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We have derived an exact sum rule among the Legendre polynomial expansion coefficients of the Landau
f function. The relation explicitly depends on both band-structure and phonon-anisotropy eBects. It is
based on the exclusion principle and correctly takes into account the eGects of the long-range self-con-
sistent field. We compare the predictions of the sum rule with the sum of the first few experimentally deter-
mined Landau parameters for Na. The results of the comparison are consistent with the existing data.

1. INTRODUCTIOH

N the last three years various new spin-wave and
. . plasma-wave resonances have been observed in the
alkali metals. ' ' Spin waves with nonzero wave vectors
were first observed by Schultz and Dunifer' in Na and
K, while high-frequency plasmalike waves were first
seen by Walsh and Platzman' in these same metals.
These resonances are of interest because they involve
the interaction between particles in a nontrivial way
and, at the same time, are at sufficiently low frequencies
that they can be given a precise interpretation in terms
of the Landau theory of a Fermi liquid. ' In this theory,
the interaction between two quasiparticles is charac-
terized by an effective interaction function f(ko, k'o').
It has been shown that all long-wavelength low-energy
excitations of a normal Fermi system can be completely
described in terms of the Landau function and an effec-
tive mass for the quasiparticles. ' The theory thus gives
a phenomenologically self-consistent interpretation of
all low-energy experiments on a Fermi liquid.

Silin extended the Landau theory, originally formu-
lated for neutral Fermi systems, to include the charged
Fermi gas by properly introducing the self-consistent
field into the transport equation. Subsequently, he con-
sidered the problem of resonances in an infinite metallic
medium. The boundary conditions for finite bulk
samples, the effect of collisions, and the inhuence of
orbital motion were considered, for the conduction
electron spin resonance problem, by Platzman and
Wolff5 for application to the alkali metals. Since the
metals considered have spherical Fermi surfaces and
since the samples examined were polycrystalline, the
Landau function was assumed to depend only on the

' S. Schultz and G. Dunifer, Phys. Rev. Letters 18, 283 (1967);
see also G. Dunifer, S. Schultz, and P. H. Schmidt, J. Appl.
Phys. 39, 397 (1968).

'W. M. Walsh, Jr. , and P. M. Platzman, Phys. Rev. Letters
15, 784 (1965); P. M. Platzman and W. M. Walsh, Jr., ibid.
19, 514 (1967);203 89(E) (1968).'L. D. Landau, Zh. Eksperim. i Teor. Fiz. 30, 1058 (1956);
32, 59 (1957) /English transls. : Soviet Phys. —JETP 3, 920
(1956); 5, 101 (1957)g.

V. P. Silin, Zh. Eksperim. i Teor. Fiz. 33, 1227 (1957); 35,
1243 (1958) [English transls. :Soviet Phys. —JETP 6, 945 (1958);
8, 870 (1959)g.'P. M. Platzman and P. A. Wo18, Phys. Rev. Letters 18,
280 (1967).

angle 01,,1, between the wave vectors of the two inter-
acting quasiparticles. In this cast:, the equations for
the resonant frequencies of the normal modes of the
system may be written in terms of the coefficients of the
expansion of the f function in Legendre polynomials
of the angle 81,,1, . Several of the lower-order coefficients
of this expansion have been determined from the ex-
perimental data.

The objective in this paper is to find an exact relation-
ship among the Legendre polynomial expansion co-
efficients of the Landau f function for a real meta1. Such
a relationship in the form of a sum rule is known for
the uncharged Fermi liquid. ' It depends on the fact
that the forward scattering amplitude for two fermions
of the same spin vanishes. We have considered this
sum rule for the alkali metals, taking into account both
the Coulomb and the electron-phonon interactions.
The main difference between charged and uncharged
systems arises from the long-range nature of the Cou-
lomb force. In the charged case, the interaction between
two quasiparticles is not entirely given by the Landau
function; rather, the long-range part is described in
terms of the macroscopic self-consistent field in the
crystal. Only the remaining short-range interactions
are described by the Landau function. Consequently,
the part of the forward scattering amplitude described
by the Landau parameters, which sums to zero for the
uncharged system, now depends on the long-wavelength
limit of the self-consistent field.

When anisotropic interactions are included one finds
that the contributions to the forward scattering am-
plitude from the self-consistent field and from the
short-range interactions depend on the state on the
Fermi surface into which the two quasiparticles are
scattered. They also depend on the direction that
k—k' makes with the crystal axes. One thus obtains a re-
lation that holds at each point on the Fermi surface
and for all possible directions in which one can bring
the wave vectors of the two scattered particles together.
By averaging this relation over these variables, one ob-
tains a relation which, when applied to the alkali metals,
is quite similar to the isotropic sum rule.

6 J. C. Wheatley, in Quantum Fluids, edited by D. F. Brewer
(John Wiley R Sons, Inc. , New York, 1966), p. 183.
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In Sec. 2 we derive the sum rule for the simple case
of the electron gas. This result should be useful for
checking the consistency of calculations in this theo-
retical system. It also enables us to dehne clearly the
limits of the interaction function used to obtain the
sum rule. In Sec. 3 we include the electron-phonon inter-
actions and the effects due to anisotropy in the phonon
spectrum. These are probably the most important
anisotropic eGects in the alkali metals. In the last sec-
tion, we apply the sum rule to Na and give a few con-
clusions.

2. ELECTRON GAS

To derive the sum rule, it is necessary to make con-
tact with the microscopic definition of the functions
that appear in the Landau theory. V/e will follow the
notation used by Nozieres' where possible. The sum
rule is a direct result of the Pauli exclusion principle,
which demands that the four-point vertex function be
antisymmetric with respect to an interchange of the
labels of the two outgoing fermion lines. As a conse-
quence, the full vertex function shown in Fig. 1 sa,tisfies
the equation

However, it is well known that the function'

g (k t', k' f ) = 2s.ist,sg'I'"(k t', k' f )

is related to the Landau interaction function by the
integral equation

g(ko, k'o') =f(ko, k'o')

—Q f(ko, k"o")8(eg,"—tt) g(k"o", k'o'). (6)
kglg /I

For isotropic systems with spin-independent forces this
equation can be solved by expanding g and f in I.egendre
polynomials of cos[|)z,t, j, where gt, ,t, is the angle be-
tween k and k'. Breaking the f function into singlet f„
and triplet f, parts and defining

en*kg dQ
At= —f, (cosa) Pt(cos8)

2~2 2~
'

and

m*kg dQ
Bt—— —f, (coso) Et (cos0),

2~2 2~
"

I (P t P t
' &)

'I'((p+p'—~)/2t' (p+p'+~)/21'' p' p)—
(1)

we obtain

g, t ——A i/(1+A t)

g.t= &t/(I+&t)
where p—= (k, co) and p':—(k', cc'). The quantity cc=-

(q, e) is the total momentum of the particle-hole pair.
Setting co= p' —p we obtain the result

'I'(p f p f '
p —p) =0. (2)

This result is simply the statement that the forward
scattering amplitude for two fermions is zero.

In the unchanged system, the Landau interaction
function is related to the vertex function I'(p, p'; &v)

with p and p' on the energy shell and on the I'ermi sur-
fa,ce,' i.e.,

f(k 1', k' t' ) = 2s.izksi, . lim lim 'I' (p 1', p' 1'; cc)

= 2 is z .'I'(k t', k' t' ) .

Here zk is the quasiparticle renormalization factor. Be-
cause of the nonanalyticity of I" in the small q, |.limit,
f(k f, k' t' ) is not directly related to

'I'(p t' p't'' p' p)—
'P. Nozieres, Theory of Interocting Fermi Systems (W. A.

Benjamin, Inc. , New York, 1964).

If we take the limit of Eq. (2) as
~

k—k'
~

goes to zero,
after setting co and co' equal to zero, we And

lim lim 'I' (p t', p' $; p' —p) = 'I'" (k t', k t' ) =0.
(k—kt' )-+0 eu, cols

(3)

Here g, ~ and g, ~ are related to g in the same manner as
the At and Bt are to f. Utilizing Eqs. (3)—(8) we find

that

8)Z(2l+1)
1+A,+1+8, =0

This is the exclusion principle sum rule for the un-

charged system. ' It has been applied by several au-
thors' "to liquid He'.

In the electron gas Eq. (4) is not valid because it is
necessary to separate out the long-range interactions
that are described by the self-consistent 6eld. The
separation is shown diagrammatically in Fig. 1. For-

'We denote the scattering amplitude by g(ko, k'o') rather
than by A(k~r, k'0') as Nozieres (Ref. tt) has done, to avoid
confhct with the notation A„ for the Legendre coeKcients of the
f function.

'We have tacitly assumed throughout this paper that the
series expansion of the Landau function in Legendre polynomials
is convergent. It has been shown PC. Herring, in Excttonge Inter
actions Among Itinerant Electrons, edited by G. T. Rado and
H. Suhl (Academic Press Inc. , New York, 1966)g that in second-
order perturbation theory the f function has a logarithmic in-
finity in the back scattering directions. The summation of the
particle-particle ladder graphs removes this inanity t A. A. Ad-
sikosov, L. P. Gor'kov, and I. E. Dzyaloshinski, Methods of'

Quantum Field Theory in Statistical Physics (Prentice-Hall, Inc. ,
Englewood Cliils, N.J., 1963)g so that we feel that as long as
the system is normal and away from all instabilities the series
will at least be asymptotic.

10 D. J. Amit, J. W. Kane, and H. Wagner, Phys. Rev. Letters
~9, 425 (&967).
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we find

lim lim 844(ip) = —2pri(de/dp),
aOM q/6-+oo

(12)

2prisi, 'Pf'"(k f k t' ) =—(w'/m*) (dkp/dy). (13)

Here vi ——kp/m* is the Fermi velocity, p is the chem-
ical potential, and e is the electronic density. The
Landau f function is related to 'I"(ko, k'a') by a rela-
tion identical with Eq. (3). Since

we find
dk p/dpi =me/k p (1+A p), (14)

Z (2&+1) + = —(1+A ) ' (»)
LM 1+Ai I+&i

This sum rule is a useful check on calculations of the
f function for the electron gas." Note that Eq. (15)
does not depend on Ao.

3. ELECTRON-PHONON SYSTEM

The formulation of the Landau theory in the presence
of electron-phonon interactions alone was first carried
out by Prange and Kadanoff. " Recently, Prange and
Sachs" have extended this formulation to include both
Coulomb and phonon interactions between electrons. '4

In this section we will show that, in order to apply
Eq. (3) to a "real" metal it is essential to explicitly
include electron-phonon eGects, allowing for the ani-
sotropy of the phonon spectrum.

Again, we consider the full four-point vertex function
in the neighborhood of the Fermi surface. In the alkali
metals, this allows us to restrict our attention to a
single band, the conduction band. All quantities will
refer to this band and we will not introduce band in-

"Y.M. Rice (to be published).
'~R. K. Prange and L. P. Kadanoff, Phys. Rev. 134, A566

(1964).
n R. E.Prange and A. Sachs, Phys. Rev. 158, 672 (1967)."3.L. Jones and J.W. McClure, Phys. Rev. 143, 133 (1966},

have included band structure sects ignoring phonon interactions.

mally

or(P t', P' 7, -) =of'(P1, P t, -)

i Vp ( A4(P; pp) Ap(P'; pp) )
2pr (1+(i V /p2 p)rS4p(pp) j

The functions on the right-hand side of this equation
are defined in Ref. 7. Each function is a sum of an in-
finite set of irreducible diagrams. The diagrams are
irreducible with respect to the breaking of a single Cou-
lomb line Vq. The quantity & is the proper three-point
vertex function while S44 is the proper polarization
propagator. Taking the limit as defined in Eq. (3),using
the Ward identities, '

lim lim A4(P, pp) = /vp/d)kp/
~ q/&~co ~k dP

("--,)t y y(" T)t y V V
h+ 1 +

i

+os

A A

dices. The momentum variables will be restricted to
the Grst zone. As in the previous section, we must sepa-
rate out the part of the four-point vertex function that
is included in the macroscopic self-consistent field.
'lA'hen phonons are present there is a contribution to
the macroscopic field from the variations in ion density.
The total vertex function may be written as

'r(PT P'T'~)='r(P't P'T'~)

iVp A4(P; pp) Xp(P'; ~p)

2pr 1+ (iVp/2pr) 844(pi)

—(s/2 )g (P )g (P' )»( ) (16)

where I', X4, and 844 are defined as before but are ir-
reducible with respect to breaking either a single Cou-
lomb line or a phonon line with momentum co, where

q is restricted to the first zone. Note that diagrams that
are reducible with respect to a Coulomb line with mo-
mentum q+K are included in I', A4, and S44. (K is any
reciprocal-lattice vector. ) This means that the macro-
scopic field describes only that part of the induced field
that has the same wavelength as the applied field.

The last term represents the contribution to the
self-consistent Geld due to the phonons. Sq is the exact
propagator for phonons of polarization X. The gi(P, pp)

is the renormalized electron-phonon interaction

gi'(q) A4(P ~)
gi(P) ) 1+.V /2 8 ( )

(17)

with

g&,'(q) = —( ./ Q,&M)' 'V'(q)q e &,. (18)

In this equation V' is the unscreened ionic pseudo-
potential, "

Qqp and Rqp are the exact frequency and
polarization vectors of the X phonon mode, and E is
the number of atoms per unit volume.

The full four-point vertex function 'I' satisfies Eq. (3)
as before. Setting co=co'=0 and denoting the direction
of k—k' by j we examine the limit as

~
k—k'

~

—pO of
Eq. (16). The generalization for nonuniform systems of
the Ward identities Eqs. (11) and (12) has been con-
sidered by Sham and. Kohn. '6 The results are formally

V. Heine, P. Nozihres, and J. W. Wilkins, Phil. Mag. 13,
741 (1966).' L. J. Sham and W. Kohn, Phys. Rev. 145, 561 (1966).

'T(Pt, P t;cu) ~ r(Pt, P t;&u) + SELF "CONSISTENT FlELD TERMS

I'ro. 1. The separation of the four-point vertex function into
the short-range part F and the macroscopic self-consistent Geld

part.
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the same as Eqs. (11) and (12) but now Eq. (11)
varies with position on the Fermi surface. Using the
result that the

lim Vp (q) —+—47re'Z/q'

and dedning

g(k T, k'
T ) = 2wizqzk. lim lim pl'(p T, p' T; ~), (19)

co-~0 q/&~0

we find

anisotropy is due primarily to the anisotropy of the
phonon spectrum in the alkali metals as discussed
above. It is not a priori obvious that this anisotropy will
not make itself felt in single-crystal experiments on the
alkali metals. We have estimated the eRect of ani-
sotropy on such experiments by assuming that all
anisotropy effects in g(ko, k'o') come from the one-
phonon exchange diagram. ""We find that anisotropy
eRects are very small. The reason for the smallness of
these eRects seems to be that the sound velocity "only"
varies by 40% and that the experiments measure an
average of g(ko, k'~') over the Fermi surface. The
one-phonon-exchange part of g(ko, k'o'), for example,
may be expanded as a series of cubic harmonics, i.e.,

Here the quantities vq(j) are the phonon velocities at
small ( q ~. This is the general form of the sum rule for
any point on the Fermi surface. Equation (20) includes
all the anisotropy eRects that are present in metals.
The first term in round brackets on the right-hand side
of Eq. (20) contains all Fermi-surface anisotropy
eRects. The second term in the square brackets con-
tains the eRects of phonon anisotropy.

Before discussing in detail the anisotropy effects in
Eq. (20), it is instructive to consider the sum rule for
the jellium model. In this model the ions are replaced
by a uniform background of positive charge whose
mass density is Mn/Z. In this case it is straightforward
to show that the right-hand side of Eq. (20) vanishes
identically. The sum rule then reduces to the form for
short-range interactions Eq. (9). This is not surprising
since, in this model, in the long-wavelength static limit
there is perfect screening of the long-range part of the
interaction. "

Let us now examine the right-hand side of Eq. (20)
in the alkali metals, as a function of k and j. The de-
pendence of the second term in brackets on j can be
determined from the measured elastic constants. For
Na and K this term varies by almost a factor of 2 ac-
cording to the direction of j relative to the crystal axes.
Thus g(k, j) depends strongly on q. The dependence
on k is very much weaker. In Na and K the Fermi sur-
face is spherical to better than 0.2%,"and no anisotropy
has been observed in the eRective mass to an accuracy of
2.0%."Prange and Sachs" have shown that d

~
k~ ~/dp

is independent of electron-phonon eRects so that we
expect this quantity to be almost isotropic. Thus, to a
good approximation, we can neglect the k dependence
of g(k, q) and assume that it only depends on j.

The function g(ko, k'o') is quite anisotropic. This

TABLE I. Ex erimental values of the Landau parameters in
Na and K. m* m is taken from the cyclotron resonance data of
Grimes and Kip (Ref. 19). The B„h veabeen determined by
Schultz and co-workers (see Refs. 1 and 22) while the A„ for
n&2 have been measured by Walsh and co-workers (see Refs.
2 and 22). AI is determined from calculations of the phonon part
and (m~/m) as discussed in the text. The phonon average on the
last line was determined from the elastic constants.

Na

(m*/m)

AI

1.24+0.02

—0.21~0.05

+0.01~0.03

0.0~0.05

0.10

1.21~0.01

—0.2~0. 1

+0.1~0.2

0.15

left-hand side of (23)

—0.05~0.01 —0.030~0.005

0.0~0.005

0.78~0.3

v), (j)
0.65 0.47

+.g4([ k—k' [)E4 L(k—k')/) k—k'
[ j+ ~ ~ ~, (21)

where E4 is the fourth-order cubic harmonic. The
first two terms in this series are quite a good approxi-
mate representation of the function g'&. Because of the
size of the anisotropy in the sound velocity it can b' e
shown, for example, that g~(0)/gp(0) —0.1. This kind
of estimate, along with a calculation that shows that the
anisotropic terms g4 enter the dispersion relation of the
waves' ' in second order, leads us to believe that ani-
sotropy effects are typically of the order of 1% correc-
tions on the isotropic results. "

"J.R. SchrieGer, Theory of Superconductivity (W. A. Benjamin,
Inc. , New York, 1964), p. 153.' For Na, see, M. J. G. Lee, Proc. Roy. Soc. (London) A295,
440 (1966); and for K, see, M. J. G. Lee and L. M. Falicov,
Proc. Roy. Soc. (London) A304, 319 (1968),

'P C. C. Grimes and A. F. Kip, Phys. Rev. 132, 1991 (1963).

"A. B. Migdal, Zh. Eksperim. i Teor. Fiz. 34, 1438 (1958)
)English transL: Soviet Phys. —JETP '7, 996 (1958)g.

"Experimentally, the magic angle at which the coefficient of
the q' part of the spin spectrum is zero is determined to an ac-
curacy 1%. It can be shown that this angle does not depend
on crystal orientation in a cubic crystal.
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A more useful relation than Eq. (20) can be obtained
by averaging this equation over the allowed directions
of q in the plane tangent to the Fermi surface and then
over the Fermi surface. In the alkali metals this is
equivalent, by our previous arguments, to averaging
over all directions of j. If we assume that this averaged
value of g(k, q) can be obtained from a spherically
symmetric f function we find using Eq. (8) that

Az Bz

i=o I+~ i I+&i

1+3 3' x (( vz(I )).'

where the average is over all directions of j. It is im-
portant to note that the parameter Ao does not enter
Eq. (22) explicitly. We may for convenience rewrite
Eq. (22) in the form

80 Az Bz+ +Q(+) +

We now apply Eq. (23) to the alkali metals.

4. NUMERICAL ESTIMATES
AND CONCLUSIONS

A number of the Landau parameters have been de-
termined experimentally. ' ' " These are listed in
Table I. If we make the assumption that the series in
Eq. (23) is well represented by the terms with l(3 we
can compare the two sides of this equation. If Eq. (23)
is badly violated, we are forced to consider two alterna-
tives. Either the higher parameters are important, or
the interpretation of the data in terms of the Landau
theory is inconsistent. At present the accuracy on the
8„'s for E is not good enough to allow us to make a
meaningful comparison with the theory. Although A~
cannot be determined directly from experiment, an
estimate of its size can be obtained as follows. Accord-
ing to Migdal's result, '0 the phonon contribution to
g(ko, k'o') is accurately given by the one-phonon-

~'The parameters listed are the mast accurate experimental
numbers presently available and were communicated to the
authors by S. Schultz and W. M. Walsh, Jr.

exchange diagram. Utilizing this fact one of the au-
thors" has calculated the phonon contribution to
g(ko, k'o'). The calculation involves the use of the
measured phonon spectrum and an estimate, based on
a pseudopotential argument, of the electron-phonon
coupling. The Coulomb mass enhancement is obtained
by combining the observed effective mass from Azbel-
Kaner resonance with the calculated phonon enhance-
ment. The Coulomb A& is then determined by the
Landau equation for the e6ective mass. ' These two
contributions are combined according to the prescrip-
tion of Prange and Sachs" to give the numbers in
Table I.

The phonon average entering the right-hand side
was determined from the experimental elastic constants
given by Trivisonno and co-workers. "For Xa, we have
extrapolated the reported values to 4.2 K. Comparing
the last two lines of Table I for Na we And reasonable
agreement between the two sides of Eq. (23). It is
clear that the experimental error, especially for 82 in
Na, rules out an accurate test of the sum rule. How-
ever, there is no question that the use of higher fre-
quency and better samples will, in the near future, lead
to signilcant improvements in the experimentally de-
termined Landau parameters. It is also clear that
numbers for the first few A„and B„will become avail-
able for the other two alkalis, Rb and Cs, as well.

The agreement between theory and experiment is
very encouraging. Experimentally, the moments seem
to be falling oQ very rapidly. The fact that the first
few moments of the Landau function, as determined
from the experiments, mimic the exact sum rule result
adds an element of consistency to this type of descrip-
tion of a normal metal. The interpretation of the data
in terms of the Landau Fermi-liquid theory is at least
consistent with the exclusion principle.
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