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The method of double-time temperature-dependent Green functions is combined with results from
equilibrium molecular-field theory in order to study magnetic resonance in a Heisenberg two-sublattice
antiterromagnet with spin value S per site, having isotropic exchange interactions (both inter- and intra-
sublattice) of essentially arbitrary range, and having uniaxial crystal-6eld single-ion-type anisotropy.
Expressions found for the transverse resonance susceptibility are examined at the absolute zero of tem-
perature and, by series expansion, at temperatures closely surrounding the Neel transition temperature T&.
The rutile crystal-structure ferrous Quoride (FeF~) is used as an example of application. Besides being in
reasonable agreement with results found from previous spin-wave and macroscopic theories, the present
results oBer some supplementary features (e.g., thermal behaviors of absorption amplitudes) for resonance
phenomena in Heisenberg antiferromagnetism.

INTRODUCTION

r 1HE theory of antiferromagnetic resonance (AFMR)..has been studied by various authors, ' 8 one of the
more recent methods being that of double-time temper-
ature-dependent Green functions' applied to the
problem by P'u Fu-ch'o" and by Anderson and Callen. "
The spin systems studied by P'u Fu-ch'o and by
Anderson and Callen are two-sublattice Heisenberg
models having isotropic antiferromagnetic exchange
interactions between spins on diferent sublattices and
having uniaxial anisotropy. The uniaxial anisotropy
terms used by these authors diGer in that Anderson
and Callen use a crystal-field single-ion type, while
P'u Fu-ch'o considers a form containing the squares of
sublattice magnetization operators. Besides using
diQ'erent decoupling approximations for the equations
of motion for the Green functions, the AFMR results
of P'u Fu-ch'o are actually more appropriate for the
case of spin 5=-,' (owing to the use of Pauli spin
operators) while Anderson and Callen consider, in
regard to AFMR, the temperature dependence of the
external magnetic 6eld required to bring the spin
system k=0 antiferromagnetic spin-wave modes into
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resonance with a specified signal frequency co incorpor-
ating into their study spin-wave renormalization effects.

In order to further investigate physical features of
the magnetic resonance problem, the present paper
combines the Green-function method with results from
equilibrium molecular-6eld theory to treat spin systems
having isotropic exchange interactions and crystal-
field-type anisotropy. More speci6cally, the present
Hamiltonian is taken to be that for a two-sublattice
Heisenberg model with arbitrary spin value S per site,
having strortg isotropic amtiferrorrtagnetic exchange
interactions between spins on digerertt sublattices in
addition to weak isotropic (either ferromagnetic or
antiferromagnetic) exchange interactions between spins
on the same sublattice, and where the system is taken to
have uniaxial crystal-deld single-ion-type anisotropy.
The ranges for the exchange interactions are taken as
arbitrary only to the extent that the ordered state
should have a preferred antiferromagnetic spin con-
figuration. In the absence of a uniform, static external
magnetic 6eld H, the present method is used to find

first-approximation AFMR results for circularly polar-
ized radiation which are examined as functions of
temperature and are numerically compared with FeF~
experimental data at the absolute zero of temperature.
In the presence of the external magnetic field H
(applied along the axis of anisotropy), the resonance
susceptibility results obtained are examined by series
expansion for temperatures close to the Neel transition
temperature T~.

These results are in reasonable agreement with spin-
wave theory'~" and offer some interpretation for
results derived by macroscopic theories. ' 3 Because of
the form of the Hamiltonian and the fact that earliest-
stage "Tyablikov" decoupling approximations are
entered into the hierarchy for the equations of motion
for the Green functions along with molecular-6eld-type
expressions, the results found are necessarily incomplete
and only suggestive of a more correct treatment.
For example, since relaxation and other irreversible
e6ects have not been incorporated into the study
because of the form of the Hamiltonian, the resulting
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J;,=J;;&0, ! Q J'; I» I Z J' !,

and
J;;=J; =0.

(2)

In (2), the 6rst two expressions simply state, respec-
tively, the existence of symmetric antiferromagnetic
exchange coupling between spins situated on different
sublattices and symmetric exchange coupling between
spins on the same sublattice, while the last inequality
states that the inter-sublattice antiferromagnetic
coupling of any spin with the environment is much
stronger than the intra-sublattice coupling of the same
spin with the environment. The Hamiltonian (1.) may

» Later in the paper, the ranges of interaction appropriate for
ferrous Quoride (FeFs) will be entered as an example of applica-
tion for the method.

expressions for the absorption-line pro61es o6'er no
linewidth (dissipation) information but rather show
approximate thermal behaviors of the line locations and
amplitudes. However, these results show some features
(e.g., the latter amplitude information) not found in
renormalized spin-wave" and macroscopic theories' 3

of resonance susceptibility.

HEISENBERG SPIN-SYSTEM HAMILTONIAN

Consider a two-identical sublattice Heisenberg-
model spin system with spin value 5 per site, having
strong isotropic antiferromagnetic exchange inter-
actions between spins situated on different sublattices
in addition to weak isotropic (ferromagnetic or anti-
ferromagnetic) exchange interactions between spins
on the same sublattice, and having uniaxial crystal-
6eld single-ion-type anisotropy. It is assumed, for the
present, " that the exchange interactions are arbitrary
in range only to the extent that the strong antiferro-
magnetic couplings offer a preferred spin con6guration
for the ordered state such that one sublattice may be
termed the "up" sublattice and the other the "down"
sublattice, where each is sublattice translationally in-
variant. Placing a uniform, static external magnetic
6eld along the axis of anisotropy (taken as the s axis),
the system Hamiltonian is given by

X= gtIpB Q Sr,——Q J;,8„,. Sp,
f ai Pg

—g J;'8. S.—QJ 'Sp. Sp
as, ag Pi,Pg

-~(ZS.:+ZS:), (1)
a P

where the 8 operators are localized spin angular-
momentum operators, where n, P sites are sites on the
up and down sublattices, respectively, where g, p&,
and D are the splitting factor, Bohr magneton, and
anisotropy constant, respectively, and where the
following relations are assumed for the exchange
constants:

be rewritten as

X= g—traB P Sr.—Z J;Zk(S.,+Sp +S., S—
p, +).

as, Pg

+S,,Sp, ,]—g Jg'(S,.
—S,.++S,,S,,)

ai,aj
—Q J; (Sp, S.p,++Sp, .Sp,.)

-D(ZS.:+ZSp. ), (3)

where, as usual, S+=—S,&iS„and where use was made
of the facts that J;;=J; =0 and spin operators associ-
ated with different lattice sites commute.

EQUATIONS OF MOTION FOR THE
GREEN FUNCTIONS

The double-time temperature-dependent retarded
Green function may be deGned as"

((A (t); B(t') ) ).=——ie(t —t') (LA «), B(t') ) ), (4a)

where

A(t) =exp(iXt)A exp( —iXt),

B(t) —=exp(iXt) B exp( —iXt) (4b)

are the time-shifted Heisenberg operators corresponding
to the mechanical variables A and 8, respectively,
where

LA (t), B(t'))—=A (t) B(t') —B(t')A (t) (4c)

is the commutator operator, where (~ ~ ~ ) designates
the canonical ensemble average

(~ ~ )—=Z—' Tr[ ~ ~ exp( —X/kT) ), (4d)

Z being the canonical partition function, k the Boltz-
mann constant, T the absolute temperature, and where

tl(t —t') —= 1,

(4e)

Since one may show, using (4) and the cyclic property
of the trace, that the temporal behavior of the re-
tarded Green function (4a) depends only on the time
difference (t—t'), the temporal Fourier transform of
the retarded Green function may be dined as

((A; B)),, E= (2x-) ' exp(iver) ((A (0);B(r) ))„dr

As shown in Ref. (9), the equation of motion for

((A; B))„,s is given by

&«A'B)).,~=(2w) '(LA B))+((LA X)'B))..~ (6)

Since the right side of (6) contains higher-order Green
functions, one obtains a hierarchy for the equations of

'3 The double-time temperature-dependent advanced and causal
Green functions can be defined in a similar manner as may be
found in Ref. 9. The present paper, however, only considers the
retarded Green function. Also, h=1 @rill be assumed.
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motion which, in practice, must be decoupled by
introducing some approximations in order to close the
system of equations. This paper considers only the
most simple "Tyablikov" decoupling approximations,
which will be discussed shortly.

For the resonance problem under investigation, it
will be seen later that equilibrium time correlations are
needed only between transverse spin components,
which therefore implies the calculation of the following
Green functions:

&(s„+;s„-))„., &(s.;;s.;»„.,
&(s.+; s;&)„., &(s,+; s.-))„.

For notational simplicity, the subscript r henceforth will
be understood but omitted.

First, then, consider the equation of motion for
((Ss,+, Sp, ))g.
&&(s +;s, )) =(2 ) '(Ls ', s, ])

y((LS„+,x];s„-)) . (g)

Using the spin commutation relations

Lst4+, Sp,.j=—Sp, +Bp, p, , t.ss, Sp,.,g= Sp,. bp,.p, ,
P's+ S~ ]=2S~;A~;

where bp,.p, is the Kronecker delta symbol, and the
commutator property

La, acj=Le, ~jc+ap. , cj, (10)
the equation of motion (8) becomes, upon substituting
the Hamiltonian (3),
~((s ' s )) — '(s *)~ ~

= &((s" s ))
—Z J; (&S..'S,.; S;)&.

as

+ g J,,(&s.„s„+;s„-))
—2 Z J'~'((St''Sm. Str &)'x

+2 Z J*'((S;*S '.S
p4

+D«Ss,+S~,.; S~;&&.+~((Ss,.Ss;; S~;&)- (»)

In (11), the following Tyablikov decoupling ap-
proximations will be used:

((S- S~*'St )&~=(St )((S- 'Ss ))~, (12a)

&(S-;.S +'S )) =(S-)(&S +'S. )), (12b)

(&S S *; S )) =(S *&(&S;+;S )), (12c)

«Sp;.S8', Sp. )4=(S~ )(&Ss', Sp. ))% (12d)

&(
" .; . )) =

& .)((S '; )), ( )

((S ~ ' S )) = (S *)(&S "' S )) (12f)

The approximations (12a)—(12d) enter (11) within
the exchange terms and may be interpreted (since
J,;=J; =0) as neglecting correlations between the
longitudinal and transverse spin components of spins
on diferent sites. However, the approximations (12e),
(12f) enter (11) through the anisotropy terms and
their physical interpretations are not as appealing in
the sense that here one is neglecting correlations
between the longitudinal and transverse components of
the same spin. This "breaking" of spins in the anisot-
ropy terms is known to give spurious anisotropy
eBects particularly noticeable for spin S=—'„ in which
case the crystal-Geld terms appearing in the Hamil-
tonian (1) should actually offer no anisotropy since
S,2=4. Discussion and derivations of more proper
decouplings for the anisotropy terms are given by
Lines'4 for the case having no external magnetic 6eld H
and small anisotropy. However, since the simple
decoupling approximations (12) will be used in the
present paper, one should interpret the results care-
fully, e.g., the results are taken as qualitatively correct
only for large S spin values, as will be further discussed
and compared with data for ferrous fluoride FeF2(S= 2)
later in the paper.

Substituting (12) into (11) gives

(&—
g &—J(0) (S-)—2(J'(0)+D)(s.)j(&s +' S &)

— '&S *)&

&St.) 2— J~(( S+; Sp* ))~ 2&So*) Z—J'~'&&Sp+; Sp, ))~, (13a)

where

J(0)—= Q J,g, J'(0) =—Q J,)'.
as

(13b)

Since the two-identical sublattices were each assumed to be sublattice translationally invariant, one may in-
troduce sublattice Fourier transforms and their corresponding inverses, respectively, as follows:

Sq+= (2jÃ)"' g exp(+ik r~) Ss+, Ss+= (2/S)'" P exp(Wik rs) S~+, (14)

where E is the total number of Heisenberg spins, rtt is the position vector of a site on the P sublattice, and k is
any wave vector in the corresponding reciprocal sublattice erst Brillouin zone. Similar transforms and correspond-
ing inverse expressions are also understood for the 0. sublattic.

"M. E. Lines, Phys. Rev. 155, 534 (1967).
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Using sublattice Fourier transformations of type (14) and similar, (13a) gives

-'&s, )—J(k) (s,,)(&s+; s —)) '»
Sk ask z E gy

—H J(—o& &S..)+2(J'(k) J—'(o& D—)&S'p )
'

where

( 15a)

(15c)

(16)

(17a)

(&S";S. ))z"'==Z ((Sp; Sp ))«xp[ik. (rp; —rp )] (15b)
Pi

«s, ; s;)).r-p&=—g «s., ; s,,-»...,l
k. (,, —;,)],

ui

J(k) —= g J;, exp[ik (rp, —r,.)]," J'(k) =—g J,,' exp[ik (rp, .—rp, )]." (15d)
Pg' Pj

By similar calculations of introducing earliest stage Tyablikov approximations followed by sublattice Fourier
transformations, the equation of motion (6) for ((S +; Sp )) gives

J(k) &s.,)(&s+; s —)) '»

E gpzH —J(0) (S—p, )+ 2 (J'(k) —J'(0) —D)(S,)
where ((Sk+; Sk ))zrp&, ((Sk+; Sk ))zr», and J'(k) and J'(k) are given again by (15b), (15c), and (15d), re-
spectively.

From the symmetry of the Hamiltonian (3), similar results given by the equations of motion for ((Sk+; Sk ))zr ~

and ((Sk+; Sk ))zrp & may be found from (15) and (16), respectively, by simply interchanging a and p, namely,

vr '(S.,)—J(k) (S.,)((sk+; Sk ))z'P'
E gpzH J—(0) (Sp,—)+2(J'(k) —J'(0) —D)(s.,) '

where

J(k) (s )((s+; s
E gpzH J(0) (—S,)+2—(J'(k) —J'(0) D) (Sp.)— (17b)

((Sk+, Sk ))z"—= Q ((S.,+; S., ))z exp[ik ', r., —r.,)],
ai

((Sk+; Sk ))zrP &=—g ((Sp,.+; S,. ) )z exp[ik (rp,.—r,.) ],
Pi

J(k) = g J;,. exp[ik (r., rp, )], — .

ai

Solving (15a) and (16) simultaneously gives

J'(k) = g J;,' exp[ik (r,.—r„,.)].

7r '(Sp, )[E gyzH J(0) (Sp.)+—2 (J'(k)——J'(0) —D) (S.,)]
l [E gpzH J(0) (Sp,)+2—(J'( k)——J' (0) —D)(S,)]

&& LE gJ zH —J(o) (S—-)+2(J'(k) —J'(o) —D) (S")]—[J(k))'(S-)&Sp ) l

and

and

((S";S. ))z"'=— 'J(k) (S-*)&S.)
l [E—gIJzH —J(0) (Sp, )+2(J'(k) —J'(0) —D)(s .)]
X [E gI H J(0) (S., )+2—(J'(k) ——J'(0) —D)(s,)]—[J(k)]'(S,)(S,) l

Similarly, (17a) and (17b), solved simultaneously, give

7r '(S .)[E gIJzH J(0) (S .)+—2(J'(k—) —J'(0) —D)(sp. )]
l [E gpzH J(0) (Sp, )+2—(J'(k) ——J'(0) —D) (S,)]

~[E-g"H-J(0& &S..&+2(J (k) -J (0)-»&S..»-[J(k» (S..&&Sp.&l

(17c)

(17d)

(17e)

(18a)

(18b)

(19a)

((S+ S —)) (P )= ~ 'J(k) (S., )(sp.)
(19b)

l LE—
g H —J(o) (S *)+2(J'(k)—J'(0) —D) (S-*)]

XLE g»H J(o) (S-.)+—2(J'(k—) —J'(o)—D) &Sp*)]—LJ(k)]'(S-*)(Sp.) l

where, as again expected from synmxetry, (18) and (19) may be found from one another by interchanging a and P,
1.e.)

((Sk+; sk ))z" ~ ((sk+; 5'k ))z ', ((S";S.-)&' =«S";S.-))'- (20&

"One notices that the notations introduced in (15d) are consistent with those previously introduced in (134).
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RESONANCE-SUSCEPTIBILITY EXPRESSIONS

One now considers the case where the perturbing
Hamiltonian 3.'i is due to a uniform rotating magnetic
field H& at right angles to the uniform steady magnetic
field H. Specifically, one chooses the static leld I in
the negative s direction and the circularly polarized
field H~ to have components

W =XseHi2x" (ie) . (24)

Considering the perturbation to be switched on
adiabatically, (22a) may be written

K = P e~~e ~'V (25)(e)0, e—+0).

5', the energy absorbed by the spin system from the
circular 6eld per unit time, is given by

HI =Hi cosset, Hip= —Hi sincef, Hil= 0, (21)

Xi— gpeHi Q (Sf coRA Sf single/)
f

Ve—ku t+ V8eicu t (22a)

whereupon the perturbing Hamiltonian X& is then given
by

Under the inhuence of such a perturbation L(25)),
there exists a direct connection' between the linear
steady-state response of a system observable, 8(A&,
and the temporal Fourier transforms of appropriate
retarded Green functions, namely,

where b(A) = 2s Q e"e-'"'((A; V„))e=.p;. (e)0, e-+0).
V—= ~gpeHi Q—Sy, V —= ~gpeHi Q—Sf+. (22b)

f f
Letting 8& ~ ) designate the deviation of an observ- For the case in hand, (26) may be written, using (22a),

able from its equilibrium value due to the action of a
perturbation, the linear complex magnetic suscepti-
bility per spin x+(c0) is defined by 8(M+) =2m Q e"e— '((M~; V„))z=~+;,

where
b(M+) —=Xx~ (~)H,e+"',

%~=M,&i&,=gps Q Sg+,
f

xg(~) —=x'(~) ~ix"(~),

(23a)

(23b)

=2m e"(e '"((M+, V)&e ~,.
ye- ((m„v'&) = „„,)

(23c) Comparing (27) and (23a) gives

(c)0, a~0) . (27)

x'(co), x"(co) being called the magnetic dispersion and
absorption factor, respectively. The fact that (23a)
agrees with other essentially equivalent expressions in
the literature for x+(ie) may be seen by verifying that

XHix+(ce) =2m. ((M+, V&)g „p,, (e&0, e~0), (28)

where the factor e" has been taken as unity. Sub-
stituting (22b) and (23b) into (28), one obtains

x, ( ) = — (g& ) L g ((S.,+; S.,-) & + g ((S., ; S,,-)) + g ((S,,+; S.,-&)+ P ((S,, ; S,,-)) $
ai

(c)0, e~0) . (29)
Using (15b), (15c) and (17c), (1M), (29) may be written as

x+(~) = — (gi.) L((S,+; S;&&ei-~+(&S,+; S;))e«&+ &(S,+; S;&)sic-&+((S,+; S;&&e«&7,=.,e=„„,

(e)0, e—+0). (30)

Evaluating (18) and (19) at it= 0 and substituting the resulting expressions into (30) gives

x+(~) = —(g~e)'P (&)/(~ —~i) (&—~2) j le-+'. (e&0, ~~0),

where the numerator expression is given by

&(&)= (& gH) (&S-&+(S .—)) —~—(0) ((S-)'+(S .&') —2(J (0)+2D) &S-& (S .)

(31a)

(31b)

and where the roots of the denominator are calculated to be

a»,2—=gp&H+2(J(0)+2D)((S«&+(Se, &)a2L(J(0) —2D)'((S~, &+(Se,))'+16D(J(0)—D)(S~,&(Seg)] (31c)

'Hy the method of:partial fractions, (31a) can be written

x+( ) = —L(g~ )'!( — ) j&(&)L(&— ) '—(&— ) 'g
I

—+'. ( )0, ~ 0) . (32)
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Using the symbolic identity

lim (a+is)-'=P(1/x) Wish(x),
6~0, (e&0)

The thermal behaviors of the resonance-susceptibility
expressions (34) will be examined and discussed shortly.

(33)
SUBLATTICE MAGNETIZATION EXPRESSIONS

, E(tu) 1 1
x'(~) = —(g») '

—2
(34a)

X(cog) E(s)s)X"(te) = (g»)'s. , b((a cot) —— 8((o—sos)

(34b)

where I' denotes the principal part and b(x) is the
Dirac b function, (32) gives, upon separating real and
imaginary parts, the magnetic dispersion and ab-
sorption factor, respectively, as

If the eqslilibrilrN quantities (S,}, (Sp,) are now
calculated and substituted into (34), the resonance
susceptibility may be analyzed within this approxima-
tion for all values of temperature and magnetic Geld
H. In the present paper, however, these equilibrium
quantities will be calculated (by series expansion)
only for certain ranges of temperature and magnetic
Geld H using molecular-Geld theory. "In order to make
the paper self-contained, the relevant parts of these
molecular-Geld calculations will be outlined.

The molecular-Geld-approximation single-spin den-
sity operators for an n or P site are given, respec-
tively, by

exp{L(g»&+J'(0) (5.,)+J(0) (Sp,))5,+DS s'j//kT }
T""p{L(g»&+J(0) (5-)+J(0) (Sp*))5-+DS-'j/kT} ' (35a)

exp{L(g»H+ J'(0) (Sp,)+J(0) (5,) )Sp,+DSp,')/kT }

Tr exp{ ((gp, H+J'(0) (Sp,)+J(0) (5,))Sp,+DS.,'j/kT}
35b)

Having chosen the n sublattice as the up sublattice, one now introduces the following equilibrium assnrnption:

&. )=&. &s+A&u. &, (36a)

& p.&= —&~-*&s+&&~.&, (36b)

where p is the magnetic-moment operator of a spin, (p,)s)0 is the ts sublattice sPontaeeous magnetization per
spin and, having previously chosen the applied 6eld H in the negative s direction, 6&p,)(0 is the ieduced magneti-
zation per spin of either sublattice due to the Geld H. Since p will be considered as due to electron spin S,

Using (37), (36) becomes

where

gpgg (0.

(5..) = (5..).+A&5.&,

&5.&=- &5..).+A&5.&,

&5,&s(0, A(5„&)0.

(37)

(38a)

(38b)

(38c)

Substituting (38a) and (38b) into (35a), gives

expf {Lg»a+ (J'(0)+J(0) )A&5,&+(J'(0) J(O) )(—5.,) jS.,+ DS., }/kT1
Tr exp[{Lg»H+ (J'(0) +J(0) )h(5, )+ (J'(0) —J(0) )(S,)pgS, +DS .'}/kT ]

Considering small H and linear response, one may take

[g»H+ (J'(0) +J(0) )h&5,)$/kT((1
and expand (39) to give

p"'(~) =p "'(~) {1+(kT) 'Lg»&+ (J'(0)+J(o) )~(5*)j(5-*—(5-)s) }+o(&')
where

(39)

(40)

(41a)

e p{L(J'(0) —J(O) )&5..&,5.,+DS..'j/kT}
Tr exp{ { (J'(0) —J(0) )(5„,),5,+DS,'j/kT}

is the n-site molecular-Geld-approximation single-spin density operator in the absence of the external Geld H.
Using (41b), the spontaneous quantity (5,)s introduced in (38) may be found in lowest-order approximation

from
(5 .)s——TrS .ps&" (o.). (42)

"Similar molecular-6eid-type calculations may be found in Ref. 8; also see A. Honma, , J. Phys. Soc. Japan 15, 456 (1960).
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Also, using (41) and (42), one is able to calculate a lowest-order approximation expression for (S,), since

(44)

(S,)=Trs, po& (n)
=(s.,),+(kT) Lgpsa+(J'(o)+J(o))a&s. &jLTr(s-*'po"'( ))—&s-)p'3. (43)

Comparing (43) and (38a), one finds the expression for the induced quantity 6(s,) to be

T.(s..„())-&s..);
kT—(J'(0)+J(o) )LT (s-'po"'( ) )—(s.*& 'j

The remainder of this section centers upon calculations for the equilibrium expressions (42) and (44) . Although
numerical calculations of (42) and (44) can be obtained for all temperatures using a computer, explicit calculations
(using series expansion) will be made in this paper only for

l (S.,)p l ((1, i.e., for temperatures above or slightly
below the Keel transition temperature T~ deGned as the temperature at and above which the sublattice spon-
taneous magnetization (S,)p disappears. Considering then

l (S,)p l «1, (41b) may be expanded to give

(1+b(s.,)pS.,+ (1/2!)b'(S.,)pPS.P+ (1/3!)b'(S, )pPS.,'+" ) exp(as P)
Trl (1+b(S,)pS,+(1/2!)b'(S, )pPS, +(1/3!)b'(S,)p'S, '+ ~ ) exp(aS .)j '

where

Substituting (45a) into (42) gives

a—=D/kT, b= (J'(0) ——J(0) )/kT. (45b)

&s.,),=T.s.. . ( )

=b —(s.,), 1+ b —, (s.,);+.((s.,),'),tnt m4 SSQ

~0 3i~ 2 Imp
(46)

—w] —m3 m5—0—
)

mp= Tr exp(as. .2), mp Bmp/Ba-—,
m4 ——8'mp/Ba',

Neglecting terms o((S,)p'), (46) gives

(S &2
g(T)

b'(mp/2!mp /m34!m—p)
'

where the numerator is deGned as

(47b)

(48a)

g (T) —= 1—b-'(mp/mp) . (48b)

The Neel transition temperature T~ is found in this
approximation by setting (48b) equal to zero, which
gives

kT&(~/~), „=J'(O) —J(O), (49)
where (45b) has been used. As is known in molecular-
Geld-type theories, the solution of the transcendental
equation (49) will locate Tz higher than actual ex-
perimental values.

For temperatures slightly below TN, one may expand
the right-hand side of (48a) with respect to T~ and
conclude, upon using (49), that

8g/BT
&S-)p=,

, ~

(TN —T) '"
b'(m4/3!mp —mp/2!mp) r r„

for T slightly below T~

for T& T~ (50)=0]

where

m„—=TrLS,"exp(aS, ') g, u=o, 1, 2, ~ ~ ~ (47a)

and where these m„quantities may, when desired, be
evaluated from

where the critical index 2 is the usual molecular-Geld
value, again higher than actual experimental values.

In order to calculate 5(s,& in this approximation,
one substitutes (45) into (44) and finds, upon using
(4/) and (50), that, for HWO, h(s. ) has a maximum
at T=T~ and varies from this maximum value as
l
T T&

l
for te—mperatures closely surrounding T~,

c.e.,

A(S, )= gl4sa!,PkT~(mp/m2) r, (J'(0) +J(.—0) )] '

+o(I T—T~ l) I

= Lglt4slf/2 I J(0) I jE1+0(l T Tx l) j, —

for T near T~ (51)

where (49) was used to obtain the final form (51)
which shows the maximum value to be independent of
both the crystal-Geld anisotropy constant D and the
intrasublat tice exchange quantity J'(0) . The fact
that (S,)p vanishes while 6&s,& is nonvanishing at
T= TN will be used to characterize a so-called transi-
tion region in the following section.

ANALYSES OF RESONANCE-SUSCEPTIBILITY
EXPRESSIONS

One may now combine the results of the previous
two sections to analyze the resonance susceptibility for
certain ranges of temperature in both the absence and.
presence of the external magnetic Geld H. Substituting
(38) into (31b) and (31c) gives, respectively,

X(E) =2(E g14sB) A(s,)—4(J(0—)+D)(h&S, &)'

+4D(S,)pP (52)
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or~,p=g»H+ (J(0)+2D)6(s,&

+LJ(0)P(h(s )}'—4D(J(0) D—)(S )pPj'" (53)

First, consider the situation where the external
magnetic Geld H=O. Then (52) and (53) give, re-
spectively,

and
iV(Z) =4D(S.,), (54)

s=—8, s'= 2
7 (57)

where (i, j) is a next-nearest-neighbor pair having
antiferromagnetic exchange coupling, where (i, I) is a
nearest-neighbor pair having much weaker exchange
coupling whose sign has not at present been clearly
established, and because of the fact that FeF2 has a
body-centered tetragonal structure, it is found that
there exist, for each spin, s=8 next-nearest-neighbor
antiferromagnetically coupled spins and s'= 2 nearest-
neighbor coupled spins (the latter along the c axis of the
rutile crystal structure). From (55), the value of the
resonance frequency in the absence of the external field
H and at T=opK may be calculated, using (13b) and
the FeFp da, ta (57), to be

v~63 cm ' (58)

having taken
I (S~,)p I

=2 by neglecting any zero-
point motion. The value given by (58) compares
reasonably well with the experimental AFMR value"
52.7~0.2 cm '. The discrepancy can chiefly be traced
in this case to the earlier Green-function decoupling
used in the anisotropy terms, since (55) is the same
expression as derived by Lines using spin-wave
theory, aside from a factor (2S—1)/2S always multi-
plying D in his expression. One sees, therefore, that at
low temperatures, the simple Tyablikov decoupling
becomes better for large S, as shown by Lines" in the
limit of small anisotropy. Also from (55), the resonance

'" R. C. Ohlmann and M. Tinkham, Phys. Rev. 123, 425 (1961).

~, = ~2
I
D&J(o) —D) I'~'

I (s.,), I. (55)

Substituting (54) and (55) into (34) gives

&'(~) = (gl o)—'LD"'/I J(o) —D
I

& j
xl &s.,&, l~(( —,)-), (

x"(~)=(g»)'~LD'I
I J(o) —Dl I jl &s ), I

q(~ ~, )

(56b)

where only the positive frequency co& has been taken
from (55). At this point, experimental data for FeFp
will be entered as an example of application. These
data are given by'

a=6.5&0.3 cm '

J;;=—J= —3.85~0.2 cm

Ji„'—=J'= (0.1a02.5) —;J,

frequency ~& for H = 0 is seen to have the same temper-
ature dependence as the sublattice spontaneous
magnetization and therefore, from (50), vanishes for
T&T~ and varies as (T~ T)'—" for temperatures
slightly below T~. However, the power absorbed by the
spin system at the circular frequency co& is found, from
(24) and (56b), to be

W= 2prE(g») 'HPD(s, )p'8(co ~g), (59)

whose 8 amplitude therefore vanishes, from (50), as
(TN T) for—temperatures slightly below T~. In other
words, the amplitude of power absorbed vanishes more
rapidly than does the resonance frequency as functions
of temperature slightly beneath TN, which might
suggest experimental AFMR detection difficulties for
temperatures close to T~.

Next, consider the situation where the external
magnetic Geld HAO. Near Tv, (51) and (50) show,
respectively, that 6(s.& is constant to leading order,
while (S,)p

——0 for T& T~ and vanishes as (T~ T)"'—
for T slightly belo~ T~. As a result, a transiHon region
(denoted by T Tz) in the presence of the external
field H will be defined as those temperatures near T~
for which

I (s-&o/a&s. ) 1«1 (60)

and for which (50) and (51) both hold. These temper-
atures closely surrounding TN which define the transi-
tion region (T TN) correspond to a range of thermo-
dynamic states in the paramagnetic regiorl, Lsince

(38) and (60) taken together imply that the sublattice
magnetizations point in the same direction), all of which
are close to but not touching the phase-boundary curve
separating the antiferromagnetic and paramagnetic
regions for small II in an II-T phase diagram. "

Using (60), one may expand (53) to obtain ex-
pressions for the resonance frequencies (corresponding
to k=o paramagnetic modes) and their splitting at
temperatures within and above the transition region

pp, =g»H+2DA(s, &

J(0)—D

J(0) 6(s,)

(u, =g»H+2(J(0)+D)h(s, &

D(J(0) —D) (s-&o '
J(o) (J(0)+D) ~&s*&

,—~,=2
I J(o) I

~&s, &

, , D(J(0)-D) &s-&. '

I J(0)j ~(s.&

Using (50) and (51), (61) gives, for temperatures
within the transition region (T T~), the results

~~= g»HLI+D/I J(0) I +o(I T—T~ I) j (62a)

~2= gl oH)D/I J(0) I+o(l T TN I) j, (62b)—
com=g»H—+o(l T T& I). (62c)
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8(G7—td2) . (63)

For temperatures within and above the transition
region, one calculates, using (52), (60), and (61), that

N( ) ( D
&~

($-)
rai —~2 &J(0)i h($, )

(64b)

Substituting (64) and (62) into (63) and using (51),
one can find the 8 amplitude expressions for T~T~,
whereupon their ratio is then given by

(AN (cd2) 4D

)&L1+o(~ T—T~ ~) ] for T T~. (65)

Using (50), the last result L(65)j enables one to con-
clude that the resonance power absorbed at the lower

frequency co2 is much smaller than that absorbed at the
higher frequency or& and, in fact, vanishes for T& T~.
Also, recalling from (44) that h($, ) is proportional to
the external leld H, one 6nds, after substituting (61)
and (64) into (63), that, for temperatures within and
above the transition region, the resonance power 8

amplitude at the higher frequency m& varies as H'
while the resonance power 5 amplitude at the lower

frequency cv2 is independent of H. Finally, (64a) may
be used to show that the resonance power absorption
at the higher frequency co& also tends to become small
for high temperatures in the paramagnetic region
(T»T&) since, as mentioned previously, h($, ) can
then be expected to become small and essentially
temperature-independent. As before, these amplitude
behaviors could suggest difhculties for experimentally
detecting the lower frequency cd at temperatures within
the transition region using circularly polarized radi-

Substituting FeF2 experimental data P(57) g into (62)
as an example of application shows for T T~ that, to
leading order, ~i is, in this case, about six times larger
than cd while their splitting is proportional to the ex-
ternal magnetic Geld H. In addition, (61) may be used
to show for high temperatures in the paramagnetic
region (T»T&) that both frequencies tend to approach
the same value gp~H, since A($,) can be expected to
become a small and essentially temperature-inde-
pendent residua1. quantity at these high temperatures. '

Using (34b), the expression (24) for the resonance
power absorbed becomes

coiN (Mi)
W=N(gps)'sHi2 8 (cd—M])

ation. As mentioned in the Introduction, it is important
to realize that any features of the resonance problem
which are sensitive to relaxation or other irreversible
processes have not been studied by the present treat-
ment.

CONCLUSIONS

The method of double-time temperature-dependent
Green functions was combined with results from
equilibrium molecular-field theory in order to study
resonance susceptibility in a two-sublattice antiferro-
magnetic Heisenberg model having isotropic exchange,
uniaxial crystal-field single-ion-type anisotropy, and
where the ranges of the exchange interactions and the
spin value 5 per site are essentially arbitrary. Because
of the form of the Hamiltonian and the nature of the
approximations, no information is found for the ab-
sorption linewidths but rather for approximate thermal
behaviors of the locations and amplitudes of the ab-
sorption profile.

In the absence of the uniform, static external magnetic
field H, the results show a single (positive) AFMR
frequency having the same temperature dependence as
the sublattice spontaneous magnetization ($,)0 and
where the absorbed-power 8 amplitude varies with
temperature as the square of the sublattice spontaneous
magnetization. In a molecular-field approximation the
latter results imply that, for temperatures slightly
below T~, the AFMR frequency varies as (T~ T)"'—
while the 8 amplitude of power absorbed varies as
(T~—T) . Using FeF2 experimental data, the cal-
culated value of this AFMR frequency at T=O I
is in reasonably good agreement with experiment.

In the presence of the external field H and at temper-
atures within a so-called transition region (T TN),
one finds a doublet of resonance frequencies (cor-
responding to ir = 0 paramagnetic modes) whose
splitting is proportional to H and which are in ratio to
one another by about a factor of 6 in the case of FeF2.
However, at these temperatures T T~, the resonance
power absorbed at the lower frequency is much smaller
than that absorbed at the higher frequency and actually
vanishes for T) T~ while, in regard to the field de-
pendence at temperatures within and above the
transition region, the higher frequency power absorbed
varies as H' whereas that for the lower frequency is
independent of H. Finally, for T»TN, one may expect
that the power absorbed at the higher frequency also
tends to become small.
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