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Light Scattering from a Plasma in a Magnetic Field
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The scattering of light from plasmas embedded in a homogeneous magnetic field j30 is analyzed. In the
geometry where the momentum (wave vector) transferred to the system is perpendicular to Bo,we discuss
the influence of the Bernstein and upper hybrid modes on the scattering. The analysis is done in some
detail for a wide range of plasma parameters. Particular emphasis is placed on possible interesting experi-
mentally observable phenomena in both gaseous and solid-state plasmas.

INTRODUCTION

T is well known that the inelastic or Raman scat-
.. tering of electromagnetic radiation from plasmas
provides useful information about the spectrum and
nature of its elementary excitations. ' Such scattering
has been intensively studied during the past decade. ' '
Originally the technique was applied to gaseous plasmas'
but more recently has been used to study plasmas in
semiconductors as well. ' In an ideal scattering experi-
ment, a well-collimated beam of monochromatic radia-
tion is incident on an almost transparent medium. A
small fraction of the radiation is scattered. The spec-
trum of the radiation that comes oG in a Gxed direction
is then analyzed. This spectral distribution, along with
an associated angular distribution, provides the basic
information contained in such a Raman scattering
experiment.

The Raman scattering cross section is completely
characterized (see Fig. 1) by the wave number
(k= k; —k,„&) and the frequency transferred
(to=to;, —co,„&) in the scattering event. Here k; and
to;o (k.«and to«&) are the incoming (outgoing) wave
number and frequency, respectively. It is useful to
classify the scattering according to the magnitude of
k (fixed scattering angle (l) and then for this fixed 0 to
analyze the intensity of the scattered radiation as a
function of to (spectrum analysis). The wave number
transferred to the system determines the spatial resolu-
tion that we looked at the system. If the wave number
k is small relative to the Debye (or Fermi-Thomas)
wave number (k/king(2) the scattering is from many
electrons coherently. The spectrum in the small-k

' E. E. Salpeter, Phys. Rev. 120, 1528 (1960); M. N. Rosen-
bluth and N. Rostoker, Phys. Fluids 5, 776 (1962); P. M. Platz-
man, Phys. Rev. 139, A379 (1965);A. L. McWhorter, in Physics
of Qgantlm E/ectronics, edited by P. L. Kelley, B.Lax, and P. E.
Tannenwald (McGraw-Hill Book Co., New York, 1966), p. 111.' K. W. Bowles, Phys. Rev. Letters 1, 454 (1958};S. A. Rams-
den and W. E. R. Davies, ibid. 16, 303 (1966); H. J. Kunze,
E. FCIner, B. Kronast, and W. H. Kegel, Phys. Letters ll, 42
(1964).' A. Mooradian and G. 3. Wright, Phys. Rev. Letters 16, 999
(1966); R. E. Slusher, C. K. N. Patel, and P. A. Fleury, ibid.
18, 530 (1967); A. Mooradian and A. L. McWhorter, ibid. 19,
850 (1967).

regime is directly related to the spectrum of collective
excitations in the plasma. On the other hand, if k/kD))1,
the scattering takes place from individual electrons. In
this case, the spectrum measures single-particle prop-
erties of the plasma. For semiconductors the densities,
temperatures, and effective masses of the carriers are
such that k is small compared to the Debye or Fermi-
Thomas wave vector, i.e., typically k/k&~0. 1—0.01.'
For gaseous plasmas it is possible to go from small
k/ko to k/kryo of the order of 10.'

In this paper, we consider the scattering of light
from plasmas embedded in a homogeneous static mag-
netic Geld 3&. The plasmas may either be the collection
of mobile electrons in a semiconductor, treated in the
one-band isotropic eGective-mass approximation or the
high-temperature gas plasmas found in a discharge.
This problem has previously been treated by Salpeter
and by Parley et uLP These authors, however, were
particularly interested in the scattering of microwaves
from the ionospheric plasma. The parameters charac-
terizing the ionospheric plasma, with its associated
magnetic Geld, are quite diferent from those we will

consider here.
The magnetic Geld adds a new dimension to the

variety of physically interesting phenomenon that may
be observed in the scattering. As the ratio of the elec-
trons cyclotron frequency eo,=eBo/ttt*c approaches
other characteristic frequencies of the system, for
example, the plasma frequency to„= (4rrtte'/trt*) "s, the
spectrum of Quctuations will be signiGcantly modiGed
in the plasma. This will, correspondingly, change the
spectrum of scattered light. Since the magnetic field is
easily varied (in a real experiment), an analysis of the
spectrum for a range of magnetic 6elds will give new,
unambiguous, and interesting information about the
spectrum of fluctuations in the plasma. Although
Quctuations can be excited at any angle relative to the
Geld Bo, we will only consider the particular geometry
where the wave vector k is perpendicular to +. This

' E. E. Sslpeter, Phys. Rev. 122, 1663 (1961).
e D. T. Farley, J. P. Dougherty, and D. W. Barron, Proc.

Roy. Soc. (London) A263, 238 (1961).
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Pro. 1. Diagramatical representation of the incoherent scat-
tering process. The dashed region represents the plasma, and the
two wiggley lines the incoming and outgoing photon, respectively.

geometry is a particularly interesting one because it
allows us to study the collective eRects over an ex-
tremely wide range of k. In fact, in this geometry, the
boundary in k space between the collective- and single-
particle regime is not well defined.

In the general geometry where k has a component
parallel to the magnetic field Bo, the collective modes
are strongly damped for k~

~
k&. This damping, Landau

damping, ' is due to the coupling of the collective mode
to the single-particle continuum. The character of the
scattered light spectrum completely changes as the
quantity k/kD approaches unity and for ku&kn light
scattering from collective modes is no longer observed.
On the other hand, for kJ 80, we will show that it is
possible to follow what is clearly a collective resonance
for small k, out to large k where it merges continuously
into a single-particle resonance at a multiple of the
electron cyclotron frequency co, .

In the long-wavelength regime k/kD(1, the light
scattering cross section can be analyzed analytically.
For kg 80 the spectrum consists of a set of sharp lines.
For arbitrary values of the parameter co„/co, most of
the scattered light intensity is to be found in the upper
hybrid mode near co= (co '+co,')'~'.~ ' The remaining light
intensity appears in the set of modes known as Bernstein
modes, which are located near the cyclotron harmonics
rue, (rt) 2).' The intensity of the eth-order Bernstein
mode is smaller than that of the upper hybrid by a
factor (k/k~)'". However, when the upper hybrid mode
becomes degenerate with one of the Bernstein modes
[i.e., when s&~= (rP 1)'~'co m—&2], the modes couple
to one another. The coupling results in a splitting of
the degeneracy, 4~ and a sharing of the light intensity
between the two modes for a small range of magnetic
fields. In this range it may be possible to use light
scattering as technique for studying the dispersion of
the Bernstein modes.

For the case of large k/kD, we have not found a simple
closed-form analytic solution for the scattering cross
section. We will, however, present numerical results

' L. D. Landau, J. Phys. U.S.S.R. 10, 25 (1946).
~ I. B. Bernstein, Phys. Rev. 109, 10 (1958).
8T. Stix, Theory of Plasma Waves (McGraw-Hill Book Co, ,

New York, 1962), p. 32—43.

that show how the spectrum of scattered radiation
changes with increasing k. Initially, as k increases, the
scattered radiation in the hybrid mode decreases while
the intensity in the Bernstein modes increases. For
large k the spectrum of light merges continuously with
the single-particle excitations at co„2~, ~ ~ etc. The
intensity for large kR„where R,= V&&/co, is the cyclo-
tron radius, is all contained in the first kR, harmonics.
The intensity in each line is roughly proportional to
1/kR, .

CALCULATION OF THE CROSS SECTION

To calculate the light scattering cross section we
consider an interaction single-component electron gas
immersed in a smeared neutralizing background of
positive charge. This hypothetical system is a reason-
ably realistic model for many semiconductor plasmas
and some gaseous plasmas whenever the vibrational
modes of the ions (phonons, ion-acoustic waves, etc. )
have frequencies that are very diRerent from those of
the electronic degrees of freedom.

For almost transparent plasmas the radiation field
interacts weakly with the system, and the cross section
for scattering may be computed in Born approximation.
In this case we find' '

da/dMdn= V(der/dn) rg(1/27r)

X dt e'"'(~&(t) n &). (1)

Here 0 is the solid angle, and

L(do/dQ) Th= (e'/m"'c4) (sg s,)']
is the Thompson cross section, ( ) is the usual thermo-
dynamic average over the operators appearing inside
the brackets, and ek is the electron density operator. In
arriving at. Eq. (1) we have neglected the p A terms
in the coupling of the electromagnetic field to the
carriers. ' "This is a good approximation in nonrelativ-
istic gaseous plasma, and is also valid in semiconductors
whenever the eRective-mass approximation applies. "

For systems in thermal equilibrium the Fourier
transform of the density correlation function in Eq. (1)
is simply related to the response function for the system
and indirectly, through Maxwell's equations, to the
retarded frequency and wave number dielectric tensor
for the medium. ' In order to simplify the results some-
what we note that in most light scattering experiments
the quantity co/kc«1, since the "velocity" co/k of
Auctuations in the plasma is typically of the order of
the kinetic velocity of the particles in the plasmas.
in this limit (~/kc&&1) there is very little coupling
between transverse and longitudinal density Quctua-
tions in the plasma and Eq. (1) may be written, to the
order (co/kc)', in terms of the longitudinal dielectric

' D. Dubois and V. Gilinski, Phys. Rev. 133, A1308 (1964).
P. M. Platzman and N. Tzoar, Phys. Rev. 136, A11 (1964)."P. A. Wol6, Phys. Rev. 171, 436 (1968) .
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function:
e(k, pp) =k e(k, pp) k.

writing
e (k, pp) =- 1+(4pri/(o) o (k, (o)

One finds

do do't 1 5 k' 1
, Im

dppdQ dQj pr 1—exp( —P5co) 4se' e(k, o&)
Th

(2)

Here rv„and co, are the electron plasma and cyclotron
frequencies, respectively, 'A=k'V, h'/~, ' and the I„'s
are Bessel functions of the second kind. For kJ B,
the dielectric function has simple poles at co=eco„and
Eq. (4) is real and 6nite for pp&eo&, .

The component of the electrons motion along Bo is
unaGected by the magnetic field. When k.BO&0 there
may, in general, be some electrons whose velocity along
Bp will match the phase velocity (co/k) of the wave.
This leads to resonant or Landau damping of the wave.
When k BO=O no such absorption is possible, i.e.,
e(k, co) is real except for a set of discrete poles. For
realistic systems we must consider the existence of
other absorption mechanisms, such as electron-ion
collisions or, in a solid, electron-lattice collisions. These
introducing a phenomenological collision time v. The
eBects will be included in our dielectric function by
collision time is simply incorporated in Eq. (4) by

"S.J. Buchsbaum and P. M. Platzman, Phys. Rev. 154, 395
(1967).

Equation (2) is the analog of the well-known expression
for light scattering from a single-component plasma in
the absence of a 6eld. '4 The eGects of the magnetic
field are buried in the behavior of the dielectric function.
In the random-phase approximation, the analytic form
for the longitudinal dielectric function is well known
both for degenerate and nondegenerate plasmas. ' " In
our discussion we will use the semiclassical expression
for e, which is valid when Sco,«k~T and hen, &&ep. This
approximation neglects the oscillatory behavior asso-
ciated with the quantization of the electrons' energy
levels in the magnetic field.

To calculate the spectrum of scattered radiation
from a nondegenerate plasma, we let 5—+0 and
kT/e&~pa in Eq. (2) . The expression for the scattering
cross section becomes

dr dg 1 k 121= lV — — —
I

—Im, (3)
dppdQ dQ pr kg)) pp e(k, o))

'

where k&'= 4rme'p—=co„'/Vph' is the Debye wave number
squared and S is the total number of particles. The
dielectric function e(k, cv) has previously been calcu-
lated in the random-phase approximation, and is given
(for the geometry kJ Bp) bye

e(k, pp)

GO@ / pp
' e "I„(x)=1——', — Le "Ip(~) —1/+21-

(60~ ~=y (Ql/(dq)

e(k, a)), „=0. (6)

In this long-wavelength approximation Eq. (5) has
two roots which are solutions of a biquadratic equation,
i.e.~

2 1I$~ 2+pp P~t ( pp
2 ~ 2)2+12k2Vthppp 2]1/2} (7)

The mode at frequency co& is called the upper-hybrid
mode. The one at co2 is one of the infinite set of Bernstein
modes.

In the limit of long wavelengths it is possible to
calculate the integrated intensity in the sharp spectral
distribution. Assuming ppr))1, i.e., that Im(1/e) is
essentially a 8 function, we obtain

do /da k ' 1 Be(k, a&)

dQ ~=My g (dQ Th kD 2cp& p Bc]&

The quantities ~& 2 are delned in Eq. P) and
Be(k, pp)/Bpp is easily calculated utilizing Eq. (5). When
the two roots ruq, p are nondegenerate, i.e., co„/v3pp, then
we hnd that all of the scattered intensity, to leading
order in X, is contained in the root co~, i.e., the upper
hybrid. The intensity in the scattered light near ~& is

do' do' k M&

dQ g& ~g dQ Th kD 2(Mp +pop)

The intensity in the Bernstein mode in this case is

-.': . .="(.-"),.(-'.)'l(;:)'(..:-'..) "
When pp„—+v3~, and (pp„—v3pp, )/p:&)X the intensity in
the upper hybrid is approximately given by

dM co=f1 dQ Th kD 8

As cv„approaches within 'A of co, the upper hybrid begins
to couple to the Bernstein mode near the second cyclo-
tron harmonic. This peak begins to grow in intensity
and the upper hybrid begins to lose some of its intensity,
the sum remaining roughly constant.

Uery near the crossover point, when co„=V3co„ the
intensity in the Bernstein mode is given by

d0' da k j.

Th ~D 8c 3~c

3M

(~ p 4~ 2)p

(12)

and replacing o (k, pp) by o (k, co+i/r) .
We next calculate the cross section, for the kJ 30

geometry, in the limit k/kn«1. In this limit

pp
' (1—X)

e(k, co) 1—s) — +, (5)
co cd —co,2 cd —4',~

where ~=pp+i/r It.is clear from Eq. (3) that for large
or,7-, the scattering cross section has peaks at the points
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three, i.e.,
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Equation (14) states that near the crossover point
about one-half of the intensity has been transferred from
the upper-hybrid mode to the nearby Bernstein mode
at co—2',. It is easy to show, in this long-wavelength
regime, that the transference of intensity from the
upper hybrid occurs for all the Bernstein modes as the
upper hybrid approaches the values co=3co„4co„~~ ~

etc. From an experimental point of view this enhance-
ment of the line intensity makes it possible to observe
the Bernstein modes.

We can summarize our endings to this point in the
following way: At long wavelengths when c0= 2'„
Im(1/e) has a pole with a residue proportional to X. If
we had considered higher powers of X in our expansion
of e(k, o&) we would have found that the higher Bern-
stein modes at c0=3co„4c0„~~ ~ would have had inten-
sities proportional to (k/kD)9. s, (k/k~)9s, ~ ~ ~ etc. In
the long-wavelength limit (as for most semiconducting
plasmas) it will in general be diKcult to observe scat-
tering from the Bernstein modes. " However, if we

0.0 ——

7.0-

6.0-

4.0- ~pZ~c = I.

2.0-

l.O-
43"

3

0.0
I.4 l.6 l.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6

FrG.F2. The".'scattering cross section per particle per unit solid
angle in units of one-tenth the Thompson cross section is lotted
versus the frequency shift of the scattered light. Here (k ka)'=
0.005 and ar.r=50 When a&„/c.o.=1.3 (top picture) most of the
scattered intensity is in the upperhybrid mode at co~/cu. =1.65
with small intensity at the cyclotron harmonica mode. For
co„/co, = I.i (middle picture} the two modes have similar intensi-
ties. For ca~/co, =2.5 (lower picture) the intensity is in the upper-
hybrid mode at cu/co. =2.7.

When ro„=v3'rs„ then the solution of Eq. (6) for ar. is
given by

a&s'= 4rs ' VZk Vtho)~. —

Substituting Eq. (13) into Eq. (12) we obtain the line
intensity in the Bernstein mode when the ratio of
co~/cu, is near the crossover value the square root of

0 I I I I I

I 2 3 5 6
2

(~, i ~.)

FIG. 3. The dispersion curve for the coupled upperhybrid and
first Bernstein mode is plotted as a function of ~ for (k/ko)'~
0.005. The splitting at the crossover point M~/~. =US, is neo/cu, =
0.18.

This statement is only true in classical plasmas, i.e., those
in which the electrons have an energy-momentum relation of the
form p'/2m*. If band nonparabolicity is important light couples
to fluctuations (Ref. 11}other than density Quctuations, and the
Bernstein mode has a finite strength as k/ho~.
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Fn. 6. The intensity of scattered light in the first Bernstein
mode (r0 =2', at k/ko=ol is plotted against k/ko for cv„/co, =2.5.
As we increase k/kn the intensity increases until k/kn 2, i.e. ,
kR; 5 and then decreases.

depends on nonlocal effects, i.e. , 6nite k and is linearly
proportional to k/kD. Because of the small values of
k/kn achieved in light scattering experiments from semi-
conducting plasmas, there are (to date) no quantita-
tive experimental results on these interesting nonlocal
effects. In the absence of a magnetic field one is forced
to look for the dispersion or collisionless damping of the
plasmon to get information about finite k values. The
dispersion of the collective mode t see Eq. (7)] is
quadratic in (k/kz) and thus exceedingly difficult to
observe. " The effects are of the order of 1%%uo. The
Landau damping of the plasmon is exponentially small
and gets mixed in with impurity eAects. "The splitting
of the Bernstein and upper hybrid should be an observa-
ble eGect.

In Fig. 3 the dispersion relation for the coupled
upper hybrid and co=2', Bernstein modes for a fixed
(k/kn)'=0. 005 is plotted. The splitting at the crossover
point is bc'/a&, =0.18, which agrees quite well with our
approximate estimate Eq. (15). Since the splitting is
of considerable interest from the experimental point of
view, it is important to know how a 6nite collision time
r effects it. Such considerations tell us whether or not,
with reasonable cur's, one can experimentally resolve
the splitting. In Fig. 4 we have plotted the scattered
spectrum for 6xed (k/kz&)'=0. 005 and a fixed
(a&~/ro, )—1.71 for several values of rd,r. For an co,r& 10,
the tmo lines are clearly resolvable. Since these co,7's
can be achieved in both gas plasmas and semiconductors
such as n-type GaAs, experiments similar to those we
have proposed here seem feasible.

As k increases the problem of calculating the cross
section and/or the dispersion relation of the modes is
analytically intractable. In order to illuminate some of
the features of the high-k portion of the spectrum, we

have numerically evaluated the scattering cross section
for a fixed (&0~/rd, )=2.5 and. for several values of
(k/kn)'. Figure 5 show the spectrum in the neighbor-
hood of the first two cyclotron harmonics. As (k/kz)s
increases the upper-hybrid mode at a&/co, = 2.9 for small
(k/kD)'(see Fig. 2) moves over towards the second
cyclotron harmonic. As it moves it loses intensity. The
intensity of the Bernstein mode, which for small (k/kz)s
is located near the second cyclotron harmonic, increases
and moves toward the point ro/a&, = 1.For large (k/kn) ',
the peaks in the scattered spectrum occur near the
points &o= rue, (N&1) . The intensity in each of the first
kE, of these modes is approximately the same and the
sum of the intensities in all of the peaks remains nearly
constant as k increases.

In Fig. 6 we have plotted the intensity in the Bern-
stein mode located at ro 2ro, (when k=0) as a function
of (k/kn)s, for a 6xed a&„/ro, =2.5. There is an initial
increase in intensity until a kE,—2 is reached where-
upon the intensity begins to fall oG with increasing
M, . This fallo6 can be understood as follows. At large
kR, there are more and more Bernstein modes which
are being excited in the scattering. In the limit k—+~,
it is possible" to show that the total integrated cross
section (the intensity under all lines is a constant), i.e.,

(16)

Equation (16) states that as k—moo the particles scat-
tered as if they were a set of independent particles.
Equation (16) is obviously true to lowest order in the
plasma, parameter (random-phase approximation) but
is also valid for a gas of charged particles at arbitrary
densities and temperatures. '4 Since the number of modes
excited is roughly proportional to X"' we would expect
the intensity in each mode to decrease.

CONCLUSIONS

Ke have shown that it is possible to study the
Bernstein modes in plasmas even when k/kn(1. This
is accomplished by suitably picking the magnetic field
so that the upper hybrid and Bernstein modes will

couple. The dispersion of the Bernstein mode and its
coupling to the hybrid is interesting because it depends
linearly on nonlocal eGects. The perpendicular geom-
etery discussed in some detail here, allows one to follow
the "sharp" resonances in the spectrum out to arbi-
trarily large k values. The behavior of these resonances
will depend upon nonlocal eGects in the plasma. The
detailed observation, in semiconductors, of the phe-
nomenon described here and comparison of it with
the simple theory will be useful in determining the
importance of band-structure eGects. These effects
have been completely neglected in the present treat-
ment.

"B.Tell and R. Martin, Phys. Rev. 107', 381. (1968)."P, Me Platzman and N Tzoar, Phys. Rev. 139, O'LO (1965).


