At the
present time, the existence of such a term has not been
confirmed experimentally.

III. RELATION OF THE STATIC
SUSCEPTIBILITY To P(r)

Taking the second derivative of the free energy
(Z is the partition function)

F= —(1/PZ) Tr exp[ —P(Hi, ;„+If„d+Hi)]
"A. J. Heeger, L. 8, Welsh, M. A. Jensen, and G. Gladstone

(to be published).
'2 J. Applebaum and J. Kondo, Phys. Rev. Letters 19, 906

(1967).
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Introducing the polarization as defined in Sec. II, we

may rewrite (3.1) as

x=xp-i +pngI (peg/3T) S(S+1)

+(png/3T)(g' p S")+Is ' ps(y)y'dy

+h ' Lp(y) —ps(y) —pp, „i;]y'dy}, (3.2)

where xp, i; is the Pauli susceptibility of a free-electron
gas. Going back to Eq. (2.15) one can see that

Pp(y) —ps(y) —pp, „i~)y'dy (3.3)

vanishes. The arguments for this have been given in
Ref. 2 so that we need not repeat them here.

From Eq. (2.20) we have

jg
—1 ps(y) ysdy P'(S+ 1)+ (g™p.Sel)$ (3 4)

Rag Jp
3T E

and hence"

x =xp. »+L(wag)'/3T]LI+ (Jp/W 3

X[S(S+1)+(S™pS")]
=xp-l +I ng Lc'(T) /T3 (3.5)

In obtaining the last line of Eq. (3.5), we have neglected
Jp/E in comparison with unity, and we have intro-
duced C'(T) as defined by Eq. (2.15). Evidently,
ps(y) and x have the same temperature dependence, the
source of this being the term (S' " S")

From Eq. (2.6), one notes that

(gimp. Sel) — dsy(gimp. Sel(y) )

dip f(oi) Imi"i, i, (id) . (3.6)

Inserting the first- and second-order expressions for
I'&i (cp) Las given in Eqs. (2.25) and (D3)) in Eq. (3.6)
we find to second order

(g ' g )=S(S+1)L(~pP )+ (Jp/+) ln(T/D) 3

(3.7)

"The susceptibility formula given in the second paper of Ref. 2
is incorrect. There should be a factor 2 in front of the 6rst term of
the right-hand side of Eq. (Big),

with respect to the magnetic field h, we find the follow-

ing expression for the static susceptibility of a system
described by the Kondo Hamiltonian:

X =L(l ng) '/3TjI (g'. S")+2(g' ' g")+S(S+1)I

(3.1)

and hence, to the same order,

x =xp. i;+$(iung) '/3T)S(S+1)

XL1+(Jp/E)+(Jp/E)s ln(T/D) j. (3.8)

This result has been found earlier by several authors. ' ' '
The logarithmic term in Eq. (3.8) shows that for
T( Ts PTs =D exp( —

~
F/Jp ~) ] the perturbation

series no longer converges.
Recently Zittartz'4 has pointed out that it is possible

to evaluate the right-hand side of Eq. (3.6) exactly
in the limit T—+0 if one uses the Fowler-Hamann-
Bloomfield solution (see Refs. 15, 16) for the forward
scattering matrix of the Kondo problem. The result is

lim (S~p Se') = —(S+-', ) +O(JP/S) & (3.9)

where S is the magnitude of the impurity spin. For
5=-'„ it follows that

C'(T) = —-'

This would lead to a negative value of the susceptibility
of zero temperature and must therefore be wrong. Since
it has been proved by Mattis'~ that for antiferromag-
netic coupling the gound state of the Kondo Hamilton-
ian is a singlet state, one would expect

(g'.S™)s„„„q.i,i.= —s4 for S= sr. (3.10)

Furthermore, we do not see any reason why the equality

llm (gel, gimp) —(gel. gimp)
FM

should not hold.
The calculations that lead to the result (3.9) do not

contain approximations other than Nagaoka's decou-
pling procedure and the simplifications made in deriving
the integral equation by Falk and Fowler. "Therefore
the contradiction between the Eqs. (3.9) and (3.10)
forces us to conclude that these approximations do not
provide the correct ground state of the Kondo Hamil-
tonian. The question of what the low-temperature
behavior of (S™~S')and x is must be left to the
future.

The correlation function (S'(y) ~ S' p) which occurs
in Eq. (3.6) is of some intrinsic interest. It describes
the static correlation between the impurity spin
and the electron spin density at a distance r from
the impurity. Nagaoka' calculated this function for
T=O using his self-consistent solution of the equa-
tions of motion. He found that for y«py/6 Lwhere

Dexp( —X/j J [p—)j
(S"(y) S~p) = —u(sinkpy/y)',

"I.Zittartz (private communication)."M. Foozler, Phys. Rev. 160, 463 (1967).
'6 P. E. Sloomaeld and D. R. Hamann, Phys. Rev. 164,~856

(&967)."D. C. Mattis, Phys. Rev. Letters 19, 1474 (1967).
's P, S, 'haik and M. Fowler, Phys. Rev. 158& 567 (19$'l).



600 H. U. KVKRTS AND 3. N. GANGULY

where a is a positive constant. This result shows that
the conduction electrons are aligned antiparallel to the
impurity spin over a distance of order t'ai//~~10 cm.
We have computed (S'(r) ~ 8' i') to second order in J,
the details being given in Appendix D. Besides oscilla-
tory terms, we also find a negative de6nite term.
However, in contrast to Nagaoka's result, ours varies
as 1/r'. As discussed in Appendix D it is this part which,
when integrated over r, yields the logarithmic singu-
larity in the second-order expression for the suscepti-
bility.

IV. DISCUSSION

Several authors" '~" have investigated the magnetic
properties of dilute magnetic alloys experimentally.
Apart from conventional measurements of the suscepti-
bility, NMR and Mossbauer techniques were used to
get information about the local magnetic fields in alloy
systems. Since our theoretical calculations in Sec. II
were based on the linear response approach, we cannot
say anything about the possible nonlinear magnetic
field dependence of the electron spin polarization (see
Appendix D) . The NMR experiments, however, yield
information about the temperature dependence of p(r)
as well as the magnetic field dependence. According to
Sugawara" the linewidth of the NMR signal should be
proportional to (S,' &). If the polarization is given, for
example, by the RKKY formula

P(r) = —3m'(Jp/2)V) (S.' ")fji(2hpr)/(her)'1, (4.1)

NMR enables us to eGectively study some spatial
average of p(r) . If we neglect the terms Pi(r) and P2(r)
for the moment (and remembering pp, „i; does not
contribute to the linewidth since it is position-independ-
ent), we would expect from (2.20) that the measured
temperature dependence would be given by

we see that in general the ratio

Q

is of the order of

(s imp)
(4.2)

y(r) = —,Q exp/i(k 1r—)x'j

As we have discussed in Sec. III the value of (S.' i'), ff

cannot be predicted theoretically with the help of
Nagaoka's theory and thus no prediction can be made
as to the magnitude of the ratio given in (4.2). Recent
experimental data" ~ shows that for temperatures be-
low 0.5'K, the electron spin polarization becomes tem-
perature-independent. The experimental conditions at
these temperatures were such that the Brillouin func-
tion representing (S,' &)b,„, is temperature- and field-
independent. Therefore the strong field dependence of
the polarization which was observed in the same tem-
perature range (see Refs. 11 and 22) must be taken as
an indication that even at very low temperatures pe(r)
is still predominant. It also shows that if at these low
temperatures (S,' &),ii can be described by the Brillouin
function, then the effective magnetic moment of the
spin must be very small.
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APPENDIX A

We want to show that part of the integral in (2.19),

Comparing this with the susceptibility formula (3.5)
we see that the linewidth and the susceptibility should
exhibit the same temperature dependence. This is
exactly what the experiments show. ""

So far we have neglected the terms Pr(r) and P.(r) .
For high temperatures where perturbation theory is
applicable, this is certainly justified since p&(r) is of
6rst order in the expansion parameter (Jp/E), whereas

pi and p2 are of second order. Reintroducing the bare
impurity spin into (2.31) and (2.32) by

(S.' &)b, ———(pugh/3T) S(S+1),

'9T. Sugamara, J. Phys. Soc. {Japan) 14, 643 (1959).
2t'M. Daybell and W. Steyert, Phys. Rev. Letters 18, 398

(1967l."C.M. Hurd, Phys. Rev. Letters 18, 1127 (1967)."R.B. Frankel, N. A. Blum, B. B. Schwartz, and D. J. Kim,
Phys. Rev. Letters 18, 1050 (1967}.

~ M. A. Jensen, A. J. Heeger, L. B. We1sh, and G. Gladstone,
Phys. Rev. Letters 18, 997 (1967}.

X d f(~)Im, (A1)
ti1 —eg ii) —eg'

is o$ second order in J so that it may always be neglected
compared to terms of order zero in J.The argument we
give here has been developed by Suhl in a similar con-
text. Suhl shows —for the details we refer to Refs. 4
and 5—that under the condition

k&r&&I,

P(r) can be expressed as follows:

CG

/t/(r) = e"x" [Ef(K) ( irrpt(K) )+c c jdE— . .
QE

= —(1/r'j f dIC {Fin2rr(B/BK}
0

X(Kf(E)rrp Re t(E) )
+cos2Er(8/BK) t'Kf(K) rrp Im t(E)jj. (A2)
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Now, according to Suhl's work" Imt(~) has a peak of
width k~T at a distance of the order of k~T above the
Fermi level. Since Ret(co) is connected to Imt(~)
through the Kramers-Kronig relations, its main varia-
tion takes place in the same interval in which Imt(co)
is peaked. As a consequence of this, we may restrict the
integral in (A2) to the interval L

—d, +A), where
t) = akim T (a is a constant of the order of unity) . Outside
this interval the derivative in the integrand is essen-
tiaHy zero. For krr((er/k~T, the sine and cosine func-
tions may then be taken outside the integral and we
obtain

y(r) (1/r') km p

&&LRet( —6) sin2krr+Imt( —5) cos2krr). (A3)

From the qualitative features of t(co) as described in
the Varenna lecture notes4 we conclude that t( —6)
can be replaced by its lowest-order perturbation theo-
retic value.

Thus,

y(r) 0- J' for l«krr«er/kgT

This is a very weak condition and allows for all values
of r that are of interest in this paper (apart from the
susceptibility calculation, as discussed in Appendix D).

APPENDlK B: N'ONPERTURBATIONAL TREAT-
MZmT OF p(r) po(—r) pp„—„);

In Sec. II we evaluated $p(r) —p, (r) —p,.„„]in
second-order perturbation theory. In order to get some
insight into the behavior of this quantity for low tem-
peratures where the perturbation expansion may be
invalid, we rewrite (2.15) by introducing the t matrix,
using

Gkk'(CO) =8kk~/(N Ek) + (Gl &k) t(Gl) (& 6k') p (B1)

I'kk (a)) = '
t((o)

GO
—far

the latter being completely equivalent to (2.21b) .
This leads to

gpggh t(~)
pp(r) —p, (r) —pp«&;j= — (4nQ) ~p exp/i(& —&') ~ r] — fk ~f—(s&) Im

7r OJ —Cg GO
—fg~

d~ Im
J f(~)
Ã CO

—Cg CO
—Egr

(e)+1) (m) ——',) J (n)+1) (mi —S(S+1))
t Cd + 1 impt —co

2X

der f(a,) Irn
)

. (B3)
2Ã

%e next note that
Zi'. ( ) =-(»/J)Lt( )/( -")j,
l

as can be easily seen from the equations of motion (2.21a) and (2.21b) . It follows that

2
mk ———— da& f((u) Im+Fk)(&u)

7r 1

(B4)

4S
da f(a) Im

t(&o)

Jm Cd —Cg

Using Eq. (B4) in the 6rst term on the right-hand side of Eq. (B3) we obtain

p(r) —po(r) —pp«);= — (4~Q) —'p expLi(k-k') rj ——— ——g A Im
gpsh . , f 3 J fkmk fkmk J— f(~)

T ek —ek N

(85)

(ni+1) (Ni —p) J (rti+1) (mi —S(S+1)) . 1X tee 1 1W'pt (d

f
. B6

ce —e) 2X (d —6~

%e assume that the functions

~ (ng+1) (ei——,') (ng+1) (mi —S(S+1))
and

1 (d —6~ OJ —$~

vary slowly with co except in the interval

h&cg&+6,

where b, is of order kgb. That this is in fact so can be
seen using (B5) and

wz=fs+m

'fdic

f(u) Irn
6 pt((o)

CO
—Cg

(B7)

Then we can apply Suhl's type of argument (see
Appendix A) to the second term in Eq. (B6), which
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means that we may neglect all but the lowest-order
perturbative term in (86), we get the result given in
Eq. (2.33). However, one is not so easily justified in
treating the first term like this. From Eq. (85), one
can see that the lowest-order approximation to mk
[see Eq. (2.27)] is not very good. The result in Eq.
(2.27) is obtained from Eq. (85), if one replaces t(co)
by its lowest-order Born approximation:

t(co) = —4n.p (J/2X) 'S(S+1).

In doing so one has completely neglected the resonance
in t(co), although the most important values of co in the
integrand in (85) are those for which —ksT&co&
+kiiT. It is to be expected that a better approximation
for mz would change the result given in Eq. (2.33)
quantitatively. However, the oscillatory character of
p(r) should survive, since this is ultimately related to
the sharpness of the Fermi surface.

linear way. For brevity, we write it in the form

p( ) = (S. ')F ( ), (C5)

where Fp(r) depends on the magnetic field as well as
(S,). If it is a good approximation to take

the linear response approximation to (C1) is given by

p.. , p(r) (thigh/3T) S(S+1)F„,(r) (C6)

This agrees precisely with our second-order results
given in Sec. II if the explicit form of Fp~(r) is worked
out.

Suhl's approach to the polarization4' is also based
on the formulas (C1) and (C2). Introducing the non-
spin-fhp and the spin-flip scattering amplitudes t(co)
and r(co), the Green's function GIrc c'& can be written
as

APPENDIX C: RELATION TO WORK OF FALK Giv' (cd) =Gd' (co)8kt +Gk (co) [t(co)+4rr(co)
AND FULLENBAUM AND OF SUHL X (Sr™&'Sr')+4r,(co) (S,i~& S )]G~P&~~(~), (C7)

Our calculation of p(r) was based on a linear response
approach which provided us with the basic formula
(2.4). An alternative definition of the conduction-
electron spin polarization would be

P(r) =-'I (Nt(r) )—&rc (r) )] (C1)
Since

(rc.(r) ) = —vr
' Q exp[i(k —k') r]

dco f(co) ImGgi, C &(co), (C2)

all one needs is the one-electron Green's function
Gqq. c'(co) under the influence of an external magnetic
field. Falk and Fullenbaum' computed this function
using the equation-of-motion method up to second
order in the exchange interaction J, with the result

~kk' —J/2X
Gi,~ "(~)=

GD
—6k~ N —6~ M —6kr~

X fo(S,'~p)+(i Jp/ir2$) [ o(S,™p—)+2o(S,i~p)

Xf(M+ocop)+o(S, ' ')(I/N) g( + co(p)o]I. (C3)

pc„= (k'/2m) —tcogoh

(o=& and h is the external magnetic field), while
g(co) is defined by (2.28).

In the course of evaluating the integral in (C2),
Falk and Fullenbaum drop the Zeeman term in the one-
electron energy ~I„. Examining the implications of this
step, we 6nd that in doing so one only neglects terms
of relative order kiiT/pr. We recall that terms of this
order have been neglected throughout this paper. After
performing the required integrations in Eq. (C2),
the result still depends on the magnetic Geld in a non-

where the subscripts T and z indicate the transverse
and s components of the spins and

Gg c'&(co) = (co—pg, ) (C8)

In the expression (C7) the average has only been taken
over the orbital variables of the electrons, while the
impurity spin still occurs as an operator. The first term
on the right-hand side of Eq. (C7) yields the Pauli
polarization. In the second term, the Zeeman energy
may be neglected for the same reason as discussed in
the preceding paragraph. Symmetry considerations
show that t(co) cannnot depend on the magnetic field
linearly. Thus we get in linear response

p(r) = [(ii)(r) rc (r) )]

=p»„„—~-'g exp[i(k —k') r] dco f(a&)

X Im[Gq~P (co) ~ 4r, (co) Gi, (co) ](S,' p). (C9)

Suhl calculated (S,' &) using the free-spin density
matrix

p,p;„=exp( PtcsghS—,) /Tr[exp( —PtciighS, )]. (C10)

This is the reason why his result for p(r) is propor-
tional to the bare impurity spin. Since in deriving
(C9) nonlinear terms in the magnetic field [those
contained in t(co)] have already been neglected, it is
consistent to set

t/3T) S(S+1),
and to neglect the h dependence of r, (co). Without
going into any further details, we note that Suhl's
final result'5 is simply the RKKY polarization which
is of Grst order in J. By iterating Suhl s integral equa-
tions for t(co) and r(co) one can easily obtain r(co) to



E LE C T RONI C S P IN P OLA R IZATION

BRANCH CJ'T
LDGARITH

FIG. 1, Integration contour of the
integration in Eq. (D8).
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Here F» &'&(o~) and F» &@(oi) are the first- and second-
order iterative solutions to the Nagaoka equations.

r(~) = s(I/2&) ~'~p(I/2&)—t.f(~)—2] F».&'&(&u) has already been given as (2.25), and

~(J/2~)s inL( s+2-s)/Ds]ils F» (oi) is found to be

second order in J,

Inserting this expression into (C9), we find exactly the F»' (~) =s(I/+) pS(S+1) (tp

same result as Falk and Fullenbaum for p(r) .
Recently More and Suhp4 have pointed out that

vrhere
(C7) does not use the most general form for the t
matrix in the presence of the magnetic field. This is
irrelevant in the present linear approximation, as we

X (oi —ek )—
'pg (ek) +-,'(iver) ], (D3)

(D4)

eventually only use the magnetic field ndependent t
as defined in Sec. II. The first-order term in (D2)
yields the RKKY oscillations. The second-order term

APPENDIX D: CAI,CUy.ATION pp THE IMPU&ITy can be written as follows:

SPIN ELECTRON SPIN CORRELATION (S i( ) S~p)(s)
FUNCTION TO SECOND ORDER IN J

It so happens that the correlation function
(86t(r) S™)is directly connected to Nagaoka's
F» (co) by the relation

(Sel (r), gimp)

'rr 'Q expLr(lr —I'} r]frref( ) rrxrxe (re)

(D1)

= (2ir9) '(I/X) 'pS(S+1)

Xg exp['i(lr —ir') r](ek —ek) '

X fi in)(ek s+Ts)/Ds] —fj; lnt (eke+~)/Ds]'~s

Ao m Re cv —&i, cg —gg. ~ D$

(D6)

~' R. More and H. Suhl, Phys. Rev. Letters 20, $00 (1968).

= —-'rr rQ exptr(lr —Ir') rjf err f(re) = sr (J/X) spS(S+1)LIt(r) +Is(r) ].
Here we have made use of the approximation (2.28)XImLF»'"'(ep)+F»' (~) ' ''] ( ) for g(ek) wherever this does not cause divergences in
the remaining sums over k and k'. The integral Is(r)
can be evaluated in a straightforward manner. Neglect-
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ing temperature-dependent corrections, which are of
order keT/pr, we obtain

Ip(r) =+(3/8) s'NppLNg(2krr)/(kpr)']. (D7)

After integration over the angular variables Iq(r) takes

0 k'dk' . . pp'+T'&'/'
I~(r) =——m, e'""e"'" ln'

(2~)& D

XLI'/(k'+k)+P/(k' —k) $. (DS)

The integration over k' can be done by the contour
integration method. The integration path is sketched
in Fig. 1.

%e obtain

n. , - dk p 2+~1/2
I~(r) = i ' ke~'coskr f/, ln

r QQ 21I

The integrand has a nonintegrable singularity at r =0,
which arises from the singular nature of the contact
interaction in r space. At the upper integration limit
only the last term of the expression (D11) leads to
difIj.culties. We must, however, keep in mind that this
expression is only valid if krr«pr/T. For krr) pr/T,
it turns out that last term in (D11) has to be multiplied

by expL —(T/pr)krr]. Thus we may write

{S"S' p)

»» /Z'»»» m

+ ~

r'dr(S" (r) S~~)
5 p ep/Tk p)

—AJ+BJ'-ap~Np(Jp/N) S(S+1)
op/2'k p

r Gf
2(krr) '

+ (Qm/2rP) i—' dk kf~+IEiLi(E»+k) r$ eI/jTkP

expL —(T/p, )krr]
2(krr) '

where

+e""EiLi(E„—kr) J}, (D9)

E„=(—1) "}kr'+ (—1)"2imTj'" v=o, 1.

{Sel,Sbnp) r'dr(Se'(r) S~p). (D12)

In (D9) we replace fj, by its zero-temperature limit as
we did before. After the remaining integration is per-
formed, we have

I~(r) =-,'mNppf(krr) 'P'[ LCi(4kpr) +Ci(2krr)

—ln((&D/pr) krr) jj&(2krr) +fj p(2krr) /krr j
+LSi(4krr) +Si(2krr) —xps gm~(2krr)

—-', en~(2krr) —(2krr) '}. (D10)

Here we have neglected terms of order (Ter)krr,
which means that the expression is correct only if
4r&(er/T. Collecting our results we find

(S"(r) S' &)= ',miVp(Jp/N) S-(S+1)t jz(2krr)/(krr)'$

+ps Np(Jp/N) 'P(krr) 'j 'I LCi(4krr) +Ci(2k/»r)

—ln((&D/pr) krr) jj&(2krr) +L jp(2krr) /krr]

+LSi(4krr) +Si(2krr) ——',~P~(2krr) —(2krr)-'}.

(D11)

The most remarkable term in the expression (D11) is
the last one. It shows that there is a nonoscillatory con-
tribution to the electron-spin impurity-spin correlation
function. It is this term which is responsible for the
"Kondo" log(pr/T) term in the susceptibility. To see
this more explicitly, we consider

where A and 8 are temperature-independent constants.
As mentioned above, the (unphysical) singularity of
the first integral at the lower integration limit need
not bother us. However, from the upper integration
limit, we get a log(pr/T)-type divergence. This is the
singularity we encounter in the second-order expression
for the susceptibility. The last integral in Eq. (D13)
is independent of the temperature.

The results which we have presented in this Appendix
were obtained by iterating Nagaoka's equations of
motion. This is the most convenient way of computing
the correlation function (S"(r) S' '). However, we
would like to remark that we get precisely the same
results by means of a straightforward (but lengthy)
second-order perturbation calculation of this correlation
function.

APPENDIX E: CHARGE OSCILLATIONS AROUND
A MAGNETIC IMPURITY

It is well known that a spin-dependent impurity
potential in an electron gas leads to an oscillatory charge
distribution around the impurity (Friedel oscillations),
which already appears in erst-order perturbation theory
with respect to the impurity potential V(r) As we.
shall demonstrate below, the spin-dependent exchange
potential

II~=(J/2N) QS d eCg, tCg p (E1)

leads to charge oscillations only in second-order per-
turbation theory. However, one should not forget that
the exchange potential H~ is due to the presence of a
paramagnetic ion in the electron gas and is therefore
generally accompanied by a spin-independent potential.
We shall therefore include this normal potential in our
subsequent calculation of the charge oscillations p(r).
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To compute p(r) we make use of the relation

p(r) =2egpi, i, expLi(k —Ir') ~ r7

= —(2/s. ) Q expLi(k —lr') r7

X d~ f(ei) ImGi, k ((v). (E2)

'Gi, i, (&o) may be obtained from the equations of motion
(2.21a) and (2.21b) generalized to take into account
the spin-independent potential V(r)."We also assume
that V(r) is a contact potential

Then the term
V(r) = V3(r).

(V/N) QGii, (ai)

has to be added to the right-hand side of Eq. (2.21b).
A straightforward iteration yields to second order in J
and V

Gi, i, &'&(ai) = +(~—ei) '

V . U' . J'S(S+1)——lm.p
——Zm'p—

N N' (2N) ' (~—s~) ' (E3)

Inserting this into (E2) we obtain

p(r) =ps+6eNss'

Vpj, (2k r)r, V ps JsS(S+1) rsi(2krr)

N krr Ns 4N' (krr) '

(E4)

Evidently there is no anomaly in p(r) whatsoever in

this order.

has to be added to the right-hand side of Eq. (2.21a)
and the term

(V/N) gr„.( )

The potential V(r) would of course also affect the
results which have been presented in the main part of
this paper. However, since in all the magnetic quantities
only products of the type Jm V" (m=1, 2 ~ ~; v=0,
1 ~ ~ ) can occur, no drastic change in the nature of the
results is expected. As an example, we quote the addi-
tional contribution to the correlation function
(S"(r) S' p), which is found if we include the spin-
independent potential V(r) to lowest order. The result
is

(Sel (r) .gimp) (Sel(r), Simp)

= ssx'No(JV/N) p'S(S+1) fed(2rkr)/(krr) s7. (E5)

%hat we have said so far about the eGect of a spin-
independent potential on the magnetic properties is only
true insofar as the potential of the single paramagnetic
ion itself is concerned. If besides this paramagnetic ion
other randomly distributed (and possibly magnetic)
impurities are present in sufficient concentration that
their eGect on the conduction electrons can no longer
be neglected, the situation may change considerably. As
one example, the finite mean free path of the electrons
is expected to somehow limit the range of the spin and
charge density oscillations (see, for example, Ref. 26).
In addition, the conduction-electron bulk density of
states may be modified as a result of the Kondo eGect,
as it must in view of the anomalies in the electronic
specific heat.

As the concentration of paramagnetic impurities is
raised there must also be a certain critical concentration
beyond which the interaction between the impurities
can no longer be neglected. It is hard to estimate what
this critical concentration might be since there is no
characteristic relaxation time involved in our expres-
sions for the spin-density oscillations. However, these
expressions certainly cease to be valid beyond this
critical concentration. Presumably the theory has to be
modified so as to include an internal magnetic field
which is produced by the impurity spins.

"K.Fischer, Phys. Rev. 158, 613 (1967). "P.G. de Geuues, J. Phys. Radium 23, 630 (1962).


