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In a previous paper of this series, we

studied/�(a'),

the probability that the average boundary spin for a
half-plane of Ising spins is 0. We extend our study of such functions by generalizing the previous derivation
to any magnetic system and using them to relate the magnetic behavior at the critical isotherm to the
spin-spin correlations at the critical temperature. We also clarify the meaning of the secondary maxima
previously found in tl (tr) by a more accurate calculation and by examining the magnetization on interior rows
of the half-plane. These considerations show that P (a') is more properly to be considered as the sum of
two separate spin probability functions. The various ways in which the thermodynamic limit may be
taken and the effects that these different limiting procedures have on $(tr) are discussed in detail. The
inhuence of boundary conditions on spin probability functions is studied by reversing the sign of one column
of horizontal bonds. We compute the additional free energy resulting from the misfit bonds and use this
to show that@(tr) is no longer bimodal but is rectangular for (a'

( less than the boundary spontaneous
magnetization. Finally, we present in graphical form numerical integrations of the boundary magnetization
and susceptibility.

1. INTRODUCTION

" N a previous paper of this series, ' we obtain some of
.. the properties of a half-plane of Ising spins inter-
acting with a magnetic field @applied to one boundary
row only. In the course of this discussion, we compute

g(o), the probability that at zero magnetic 6eld the
average boundary spin is o. Our purpose is to help
interpret the fact that the boundary magnetization PPt,
while discontinuous at @=0,may be analytically con-
tinued beyond @=0to give a hysteresis loop. It is the
purpose of this paper to make more precise the dis-
cussion of $(o) both by a more accurate evaluation and

by expanding our point of view to more general situ-
ations than the half-plane.

We begin our discussion of spin probability functions
in Sec. 2 by noting that our previous derivation of

Q (o) is not restricted to the half-plane but holds for the
spin probability function of any magnetic system.
We obtain a first approximation to this probability
function and use it to relate the behavior of the ma, g-
netization at T=T, near H=O to the spin-spin cor-
relation function at T,. In particular, if

M~sgn(H) E ) H ('ts

and as r—+~

dimension of the lattice, we find'

8=maxL1, 2d(d —2+rt) —'—1j. (1.3)

The meanings of 8 and g in this formula are discussed
in Sec. 2. If we apply (1.3) to existing numerical data,
we find that 8= 15 for the two-dimensional Ising model,
in excellent agreement with previous work. ' In three
dimensions, (1.3) is not quite satisfied by present
values of 8=5.20&0.15 and q=0.056&0.008,4 and we
speculate that the disagreement is due to the appearance
of further singularities such as logarithms in (1.1) and
(1.2).'

In Sec. 3, we indicate how the asymptotic-series
evaluation of P(a) is related to a cluster expansion in
terms of spin correlation functions. From these general
considerations, we turn, in Sec. 4, to the specific
example of the half-plane problem and derive an
approximation to the boundary-spin probability func-
tion for a lattice with a finite number of rows and
columns. This gives us the opportunity to examine
explicitly how the various ways of taking the thermo-
dynamic limit affect the spin probability function.
This derivation makes clear that below T„g(o) con-
sists of two terms, one exponentially smaller than the
other. We examine the analytic continuation past
@=0 of the magnetization of all interior rows to show

goo„~cr2 " ~, (1.2)

where r is the separation between spins and d is the

* Supported in part by National Science Foundation Grant
No. GP-5321.

'B. M. McCoy and T. T. Wu, Phys. Rev. 162, 436 (1967).
This paper will henceforth be referred to as IV.

~ This relation seems to have been first stated by M. E. Fisher,
J. Appl. Phys. 88, 981 (1967). While this manuscript was in
preparation, other derivations have been published by J. Gunton
and M. Buckingham, Phys. Rev. Letters 20, 143 (1968); and
G. Stell, ibid. 20, 533 (1968).' D. S. Gaunt, M. E. Fisher, M. P. Sykes, and J. W. Kssam,
Phys. Rev. Letters 13, 713 (1964).

4 M. E, Fisher and R. J. Burford, Phys. Rev. 156, 583 (1967);
L. Kadanoff et at. , Rev. Mod. Phys. 39, 395 (1967).

~ See also G. Stell (Ref. 2).
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that these two contributions to Q(o) have separate
interpretations; they differ in the direction in which the
bulk spin is pointing. In IV, it was unclear how far the
boundary magnetization would follow its analytic
continuation when e was decreased from oo to nega-
tive values. We are now able to conclude that the
boundary magnetization will follow its analytic con-
tinuation until the bulk magnetization Rips over. The
value of O at which this occurs is the same O at which
the analytic continuation of the magnetization of each
row equals the stable value of the magnetization.

In Sec. 5, we show how a slight modification of
boundary conditions can radically alter the behavior of
Q(o) when

~
o

~
&K&(0). We modify the lattice of IV

by replacing one column of horizontal bonds Ej with
bonds —Ej and find that when the number of rows is
infinite, the boundary spin probability function at
@=0, instead of being bimodal, is essentially constant
for

~

o { &Pti(0). This expected flat distribution is due
to the presence of two domains of opposite spin, one of
whose boundaries is fixed at the position of the mis-

matched bond, while the other may be between any
two columns of the lattice.

We conclude this discussion of boundary eGects in
Sec. 6, with some graphical presentation of numerical
integrations of the boundary magnetization and sus-
ceptibility. These curves are quite useful in supple-
menting the nonanalytic part of the behavior near T,
by explicitly evaluating the integrals in a region where
no compact approximation is available. In particular,
we find that for @NO at T=T, the boundary mag-
netization and susceptibility are quite smooth in ap-
pearance even though the second derivative is infinite.

2. CRITICAL ISOTHERM

Consider any magnetic system interacting with an
external field H. We wish to study the probability
F(o) that, when H=O, the average of the spins which
can interact with the magnetic field is 0. Denote the
relevant spin variable of the jth site by 0, Then, if X
spins interact with H and { —,'Ko

{ is an integer not
larger than —,'X,

F(o) = (&( Z ~—Ko) )
j=l

2K+ cL x
= (2K+a)—' Q (exp{ 2nik'(2K+a) —'( Q o,—Ko)))

2K+6
= (2K+a) 'Z(0) ' g exp[ —2vrik(2K+a) 'Xo)ZL2~ik(2K+a) 'P ')

A: 1

(2.1)

where Z(H) is the partition function of the system, a is where
an arbitrary positive integer, and 5 is the Kronecker b.
If we write and

Z(H) = exp{ —PXF (H) )Z(0), (2.2)

&&= —pLbo+F(4) ) (2.6a)

where F (H) is the part of the free energy that depends
on magnetic field, and convert the sum in (2.1) to an
integral, we have

We may now derive (1.3) by calculating the second
moment of F(o) at T= T, and H=O. If we make the
assumption (1.1) that M E sgn(H) { H {'~o at T= T,
as H—4, then

F(o) = —iP(2~) —'
—iver/p

d& exp{—KPPa+F($)) {.

(2 3)

F(H)~ —Eb(8+1)-' { H {'+'~'

go sgn(o) (E '
)

o. {)',

(2.7)

(2.8)

We may obtain an asymptotic approximation to
(2.3) as K—+oo by the method of steepest descents.
The point of steepest descent is determined from

o= —F'(b) =~(4) (2.4)

On the assumption that F(H) has a sufficiently large
region of analyticity so that we can deform the contour
to the steepest-descent path, we find

~(o) -', PPg((o)/Xn]'" exp(KlV),

F( ) 'd -{.(~+1)E'/(PK))"'""

exp( —
~

x ~'+') dx . (2.10)
(2 5)

)&exp( —
~
x {'+')dx

and, as X—+~,

F(o) constX exp{ —PKE o(6+1) '
{ 8 )'+'). (2.9)

We therefore obtain, as K—+~,
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Wc may( also write, as X-+~,
1 x x

P(a() a'do K ' g Q (g,g(, ).
j=l I.~l

~-sg (H)&(H ("' » IH II"" {21')(2.11)
and

(1.2) that are incorrect. The simplest modification to
make is

Using the form (1.2) for (o;(T~) when the separation
between the spins is large (we may neglect terms
arising from short-range order, since they contribute to
a lower order in K than the terms that we are retain-
ing), we have (on the assumption that g&2), as
+~QO

P(g) g2($(T~c~— P r~ &~—= c ~—&+(2—~&&(( (2 12)

((roa„) cr'-"—&(lnr)-~.

Then, as K~(c, (2.10) is replaced with

(2.17)

P(o) a'da E'[X(lnz) ~'j-"&'+'~ (2.10')

and (2.12) is replaced with

P(o) o'da c'[X'~~(l nm) ~1 '+'+& (2.12')

We equate (2.10) and (2.12) and see that, for the K
dependence of each side to be the same, we must have

—2(8+1)—'= (2—q) d—'—1, (2.13)

from which, besides (2.14), we deduce

A'= dA. (2.18)

which implies
"g= 2d(g+d 2) ' 1—. —— (2.14)

If g) 2, the sum in (2.12) converges and 8 must be
equal to 1.

We must now understand precisely what the forms
(1.1) and (1.2) mean for a finite lattice. Conven-
tionally, T, and critical exponents like 5 and g are
de6ned only in an infinite lattice. Indeed, for a finite
lattice, we know that all thermodynamic functions
must be analytic, because the partition function is the
sum of a finite number of terms. However, it is clear
physically that (1.2) will have meaning for a finite
lattice if we set T= T, of the bulk. If r is much larger
than the separation between sites but much smaller
than the smallest lattice dimension, then (1.2) must
hold with the same g as the exponent in the limit
X~~. If r and X go to ~ proportionally, however,
while we expect some form similar to (1.2) to hold, it
is not necessarily the case that the g so de6ned will be
the same as the g previously obtained. Even if the two
q's are the same, there is every reason to suppose that
the proportionality constant in (1.2) will now acquire
an angular dependence which is determined by the
shape of the lattice'. A similar discussion applies to the
exponent b.

In spite of these ambiguities, let us make the very
plausible assumption that the 8 and q which appear in
(2.14) are equal to the corresponding values for the
in6nite lattice. Using the known value of g= 4 for the
two-dimensional Ising model, we obtain b= j.5, in
excellent agreement with the previous numerical
value' of 15.00&0.02. Moreover, we know from (2.9)
that for the two-dimensional Ising model at T=T,

P((()~const)&exp( —const)&X
(

o ('6). (2.15)

However, for the three-dimensional Ising model, the
numerical estimates4 of 8=5.2&0.15 and q=0.056~
0.008 do not satisfy (2.14). In order to resolve this
discrepancy, we speculate that it is the forms (1.1) and

In doing a numerical calculation of 6 and g, unless
extreme care is used, a logarithm cannot be distin-
guished from a small power Law. Therefore, if we re-
placed ln (H ( with —(H (

' as (H (~ and lnr with
r" as r~~, where e and t." are positive, we would find

an "effective" 8 and g of

8,((=8(1—3A.e) ' (2.19)
and

2—d —rl„,= (2—d—q) (1+Ac') . (2.20)

Here b, fg and g,ff are to be the existing numerical values.
If we assume that e=e', then we 6nd that Ac=0.026,
8=4.78, and g=0.03 are consistent with the existing
values of b,ff and q,ff. There is, however, no reason to
assume that &=c' and we make the natural conjecture
that b= 5 and p= 0, and that the discrepancy between
these values and the existing numerical values comes
from the additional singularities that (1.1) and (1.2)
may possess, of which logarithms are merely one simple

example.
We may slightly generalize (2.14) by assuming that

the magnetic Geld. does not interact with the entire
d-dimensional lattice but only with a d&-dimensional

sublattice. We 6nd in this case

8=max[2dj(9+d —2) '—1, 1j. (2.21)

If we assume that this 8 and g are the inGnite-lattice
values, we 6nd that for a magnetic 6eld interacting with
a row of spins in the interior of a two-dimensional
Ising lattice, the magnetization of the sites interacting
with the field behaves as sgn(H) ( H ("~ at T= T, and
II near zero. This is to be contrasted with the
—@ln ( @ ( behavior of the boundary magnetization
found in IV.

We give an alternative derivation of (2.21) which is
valid for an in6nite lattice by considering the behavior
of the correlation functions for small H at T=T,. If
at T= T, the correlation functions are integrable, M
goes analytically to zero as H goes to zero and 8= I.
We therefore exclude this case and assume that the
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correlation functions are not integrable at T= T. and
H=O. However, even at T= T, when H/0, the cor-
relation functions approach the limiting value of M2 in
an integrable fashion for suKciently large separations.
For values of the separation that are not so large,
however, (ozo.„) is approximated by the nonintegrable
T=T„H=O value. The distance r0 which separates
these two regions depends on H and may be defined in
two separate ways. %e can define the correlation-
length exponent ~ to be H "=r~ such that the correla-
tion function may be expanded as a function of rH"=s
const as r~~ and H 4. I

F—or the case of the boundary
correlation function «=2, see Eq. (8.90) of IU.j By
studying the divergence as H~ of

&= (8—1) (d,—d—„+2)-i8-i (2.23)

Alternatively, we may also define r0' ——H "' as the value
of the separation when the T=T„H=O correlation
function equals the limiting value as r—+00 of the
T= T„HQO correlation function. This gives

cH-"«-2+ ) =Z H21&

y=EH '+'i'= Q ((oeo )—3P)~ Q cr &~ '+"', (2.22)
0

where the sums are over the d~-dimensional subspace
whose spins interact with H, we hand

Here and in the rest of this paper, we follow the nota-
tions of IV. Consider first the evaluation of Ki(@) in a
half-plane lattice of 2K columns at T= T,. In (5.1) of
IV, we wrote down PJ}i(@) when K-+oo by retaining
only the first terms in the Poisson-sum formula

(2&) ' Z~I8—~(2&—1)(2&) 'j

= (27r) ' g (—1)'" exp(2Xnri8). (2.26)

To study the finite-K case, we retain all terms in (2.26)
and write

K, (g ) =z+ (2s.)-'(1—s') ssi

d8 Q (—1)"exp(2zXma) I
1+e" I-'

XLs'zi
I
1+e" I'—zz'

I
1+sic" I'+sz(1 —si') uj '. (2.27)

Ke wish to consider T=T„s small, and AX large.
Then it is straightforward to see that to lowest order in
(z'm)-'

Ki(g))~—7r 'z
I zz I

'L4 ln
I

z I+sz'(2s'X) —'rtr"

(2.28)
so that to lowest order in (@'X) '

so that
Ic'=28 '(d—2+r)) '. (2.25)

e(e)-=~a I
I-

XI 2 lil
I pal Iy —'zz'(2pgl ~) zrtswzj. (2.29)

If we identify s and s', we recover (2.21). This deriva. -

tion is somewhat superior to the previous one because
it deals only with critical exponents of the infinite
lattice. However, the assumption that I(=I(,' is not a
rigorous statement, and furthermore, the argument
cannot be extended to include logarithmic terms.

For the two-dimensional Ising model, if d~
——2,

(2.23) gives «=8/15, while if di ——1, «=8/7. In the
three-dimensional case, if 8=5 and z)=0, then x=8/5.

%e now return to the question of the finite-volume
terms in F(B) and in the correlation functions by
exhibiting these terms for the boundary problen. i.

This leads to

$(&r =constXex & s.) p(l
XIs s. gz(81nIoI) 'Xz(lnIdI) o ~ j (230)

from which it is seen that the additional term does not
contribute to the leading-order K dependence of (&r').

Finally, we improve the calculation of the boundary
spin-spin correlation function Si i(iV, Q) at @=0and
T= T, when K is finite and E may be of the order of X.
Retain all terms in the Poisson-sum formula to obtain
the more accurate version of (8.19) of IV,

(iV ()) s —&(s-& s ) (2~z)
—i df (1-z 1)—&rr

—&L|-I» I+ Q ( j)~(/%~+I&l t.zK~—I»'I) j
F m=1

=
I sz I-'(2K) ' cscQ E I zr(2K)-'g.

If we sum this over all E, we find

~,i(E, O) =2s 'I sz I '1nK+O(1)+(I sz I s) '
N 1

sr/2

d8 (csc8—8 ')

(2.31)

= 2~-'
I s, I-i lnoc+O(1), (2.32)

'In particular, we note the de6nitions z=tanhp@, g=tanhpE;(i=1, 2), n& z, (1 ]zz —[—)/(2+—[ z~ j), and oz ——z~ '(1—
[ zz [)/

(1+ lz I).
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3. MOMENTS OF SPIN
PROBABILITY FUNCTIONS

In Sec. 2, we dealt with questions that could be
studied by use of the leading term in the asymptotic
series expansion of P(o). Befor.e turning to questions
of secondary maxima and the manner in which the
thermodynamic limit is attained for the half-plane
problem, we indicate here for a general lattice how
(2.3) is related to the collection of spin correlation
functions of the lattice. Consider the nth moment of
P(o). By definition,

(o'")=Oi, "P (o-,a,' ~ ~ at), (3.1)

where there are n r's in the product and the sum is over
all lattice sites. If e is odd, this moment vanishes by
symmetry. If n is 2, we note that, in the two-dimen-
sional Ising model with periodic boundary conditions,

lim (ossa, g, )=M',
y'2+ jt;2-s Co

(3 2)

where M is the spontaneous magnetization.
The existence of this limit depends on the boundary

conditions (see Sec. 5) but may be expected to be a
general property of most lattices. In that case, we have
for e even

(3 3)

which means that, as expected, P(o) consists of two

so that the leading-order % dependence coming from
the exact correlation function is the same as would be
obtained had we omitted the terms in (2.31) that vanish
when X is 6xed and X~~.

sharp spikes, one at each of the two values of the
spontaneous magnetization. '

To obtain further information about the structure of
these spikes, we de6ne a new operator

p, =o-,—M (3 4)

and consider a restricted thermal average denoted by
( )&/&, where we average over only those states which
lead to (p, )i/. ——0. Loosely speaking, we are averaging
over the half of the states that have a spontaneous
magnetization of +3f For .this special class of states,
we may systematically define the functions f;,k

~ ~ as
follows:

and

(pip/)i/s= (p')i/s(ps )i/s+'fij =fiji

(p;p~ps)i/s= f,,~,

(3 5)

(3.6)

where the last equation is only valid in a translationally
invariant lattice and the 0(K " ') term is absent if
e= 1. Similarly,

(pipjpIept)i/s=fij fkt+fis fj t+fi t fjs+fijs t (3 7)

The f,, ~ ~ ~ are totally symmetric functions of their
indices and are constructed so that, when any two
indices refer to points widely separated in space,
f,; ~ ~ ~ goes to zero. In terms of these functions, we may
expand the moments of P(p) as a series in K—'. It is a,

simple counting problem to verify that

(p'")i/z=O( '" Z (p p'' 'pt)i/z

= (2n —1) (2rz —3) . ~ 3K—'"( g f; ) "+0(Ol,—"'—')

= (2/z —1) (2/z —3) ~ ~ 3K—"( Q fo/) "+0(X—"—'),

(3 8)

(p'"")i/s=& '" ' Z (p'p/' "pt)i/z

= (2/z+1)2&z(2/z —1) (3!) '(2rz 3) (2rz——5) ~ ~ 3(X ' g f;; ) (X ' gf, ,)" '+0(X " '). (3.9)

The leading terms in (3.8) are the even moments of
a Gaussian of width (K ' g; fo;)'" centered at p=0.
To this order, the odd moments (3.9) are zero. There-
fore, if TAT. (so that g;fo; converges) and o is close
enough to &HE, P(o) is well approximated by a
Gaussian. However, the important question of how
close to 3f one must go before Gaussian behavior is
obtained cannot be answered from this analysis.
Finally, we may make connection with the general
formula (2.3) by remarking that if we make a complete
asymptotic evaluation of the integral in (2.3) and
compute the moments of the resulting P(a) about
+M, we shall obtain exactly the expansions (3.8) and
(3.9).

4. BOUNDARY-SPIN PROBABILITY
AND METASTABLE STATES

In Sec. 6 of IV, we calculated Q(o) in the case
where the number of rows (2OR) of the half-plane was

s That the moments (3.3) uniquely specify P(o) is guaranteed
The Problem of Moments (American Mathematical Society, New

taken to infinity before the number of columns (2&)
was. In this case, we evaluated the leading approxima-
tion to $(a) and noted that we could use this @=0
probability function to calculate the boundary-spin
probability for all @. (We remind the reader that Q
interacts only with the boundary row of spins. ) For

~ @ ~

not too large, the probability function was seen to
be bimodal and we interpreted the secondary maximum
of the probability function as a metastable state.
However, this secondary maximum disappeared when
Kr'(@) =0, and for

~ Q ~
larger than this value, it was

unclear from these considerations if the magnetization
would follow ~04(@) or Kr'(@). In order to resolve
this question of how far the boundary magnetization
will follow its analytic continuation and to study the
eGect of the order 5K—+ followed by X—+~, we shall
compute Q(o; OR, K), the boundary spin probability
function at O=0 for 6nite OR and K. g(o; OR, K) is
still expressed in terms of the partition function by

by a well-known theorem. See J. A. Shohst and J. D. Tsmarkin,
'York, 1943), p. 11.
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(2.1) . From (3.26) of IV we have

(e)/ ()=(-ve)"II IL+=' ('/) &-

yp(I is's c-'n'/ti)+~~stre Inz'-(I+is's c-'V/n') $}, (4.1)

where the product is over the 2OI roots of —1. Using the Poisson-sum formula (2.26), we have

&pg. ,si(e)/Zsa, si(0) = (coshpe)' exp OI(2zr) ' d8 p (—1) exp(2OIzl@) lnL(1+o, psii(p'/n)p) i

X((l—is's 'c 'n'/5)+ '~(b'/ti)'(I+is's, —'c 'n/n'))j . (4.2)

Define

Q(e OR) = —p ' coshpe+ (4zr) ' dtt lnt'(1+a '~(b'/b)p)((1 —is's, 'c 'n'/0)

+~-4'(u'/n)'(1+zs's c-'u/u'))j (4.3)

and define rstc(e) to be that e'p that obeys

(1.—zs'sp 'c 'b'/b)+n-'stc(b'/b)'(I+ zs's 'c '0/b') =0

which approaches the r of IV when BR~~. %e then see from Appendix A that for T(T,
~ . (e)/~, (0)=(1+ ' )I::I+ (0)'"3 ' PI —2'&5(e;oR)[I+ ( ' )j}

(4 4)

(4.5)

From Appendix A we see that 5'(e; OR) has branch
points at e=krm&ep, where I is an integer, ep is
defined by —iep)0 sp=tanhPep, and

s 2 — ~(0)—45KLI ~(0)—40Kj—ls 2gg 2 (4 6)

If we define the cut e plane (Fig. 1) (a) by joining
these branch points pairwise with cuts along the
imaginary e axis such that no branch cut crosses the
real axis and (b) by joining the branch points that
occur for e real (e away from zero) along the real
axis, then in this cut plane Q(e; OR) is analytic and
obeys

5'(e; oR) =g(—e; oR).

5(e; OR) may be continued through this cut to
(e OR), and we find

5'(e; OR) —5:(e;an) = —p-' inrstc. (4.8)

Furthermore, rsa(e) has the same branch cuts on the
imaginary e axis as 5'(e; OR) does, may be continued
through these cuts, and obeys

rstc(e) = rsrz( —e) = rsvp-'(e) (4 9)

With the aid of (4.8) and (4.9) we see that, as expected,
Zsa, sz(e) does not have any branch points on the
imaginary axis. %e consider only the case T&T„where
we may use (4.5) in (2.1) to obtain

g(o; OR, OI)-P(2~i)-' 4 (1+r ' ) Ll+r (0)'~l ' e pI —»&I 8(& OR)+& 3} (4.10)

In writing this, we have omitted the terms of o(ezpzsi) . Therefore terms arising from (4.10) that are smaller than
o(aq'+) must be discarded as meaningless. It is these o(aq'+) terms that at T= T, were discussed in Sec. 2. The
integral is now to be evaluated by steepest descents, where, in contrast to the less accurate expression of Sec. 6 of
IV, (4.10) has two points of steepest descent instead of one. The integrand is analytic on the imaginary axis, so
that we may deform the path to pass slightly to the right of the axis. Using (4.8), we may rewrite (4.10) as the
sum of two integrals:

Q(o;OR, K) =P(2zri) '
sr/P

d( t I+rsg (0)'+$ 'I expL —2KP(5($, OR)+$o) j+expt —2OIP($'($, OR)+$8)j}.(4.11)
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Fro. 1. Cuto plane.

When { o {)Kt(0), the steepest-descent points are
determined from

c =Rt(]t, OR) = —g'((„.OR) (4.12a)

o =Kt'(Ps OR) = —Q" (Ps OR). (4.12b)

When @ is away from zero and OR is large but finite,
Kt(@;OR) and R&'(@;OR), as shown schematically in
Fig. 2, are virtually identical with their BR~~ limits.
Kt(@; OR) has been analyzed in detail in Appendix
3 of IV. Berne the functions

point $t is comparable in magnitude to @o and the
previous evaluation breaks down because higher-order
terms in the asymptotic expansions may no longer be
ignored. For { o {&R&(0), there is still, nominally, a
steepest-descent point on the first sheet of g, but the
rapid variation of g near this point makes the point
unimportant for an asymptotic expansion. In this
region, we must deform the contour of integration of
the first term of (4.11) through the imaginary-axis
branch cuts to give an integral taken solely on the
second sheet of g plus an additional integral whose
path is from —@s to @o once on each sheet (Fig. 3).
Ke may evaluate the integral on the second sheet
and the second integral of (4.11) by steepest descents,
where now both $t and $s () $t { ( ) $s ~) satisfy (4.13b).
As seen from Fig. 2, (4.13b) has three solutions for

{
o.

~ &Rt(0), but the one closest to (=0 must be
discarded. %e thus obtain

% (cr; Oit', X) = L1+ rs/t(O)'st) L (p/r/O(, ) '/2

g LXc ($1)
—I/2 exp (2OiK1)

+pc�($2)

—I /2

)&exp (2cRRs) )+Imp, ~ (o ), (4.16)

and
&t= —P2cr+B(6 OR)) (4.13a)

&s= —PLko+5'(b' OR) ).
Then for } a { )R,(0)

$( OR X) L1+rs/t(0)'R) '-', (P/mm)'"

XQ(f,)—' ' exp(2Olflitt) +x'($s) '" exp(2O(items) ),
(4.14)

FIG. 3. integration paths for Q (o; Btt, St) when }
o'

{& R& (0) .

where where
~=R,'(g; OR) and ~ =R,"(~ OR) (4.15)

/
/

/
/

/

/
/

1~
/

2g,($, 773)

/

/

,
/ c)T/', (g, g)

Fro. 2. FunctionsK~(@; zs) andKg'(h0; sit).

and we have only kept the erst term in the asymptotic
expansion of each integral. When { o

~
is larger than the

value of Rt where Rt=R&', then the second term of
(4.14) is smaller than o(exp(2Ãns) ) and must be
discarded. In (4.14), we may let X and OR tend to
in6nity in any manner that we please and still obtain
the same answer up to a factor wchich is independent
of a.

When o is very close to R&(0), the steepest-descent

Isa, st(cr) =P(2s.) dk (1—rs/t'~) L1+ rmt (0)'~)-'

Xexp{—2'{(o+g(~;OR))}. (4.17)

Only I~,z depends on the order in which the 5R and
K—&co limits are taken. To analyze (4.17), define

h= —i2x@o

=Oils(0) sss{{zs(1+zz)s —(1—z&) )z&L1—a(0) '~)}
(4.18)

In IV, we analyzed the case BR-+ and then %—+~
which corresponds to h =0. For h not to tend to zero
as K and OR~co, K must be exponentially larger than
OR. It is straightforward to evaluate (4.17) when h is
small. This is done in Appendix 3, and we obtain for
X&2'„h«1, and } o } &Rt(0)

~t) (o . OR Ot) ~L (p/s. Ot) 1/2+c($1) -1/2 exp(2~1)
+x (b) '" exp(2~a) )+4K~ (0)

XL1—n (0)~)'/shL1 —srh'o'+ 0(h'o') ) (4 19)

In this expression, there are two diGerent sorts of
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0 dependence: (a) Gaussian tails of magnitude
exp(25MB&) and exp(2KRs) and (b) a polynomial of
magnitude 2Ãe(0) ~.For different ways of taking the
thermodynamic limit, the range of o. in which one term
dominates the other is diBerent. In particular, if
OR=EX and K~ae, Q(o; OR, K) will be a constant for

) 0 ( (o s, where os is determined from

E inn(0)+%i(os) =0. (4.20)

In the opposite limit, h~~, it is convenient to de6ne

h'=2%a(0) —'~=2OLLzs(1+zi)/(1 —zi) j ~. (4.21)

From Appendix 8 we 6nd that for T&T., h'~~, and

[ ~ [ &gn, (o)

$(0"OR, X)~(h'zs/2s)"'(2K) ' exp( —-,'h'0'zs)

+ r
(P//fan) ~ [j('((i) ~s exp(2gggi)+x'((s)

X exp(2fNBs) g. (4.22)

The 6rst term is a Gaussian centered about o.=0 of
width 22h' 'I' and area 1.This is to be expected because
h'~~ means that the number of columns is ex-
ponentially larger than the number of rows, and the
lattice for Gnite BR and SL. looks extremely one-di-
mensional. There is clearly only one maximum in

$(0; OR, K) in this h'~~ case. Therefore a metastable
state can surely not exist when K~~ and then BR~~.
There is a simple physical explanation for this. The
factor (zs(1+zi)/(1 —zi) j is the "boundary-ten-
sion"s free-energy contribution to the partition function
found by Qnsager to arise in the rectangular Ising
lattice when two regions of opposite magnetization
have a boundary in common. This domain wall may
occupy any of the 2X sites on the boundary. %hen h'

is large, the gain in entropy that the lattice obtains by
breaking up into domains outweighs the loss in energy,
so that the lattice breaks up into many small regions
of opposite magnetization, which means that there is no
spontaneous magnetization.

For further interpretation of the meaning of the
several pieces of Q(o; OR, K), we conine ourselves to
the OR~ee (h~) limit where (4.19) applies and the
last term vanishes. As argued in IV, if we begin with a
state in one of the two peaks of Q(o), the system will
surely stay in that state as long as the peak exists as a
separate maximum. When Ri'(@) is zero, however,
we can no longer determine by looking at Q(o; OR, K)
alone whether the magnetization will fall to Ki(@) or
continue to be Ri'(@).To understand what happens,
it is necessary to examine /gal(o), the magnetization
in the Jth row, given by (9.5) of IV as

gpss=+(1 —z') (1—zss)~ '

5 '(1 0 0, 0)i)~+(z '—z)-' 8 '(1, 0; 1, 0)DrT ~ 5 '(1 0; J—1, 0)D~

det
g-'(2, 0; 0, 0)nr 8 '(2, 0; 1, 0)DU+ (zs '—zs) ' ~ g '(2, 0; J—1, 0)D~

(4.23)

g—'(J, 0; 0, 0)i)p g—'(J, 0; 1, 0)iiU ~ ~ g—'(J, O; J—1, 0)nU+(zs '—zs) '

The required inverse matrix elements have been computed in (7.7) of IV. All the matrix elements except the ones
in the first column are analytic functions of @.The matrix elements in the first column are discontinuous at @=0
and may be analytically continued as

5 "(j, 0; 0, 0)g)ri 5 '( j, 0; 0, 0)imari

= (1—z') 'l.&i'(0) —~i(Z)l~(r) ~'

= (1—z')-'L9)l, (y) —9)l,(@))L(1+z,) (zs —z')z~ '(1—zi) '(1—z') q '+'. (424)
Therefore for any J
Kz'(@)—Kg(@)= at K&'(@)—934(,g) j(1—zs')

8 i(1, 0;1,0)Dp ~ ~ 5 '(1, 0; J—1, 0)gyes

det
n(r) ' 5 '(2, 0; 1, 0)g&p+(zs '—zs) ' ~ ~ .5 '(2) 0;J—1, 0)Drr

(4.25)

u(r) ~+' 8 '(J, 0; 1, 0)z U ~ ~ .g '(J 0.J—1, 0)pp+ (zs '—zi) '

' L. Onsager, Phys. Rev. 65, 117 (1944) .
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We do not propose to evaluate this explicitly, but
merely note that, because the determinant is finite for
all @, the value of @, such that Kg'(O, ) =Kg(O, )
is the same for all J. The bulk magnetization can take
on only the values &K (the bulk magnetization of
Yang' ), so that the bulk spin must flip discontinuously
from + to —K at @=@.This situation is pictured
schematically in Fig. 4. Even though the magnetization
in the first J rows may have passed beyond Kz'(,Q) =0,
there are still an infinite number of rows in which the
magnetization has not yet passed Kz'(&&&) =0. From
this viewpoint, there is no reason to single out the
passing of Ki'(@) through zero or the disappearance
of a secondary maximum in $(&r) as the criteria for the
entire system to fall from Kg'(@) to Kq(@) The.
analytic continuation of Kz(Q) will characterize the
entire system as long as for each and every K~(o) the
analytic continuation is possible. For finite J, Kz(@)
is continuable not only beyond @=0,but even beyond

However, K (@) cannot be continued
beyond &@„because we have seen that the bulk
magnetization will be discontinuous at
Therefore, for the system as a whole, continuation
past &@is meaningless and in each row the transition
from Kq' to K~ occurs at the same value of @.

The previous discussion gives a natural interpretation
to each of the first two terms of (4.14) and (4.19) taken
separately. We are really observing a thermodynamic
system which, for some values of @,has not one but two
stable states. The fact that there are two distinct
stable states is reflected in $(o) by the two terms, and
&P(o) is really the sum of two separate probabilities:
the probability that the average boundary spin is cr

and the bulk spin is +M plus the probability that the
average boundary spin is 0. and the bU&& spin is —M.
Each of these probability functions is monomodal and
previous discussions of secondary maxima fail to apply.

5. MISFIT BOND

%e now turn to the question of the inQuence of
boundary conditions on the boundary-spin probability

' C. N. Yang, Phys Rev. 85. , 808 (1952).

= —5&&&(0, 0,' 0 1) (5.2)

Z2 Z2

Z)

Z2

Z1 Z)

Z2
I

Z2 Z2 Z2

Z1

7l -0+l

Z2 Z2 Z2 Z2 Z2 Z2 Z2

Z) Z) -Z)

(b)

FIG. 5. (a) Misfit bond lattice counted by So&. (b) Comparison
lattice counted by P(,.

functions. We study this by looking at the same half-

plane lattice previously considered, but instead of
imposing cyclic boundary conditions by joining the
Kth and the —(%+1)th columns by bonds of energy
Ei, we join them by bonds of energy Ei. —

We shall compute the boundary-spin probability
function &P&i&(o) for this lattice from (2.1). For this

purpose, we need an expression for the partition
function Z(~). The evaluation of the partition function
in the presence of a boundary magnetic field may be
reduced by exactly the same arguments as used in
Sec. 2 of IV to the evaluation of an appropriate
PfaSan as

Z&i& ——-', (2 coshPEi)'~+(coshPE )'~&'~ i& (cosh'@)'~

X&f5&i&, (5.1)

where 5&i& is the matrix whose Pfaflian counts the
lattice of Fig. 5(a). The elements of 5&i& are exactly
the same as those of 5 given in (2.6) of IV, except that
(2.6d) is replaced with

5&&& (0, K; 0, —X+1) = —
5&i& (0, —X+1; 0, K)
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@(»(5 ~».1» ++1) @(» ( j» ')t+1».1» ~)
=5(»( j, 0;2, 1) (5.3)

this same class of diagrams is now

(2X—l) (x'—x -') d+ l (x'—xaa—') d

= 2%x'(1—x'(~—')) d. (5.7)
for i&j&25K.

The matrix 5(» is neither cyclic nor near cyclic, so
we cannot immediately evaluate its Pfai%an. However,
its PfafFian may be evaluated by relating it to the
Pfaflian of the cyclic matrix 5 which counts the
weighted polygons drawn on the lattice of Fig. 5(b).
The elements of I, are the same as those of I(», except
for elements connecting sites in the zeroth row, where
we have

as expected, but also that we have the identity

M fm, /ax I,=—xPfg(». (5.8)

If we sum (S.6) and (5.7) over all possible d, we
reconstitute the PfafIians of 5(» and 5., respectively.
From (5.7) we see that

limPf 5,=0

5 (0 k 0 k+1) = —5,~(0, k+1 0 k)
Therefore

(a'/()x') detK, I~g ——2X' detK(». (5.9)
R L U D

E 0 x 0 0

L 0 0 0 0

U 0 0 0 0

D 0 0 0 0

(5.4)
detn:, = II det8, (P), (5.10)

where the product is over the 2X roots of 1;

(t =~~/x, (5.11)

We may evaluate det5 in a manner analogous to the
evaluation of det5 in Sec. 3 of IV. Since 5, is a cyclic
matrix,

2(2x—l) d—2ld=4(x —l) d. (S.6)

for —K+1&k&K—1, and

21 (0 K 0 —%+1)= —S,r(0, —%+1;0, ~)
=5.(0, 0; 0, 1). (5.5)

When x=1, PfS =0, because for every diagram that
can be drawn on the lattice of Fig. 5(b) there is a
complementary diagram which differs from the original
only in using (omitting) all the bonds in the zeroth row
which are omitted (used) in the original. This comple-
mentary diagram has the same magnitude as the
original one, but opposite sign.

Consider all terms that may appear in the expansion
of Pf5(» that correspond to the diagrams drawn on
Fig. 5(a) that differ (a) only in the two ways in which
the sites in the zeroth row may be connected together
and (b) by translation. If one such diagram has l
bonds in the zeroth row, the complementary diagram
has 2X—l bonds in the zeroth row. Denote the value of
such a diagram when it is in a position where none of the
l zero-row bonds is between K and —%+1 by d. Then
the sum of this class of diagrams is

where n=0, 1, ~ ~ ~, 2X—1; and@, (»t») is the 4(29R+1)X
4(25K+1) matrix defined as in (3.3) of IV, with
t) replaced with»f» and Boo replaced with

0 1+xe'& —1 —1

S.o,o(4) =
—1—xe '&

0
(5 12)

De6ning

and
c.= 2ix sing I

1+xe*'&
I

'

b =(1—x') I1+xeo I--,

0

(5.13a)

(5.13b)

and following the procedure of lV, we find

det@.= IILI1+xe" I'll+s)e" I' det@ (p)7 (5 14)

&~,o(y) = (5.15)

where the elements of 5,(p) are identical with those of
K(e) of (3.8) of IV, except that

b

Now consider the same diagrams drawn on the lattice
—b. c.

of Fig. 5(b) that now contribute to Pf5, . The sum of Evaluating det(I» (p) as in IV, we obtain

det5, = ll I
1—xe'o I'

I
1+s e'o I4~)('~In'L1 —is's 'c '(1—b,'c ') 'n'/t)7

Since
+~—45Kn»oI 1+isos -lc —((1 b oc M) —In/n»7} (5 16)

Q I
1—xe'o I'= (1—x'~)'» (5.17)
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we may use (5.16) and (5.9) to evaluate (5.1) as

ZgP (2 coshPEi) ~(coshPE2) ~&~'& (coshr3@) 4+

& III1+ '"I' ~ 1' II I~'Ll —:''. '(1—&.'. ') '&'/&j

+~ ~n"$1+iz'z 'c--'(1—b 'c -')-'u/b'j} (5 18)

The &=0 term in this last product must be treated separately. For T)2; we have

Zo '= (2 cosh') ~~(coshpa)'~"~ "(coshpo)'~ II I 1+z e'~ I'~P'~ II' I b'(1 —zz'z 'c 'n'/n)

while for T&T,
—sBRg&2(1+ ' 2 -lc—in/n~)) (5 ]9 )

z '=(2 o V~) (»Va)' " "(oVe)' (o) ' III1+ *'I' ~' Il'L '(1— ' -' ' '/)

+~-'s«u" (1+hz'z c-'V/u') ) (5.19b)

where II'~ means to take the product over all p/0 satisfying (5.11) and we have used the facts that for T)T„
t)(0)=1, and as g= -0,

&'(4) ~2ziz2&t I:z2'(1+»)'—(1—»)'j '

while for 2'( T., b'(0) = 1, and as ~0,
n(4,)--2z,z,kLz, (1+zi) - (1-z,) 1 '.

(5.20a)

(5.20b)

To convert (5.19) into an integral, we must reinstate the /=0 term into the product and use the Poisson-sum
formula appropriate to the 2X roots of 1,

2%—1

g S(y ~~/X) =OI~ ig am-"*&. (5.21)

The integrals are then exactly the same as those analyzed in Sec. 2, with the exception of the omission of ( —1)
A completely analogous calculation, therefore, gives for T& T,

Z&»(@)/Z&»(0) = I1+4 '»zL1 n(0)~—~jI (1 zi)2 —st(1+—zi)~j} '~2

X (cosh/@)'+ expI —2XPQ(@;OR) L1+0(nm ' )$} (5.22a)
and for T& T,

Z&» (g) /Z&» (0) = I 1j4z'ziLa(0) ' —1]t'zs'(1+ zi) '—(1—z,)'j-'}—'I'

where
& (cosine)' (1—rs&t'~) I 1—rsK(0)'~y' exp }—2xpg(y OR) L1+0(Exp")$ } (5.22b)

(5.23)

E~p~ession (5.22a) is exactly the same as the partition function above 1, when there is no mis6t bond, with the
exception of the Grst factor. This extra factor is easily interpreted as the decrease ln free energy caused by the
boundary magnetic Geld forcing spins on opposite sides of the misGt seam to point in the same direction. hen
T~T.+, this factor becomes very small, on the order of (2OR) '. This is because very near 2; the correlation
length is very large and the boundary magnetic Geld is able to line spins up across the seam at depths into the
bulk on the order of 2'.

To show that the misfit bonds have destroyed the bimodal character of tI3(o), we consider the OR-+~ limit of
(5.22b) and obtain

limLZ&»(@)/Z&»(0)$= (1—r,'+)
I 4K(z')'&'PJti(0) j ' expI —2XPQ(@)j, (5.24)

where 5'(@) and (z')"' are analytic in the @ plane cut along the entire imaginary @ axis, because we have let
R-+~ and (z') '&' is positive when z is real. Similarly, the @plane in which r is analytic is cut along the imaginary
axis. The second sheet of all of these functions may be obtained by continuing through this cut as we did in (4.8)
and (4.9) for finite OR. If we use those expressions for r' and P in (5.24), we find that, as expected, Z&»(O) does
Dot have a branch cut on the imaginary axis.
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We now use (5.24) in (2.1) to obtain

ix/P

QI,I(o) =p(2Iri)-I d$ (1—r~) { 4K«R&(0)1 I exp{—2&p{ Q(k)+okjI (5.25)

where the integration path has been deformed slightly to the right of the imaginary axis. We evaluate (5.25) by
st;eepest descents, where, as before, the terms of O(1) and O(r'&) have different steepest-descent points and must
be evaluated separately. But once this separation is made, we see that each separate term has a pole at )=0, so
that when the steepest-descent point occurs at negative $, we pick up an extra contribution from this pole. When
o is enough larger than 92&(0) so that the steepest-descent points are away from &=0, we»ve

(o) =LgSIpp (0)]—I(p/5I~)'~'fy((I) 'I' cothp/t exp(2&+r) —X'($s) I~' cothpps exp(2&+s) ), (5.26)

with gt and $s given by (4.12). When 0&
~

o'
~
&Kt(0),

Ill„,(-) = {2Xmh(0) ]-'+[g&9)I (0)3 '(P/~) '"

&&{Z'(]&) 'I' cothp)I exp(2XIIIlr) —&'($,)
—'~' cothp/s exp(2K%2) j (5'2/)

%hen X~~, this expression is dominated by a con-
stant. This flatness of IpIII(o) has an obvious physical
interpretation. When @=0, the —EI bonds force the
lattice to break up into two domains of opposite spin.
One wall between these domains must be the column
of —Ej bonds, but the other wall may be anywhere.
Therefore the surface magnetization is uniformly
distributed between &KI(0), depending on where the
other domain wall may be. This physical picture
applies to the bulk as well, and we expect that the bulk
probability functions as well as Qo& are flat between
+M. To prove this, one needs to consider the behavior
of the correlation functions when the separation
becomes large. For the boundary spin-spin correlation,
it is straightforward to show from IV that for large k

(orsots)-+Rts(K —
i
0 i) /X+0(nsI'I) . (5.28)

For completeness, it remains only to evaluate (5.25)
when o is very close to K&(0). This is easily done in
terms of the complementary error function, and we

I I I I I I I I I I I

obtain

Sir) (o)-L»&t(0) 3 '~ '"
&&Er«{Lo—9)ft(0) 3(&P/x) I"

J (5 29)

0. NUMERICAL CALCULATIONS

The expression for KI(@), (5.1) of IV, is in the form
of an integral which, in general, cannot be expressed in
terms of elementary functions. To obtain a more
complete understanding of the magnetic properties of
the boundary, we have numerically computed 9Rt and

y on an IBM 7044, using a Simpson's-rule integration.
Ke have, in particular, studied these functions near
T„where they fail to be analytic. In IV, we obtained
the behavior of 3R and g near 9=0 and T=T, for
E&&0. It is also necessary, however, to determine the
behavior near T, for E&)0 with @away from zero and
for E&&0. This can easily be done using the devices of
analytic continuation and Pochammer's contour of
Sec. 4 of IV. In this way, we obtain for Er) 0, @ away
from zero, and T~T,

gear(@) =Taylor series in rs

+L«sIr '
I «s I (1 «')res+0(rss)g ln

I rs li (6.1)

where
»= (1—~s)/(1+~s) (6.2)

Xj0

10t'" 9
I I

-2 -1
I I I I . I I

.3 .4 .5 .6 .l .8 .9

Fro. 6. 11/& versusg) for Er=E2 1(ferromagneticl at various——
T/T, The dotted line is the .one-dimensional (E,=l, E2 ——O'I

magnetization at the same temperature as T/T, =1.1.

and the other notations of IV have been recalled in
Ref. 6. For Et&0 and Q arbitrary

Kt(Q) =Taylor series in rs '

+D «, [-I~-I(1—«')«r s+O(r s) g ln
(
r;r ). (6.3)

In both cases, the Taylor series above T, are the same
as those below T,. We clearly see that IiRI and X are
not analytic functions of T at T= T, for @ away from
zero, because the second derivative ~ith respect to T
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h (4.4) ho ld or1 thThis integran isls slngu R

(Al)

' l s, '—(1—s )')(2s2sr(I) (A2)t'/u- —6"(l+ )'—

when
+„(n&/II) 2~—45K 0

olutions nearT (4.4) has no solut

nl solutions to
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near e'
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Using (A2) in (4.4), we find that for rs/t near 1

(rett —1)'-zi 'z2 2Lz22(1+zi) 2—(1—zi) ']
X jz2L1 n (P)

—4stt]+ 1z —in (0)—4211

X [z '(1+z, ) '—(1—zi) ']}, (A3)

so that for @ near Qp

g ) 1 2gP (P) L1 n(0) —40K]1/2(z2 z 2) 1/2 (A4)

The branch points at +@p are square-root branch
points, and in the region near &@the only important
difference between rz/t and r of (5.11) of IV is that
(z')'/' is replaced with (z' —zp')'/'. Equation (4.9) is
obtained immediately by continuing rsvp(@) through
the cut on the imaginary axis.

These considerations show that Q(Q; 5K) of (4.3) is
an analytic function of @ in the cut @plane, is real for

@ real, and is an even function of @. To obtain the
analytic continuation of g (@; OR), first consider
0&@&

~ Qp I When we continue O around @p, rett(Q) ~
rett'(@) = rstt '(@), and the contour of integration is
deformed as in Fig. 11. Therefore, with t = e'4,

around the logarithmic branch cut from rs/t(g)) to
rett(0) and neglect the contributions from the other
branch cuts (for 222&0, first send e~—8). Then

(22r) 1 df) L"—exp(2+ie) ]m lnI $1+n 4s/t(i2'/1)) 2]—1

Xr (i—iz'z2—'c '1/'/n)+n 4s/t(t/'/)2)2(1+izrz2 —'c 'n/n')]}

( 1)m(2~
[

222 [)
—lfr~(0) 2K]m] r~2K[m[]

+O(exp( —X
~

m
~

n2-') ). (A6)
Using

( 1)m(22/2~) —1g2Km — (2~)—1 ln(1+g2X) (A7)
m=1

we obtain (4.10).
APPENDIX 8

To derive approximations to Isa, st of (4.17), we use
the fact that, because

) $ [ & ) @p [ 0, we have
) rett(P) ( & ( rstt(0) )

and may approximate

t)($;3R)-lP '1 t: / (o)]+o(8) (81)
to obtain

Iptr, zt(o) P(22ri)
—'

d& ( rett-~ —rs1t~)

Xln{$1+n-4s/t(t/'/n)2]-'L(1 —izrz c-in'/n)

+n 4S/t(n~/n)2(1+iZ2Z ic in/n~)]}

—1p-1 df'(' '= —P ' 1nrsit.

(A5)

This result may be analytically continued to all O and
establishes (4.8) .

These considerations suSce to understand the m=o
term in (4.2). To analyze the contribution for 222) 0 at
T&T„ it is sufhcient to deform the contour to go

—Co

XLrstt(0)-~+ rett(0) ~]—' exp( —2KPo). (82)
When h«1, we may change variables to l =$/@p and
use (A4) to obtain

Isa,st(o) 12K1(0)L1—n(0) '~]'/2

X (22r)-1 dt. (1 i2)1/2 exp(j/g/rf )

=-',g)li(0) $1—n(0) '~]'"/r 'Ji(ho), (83)
where J~ is the Bessel function of the first kind. From
this we obtain (4.19).

In the opposite limit, h' —+~, X is so much larger than
5R that rett(0) + 0 and, except for &= Op, rsr/ +—rs/t+

t~ . %e may therefore approximate I~,~ by

Isgst(o) P, (22ri) 'd&—

XLrsp, (0)/rsg]~ exp( —2Xo/3P), (84)
where e is some small real number less than

~ @p ~. We
may now approximate rsK(@) by (A4), change vari-
ables as'before, and obtain

gtI, ( )-P8o(2 ') ' d( L1—9)t (0)M'0 ]

I'7n(0) rm Tm

(c)

Pio. 11. Integration contour for (a) 6 (Q, sr&), (b) P(@sit),
and (c) 5."(Q, mt) —5(Q, sIt) in the e"=I' plane. Only cute at
g~ and ggg(0) are shown. The definition of the imaginary part
of the logarithm is shown.

Xexp( —2X@poPf ) . (85)
Using the fact that for T& T„h'/2%«1, this expression

may be approximated as

Iptt St(41)~p@p(22ri)-' d( expt' —X2h'921(0) 2Z2f'2]

Xexpt' iz2I2'981(0—) of'], (86)
from which we obtain (4.22).


