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The possibility of interband electron pairing induced by the virtual exchange of quanta of two boson
fields (photons and phonons) is theoretically examined. The system in question comprises two conduction
bands which are, in general, separated by an energy gap Es.. Radiative transitions between states of these
bands are assumed to be allowed. Through appropriate canonical transformations, effective interband
electron-electron interaction terms are obtained which involve, respectively, virtual exchange of (i) one
photon (one-boson process), and (ii) one photon and one phonon (two-boson process). These are found
to be attractive under certain conditions. The one-photon process is, however, rendered inconsequential
owing to the very small volume of momentum space spanned by “interaction quantum’ (photon) exchanged.
The two-boson process, on the other hand, does not suffer from the above momentum-space restriction.
Moreover, this latter process contains terms linear in the photon and the phonon occupation-number
densities, and the reduction in the matrix elements can be compensated by boosting the boson occupation-
number densities artificially. Estimates show that the photon-occupation-number term will be significant
for a value of 7,/ V~10%/cm3, where 7y, is the photon occupation number and V is the volume. The cor-
responding phonon occupation-number density has to be of the order of 102/cm3. In that case, the inter-
action term is found to be anisotropic with respect to the direction of injected phonons. Expressions for the
superconducting energy gaps at 7’=0°K are derived by a Green’s-function technique. The transition tem-
perature for 7,/ V~10"/cm3 is found to be of the order of 10? °K.
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1. INTRODUCTION

N recent years, there has been considerable interest,
both theoretical and experimental, in the search for
materials exhibiting high superconducting transition
temperatures.!? Among the possible physical factors
investigated are the effects of pressure, impurities®*
(magnetic as well as nonmagnetic), and polarizability
of inner-core electrons on the transition temperature
of superconductors.®® On the other hand, systems such
as organic polymers having long conjugated hydro-
carbon chains with polarizable side groups? have been
suggested as possible one-dimensional systems that
might show a high transition temperature 7.

Some attempts have been directed towards the pos-
sible enhancement of 7'c by increasing the strength of
phonon-induced attractive electron-electron interaction
and exploiting its energy dependence.” Others have in-
voked additional attractive mechanisms, purely elec-
tronic in nature, in overlapping multiband systems.*#-°
Further, it has been shown by Cohen that intervalley
phonon-induced processes lead to a strong attractive
electron-electron interaction in degenerate many-valley
semiconductors resulting in superconductivity.® Since
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then superconductivity has been observed in a number
of semiconductors.!'* However, the observed transition
temperatures are rather low, i.e., <1°K.

So far, all these formulations have involved virtual
dynamical interactions which are internal to the sys-
tem. One can, however, envisage augmentation of some
of these processes by external agencies. One possible
mode of enhancement that has been suggested is
through the injection of phonon pulses (the corre-
sponding phonon density being ~10%/cm?) which can
change the energy gap at an angle perpendicular to
the direction of phonon pulses® The concomitant in-
crease in 7. was, however, small because of the fact
that the artifice led only to renormalization of certain
gross parameters.

In most of the above theoretical treatments, formu-
lated within the framework of the Bardeen-Cooper-
Schrieffer® (BCS) theory, the role of “real” phonons
is essentially eliminated. This, of course, is true of any
one-boson virtual process. Furthermore, in all these
cases only the pairing of electrons in the same band
was taken seriously. For the situation where the bands
do not overlap, these were, of course, guided by the
fact that one of the bands will necessarily be unoccu-
pied in view of Fermi statistics.

Recent advances in laser and maser technology place
at our disposal means of populating the otherwise un-
occupied electron band and also ensure a macroscopic
occupation of a single-photon state.® In view of the
degenerate nature of the Bose statistics, the role of
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the latter is expected to be significant for two-boson
processes in electron pairing mechanisms. It seems,
therefore, worthwhile to investigate the theoretical pos-
sibilities of interband pairing between electrons of two
bands (in general nonoverlapping) owing to virtual
exchange of photons and phonons simultaneously.

For the development of the theoretical formulation,
we consider an idealized model that is adequately de-
scribed by two conduction bands (nonoverlapping in
general) such that radiative electric dipole transitions
are allowed between these two. Of course, there will
be several filled bands below them separated by appro-
priate energy gaps.

In Sec. 2, after setting out the model Hamiltonian
for the system, we shall derive pure phonon (intraband)
and pure photon (interband) induced electron-electron
interactions following the method of canonical transfor-
mation. Subsequently, after another canonical trans-
formation, the induced interaction involving simulta-
neous exchange of two bosons (one photon and one
phonon) between electrons of the two bands will be
derived. It will be shown that these two-boson inter-
action terms are linear in the occupation numbers of
phonons and photons. This leads to the possibility of
increasing the strength of these higher-order processes
artificially by augmenting the occupation-number den-
sity.

We do not emphasize the purely one-boson processes
that involve interband exchange of virtual photons
inasmuch as the volume of the momentum space
spanned by the ‘“interaction quantum” is necessarily
small.

The two-boson processes, however, which involve
intermediate phonon states as well, do not suffer from
these limitations. Moreover, the reduction in the ma-
trix element in these higher-order processes can be
compensated by the realization of a large occupation
number of the appropriate boson modes. In Sec. 3, the
gap equation at 7’=0°K is obtained by the Green’s
function technique. Finally, based on order-of-magni-
tude estimates of the parameters involved, the feasi-
bility of obtaining photoinduced superconductivity in
some systems is discussed in Sec. 4.

2. FORMULATION OF INTERACTION
HAMILTONIAN

As explained in the previous section, we consider a
solid consisting of two conduction bands 4 and ¢, non-
overlapping in general. In this case, the energy gap is
denoted by E,.. If the bands do not overlap, an appre-
ciable carrier concentration is assumed to have been
realized in the otherwise empty band ¢ by artificial
optical pumping from the underlying filled valence
bands. When the bands overlap, i.e., Ey.=0, the two
will, of course, contain an adequate number of carriers.

The Hamiltonian for the material system in the
presence of the photon field can be written as

H=H®+H,O+HAH+H,+H,+H, (2.1)
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where

0= %: &b, 1his, (2.2)

0= ¥ et 2.3)

H;= Z)\ﬁ&h(aﬂa)‘—}—%), (2.4)

H,= quhwq(sq*ﬂﬁ%). (2.5)

Here the various symbols have the following signifi-
cance: (bi,', brs) (cko’, cxs) are the fermion creation
and annihilation operators for the two bands b and ¢,
respectively; k is the propagation vector and ¢ the
spin index. ® and (@ are the respective single-
particle energies. (af, aa) are the photon creation and
annihilation operators for wave vector X; & includes
the polarization index as well. @y is the photon mode-
branch frequency. B4%, 84, wq are the corresponding
symbols for the phonon case.

Further, the electron-phonon interaction is given by

H,=1 Z Dq(6k+q.vTCkﬂ8q~H-C-)
k,q

+i Y, Dy(bryae bBa—H.c.),  (2.6)
k,q
where D, is the electron-phonon coupling coefficient.
The electron-photon interaction term H,.; can be ex-
pressed in the first quantization as
H,,,:—c~1/j(r, 0-A(r, ) dFr,  (2.7)
where j(r, t) and A(r, ¢) are, respectively, the electron
current density and the vector magnetic potential asso-
ciated with the radiation field. We consider the situa-
tion described by the Coulomb gauge in which the
transverse (retarded) and the longitudinal (instanta-
neous) components of the field can be clearly distin-
guished. H, is the interaction of the electrons with the
longitudinal component of the electromagnetic field,
i.e., screened Coulomb interaction between electrons.
It will be explicitly included later on. The electron-
photon interaction term (2.7) can be recast in the
second quantized form by the following substitution:

j(l’, l)= Zel"iﬁ(r—ri), (28)

where ; is the velocity of the ith electron and 8§ (r— 1)
is the dirac 6 function.
A(r, 0)= D, (2wch/V)2e\[an exp(id-1)

>\
+atexp(—ir-1r)], (2.9)

where V is the normalization volume and e, is the unit
polarization vector of the photon. Here and above,
e, T, and ¢ are the usual universal constants.

To go over to second-quantized representation we
choose as our basis functions the set of Bloch states
designated by |k), and | k), for the two bands in
question. It will be convenient to re-express these in
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the Wannier representation, namely,
|k)y=N-12 3" ¢,(r—R;) exp(ik-R;), (2.10a)
1

| k)e=N-123" ¢.(r—R,) exp(ik-R,), (2.10b)

where ¢»(r—R;) and ¢.(r—R,) are the Wannier
functions of the respective bands localized around sites
R;and R,,.

Taking into account (2.8), (2.9), (2.10), we can
write (2.7) as

H.=1 ) Ta(cksro tbroan—H.c.), (2.11)
A ko
Da="7sc(A/ V)12, (2.12)
where
Yoo= 21 (Boc* €1), (2.13)
voo= (¢ | €1 | ¢o), (2.14)

the matrix element of the electric dipole operator con-
necting the Wannier states ¢, and ¢, on the same site.
This will be the dominant term (strictly so in the
tight-binding limit) when allowed by selection rule for
the electric dipole transition. In deriving this, we have
made use of the usual dipolar approximation, i.e.,
| 3] @K1, where ao is the Bohr radius. The form of
(2.11) is similar to that of Frohlich Hamiltonian for
the case of electron-phonon interaction [cf. Eq. (2.6)]
with Dg=g(fiwg/2V)V? as written by Bogoliubov.”
Their coupling constant g corresponds to vy in the
photon case and has the same dimension, namely
(energyXvolume)'/2, At this stage, it will be appro-
priate to make a rough estimate of the two coupling
constants. As given by Frohlich, g=Cy/(pv?) V2, where
Ci is energy of the order of 10 eV, p is a mass density
and v, is the velocity of sound. With p=1 g/cm? and
2,~5X10° cm/sec, we get g~10"7 (erg cm?)'2, We
make a conservative estimate of v;, assuming ¢,=s
orbital, ¢.=p orbital. Thus

vee=2m(s | er-ex | p)
=27 X4.8X10719% 2X 10~ (erg cm?)!2
=107Y (erg cm?)12,

This corresponds to an oscillator strength of the order
of unity for the intra-atomic allowed electric dipole
transition.

This compares favorably with the electron-phonon
interaction strength. However, the reason why pure
photon-induced processes are weaker than the phonon
processes is that the volume of the momentum space in
which the photon energy is comparable with other energies
of the problem in question is extremely small, i.e., smaller
by a factor (ve/c)*~1072,

This renders the one-boson process involving virtual
exchange of photons inconsequential.

We shall show that two-boson processes involving a

16 H. Frohlich, Proc. Roy. Soc. (London) A21S5, 291 (1952).

7 N. N. Bogoliubov, Zh. Eksperim. i Teor. Fiz. 34, 58 (1958)
[English transl.: Soviet Phys.—JETP 7, 41 (1958) 7.
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photon and a phonon will not suffer from this limita-
tion. Although, there will be reduction in the magnitude
of the matrix element, the occurrence of occupation-
number density, which can be boosted artificially, will
restore the value.

In order to get the effective electron-electron inter-
action, we eliminate the electron-phonon and electron-
photon interaction terms in the first order of the re-
spective coupling coefficients by means of a suitable
canonical transformation. For this purpose the full
Hamiltonian is rewritten as

H=H0+Hint; (2'15)
where
Hy=H.®+{+H,(9+H,+H;+H,, (2.16)
Hint=Hep+Hef- (217)
The transformed Hamiltonian is given by
HT=H0+Him+[H0, S1]+[Hint; Sl]
+3[(Ho, S1), Sil+---, (2.18)
where S; is determined from the condition
Hine+[ H,, S1]=0. (2.19)
We get
iy Breo Tersroon
Si=i 3 I‘>\< Citho 'Doon  bio st >
ke el —een® @ —hdh—el
i Z Dq ( Ck+q ,cTCkaﬁq . Cke TCk+q,aﬁqf )
q,ke Ekc+ﬁwq_fk+qc fk-{chmfkc—'hwq
+’L Z Dq< bk+anbkaﬁq _ bkaTbk+q,UBqT >
q,ke e’ +Hfice—ed’ e’ —Tiwg—eald
(2.20)
The transformed Hamiltonian then becomes
HT1=HT()+HT(int), (221)
where
D i
Hpo=H LRC
ro=Hot aiorte (60— e g®)?— (Tiwyg)*
ka'+q,uTbk-q,—oTbk.—abk’a
Dq’hesq t 1
+ B e — (o) Ck’4q,0 Ck—q,—¢ Ck,~aCk’o
+ b ’ ,uTC — ,—UTb ,—vC 'ay
Mk (ef— e a\b)2— (i) ? Kok G ootk
(2.22)
Hy(int) =[3 3 TaDo{ (i —Hhwg—erpqn®)
ko, Aq

— (e +wg— i) 7 (e — i —al)
— (Eerarr =~ €140®) 7 Cipqin o 1OKeNBq

+”2’ Z FXDq{(ekc+Mq—fk+qc)_l

ko, Aq
— (e Tiwsg— €xcraa?) 7 (ecra® HAD — €1c1¢°)
— (et A — €)™ Cio P an oo HH.CJ. (2.23)
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The second and the third terms in (2.22) are the
intraband phonon-induced electron-electron interactions
for bands b and ¢, respectively. The third term is the
purely photon-induced process and involves interband
pairing. Hy(int) is the two-boson (i.e., one-phonon
and one-photon) interband scattering process. In addi-
tion, there will be two-phonon and two-photon scatter-
ing processes that have not been written.

As already remarked X spans a very small fraction
of the available momentum space and thus the purely
one-photon-induced process [cf. 4th term of (2.22)]
will give negligible contribution towards pairing. How-
ever, we need to investigate the role of Hr(int), which
in higher order should give rise to interband pairing.
It may be noted that (2.23) will survive only if the
two bands differ in terms of dispersion relations, i.e.,
the electrons in the two bands have different effective
masses. In the following, we shall assume the two bands
to differ only to the extent that (2.23) is nonvanishing.

Assuming

ab= (h2/2my) k2
and
= Ey.+ (h2/2m.) k2,

Hr(int) can be written as

HT (int) = Z (I‘)‘Dq/AER) (6k+)\+q.¢ Tbkaalﬁq
ko, Aq

+Ckir—q.o brearBq THH.C.),  (2.24)
where
1/AEr=1/AEp+1/AW, (2.25)
with
1/AEp= (Am/m) 1/ 22, (2.26)
| Am |= | ma—ms |,
=} (ma+m),
1/AW =352 (Am/m?) gp*/ wa?; (2.27)

gp is the Debye wave vector magnitude and w,=
(AQx— Ey.), the width of the absorption band. For
Am/m~1 and v,~5X10° cm/sec, gp~10%/cm and
w,~0.1 eV, we get AEp~10"1 erg.

We shall now perform a second canonical transfor-
mation such that

HT2=HT0+%[HT(int), S2]+' °e, (228)
where
Som I'\Dq {Ck+q+)\ o BooBq— ko TCipqn.con B4
" xona AER e+ +Tiwg— exciniq®
R bka*ckn—q«ax"ﬂq} (2.29)
> A — g — €ecyr—q° ) '
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The final result, after transformation, is
Hpy=Hro

-3 [ | Ase [P(A—Tiorer ) (Niw—xa—#a)
Ak (A — Fsrer—1en) 2— (e — &) 2

+

| Abc I2(ﬁ9)\+ﬁwk1_k_)‘) (1+Nk’—k—x+n)\) ]
(Ao 1) ?— (e’ —a)*?

X bk’vTC—k'—-a Tb...k__qu,, (2 . 30)

where we have used the interference condition k' —k=
q+2%; Ny and #, are the phonon and the photon
occupation numbers, respectively, and | As(2q) |*=
T\2Dy_x 22/ AEg?. In (2.30) the fermion operators cor-
respond to the BCS-type interband pairing.

As pointed out earlier, the reduction in matrix ele-
ments is to be compensated by the occupation-number
enhancement. The latter can be taken into account by
writing #a=nx,, Where (nx0/V) is the macroscopic
occupation number density of injected photons of wave
vector 2o, say of the order of 10¥/cm® obtained by
appropriate pumping from a coherent source with neg-
ligible dispersion.

For the situation

A~HQASDhw,
and

(m)\o— Ebc) ~Wq

(the width of the absorption band), the two terms in
the square bracket of (2.30) can be combined by ignor-
ing 7w, in the denominator. We get

HT2= Hyo
[ 2| Age |2
rewre (Fi)2— (e’ —e)?

2 I Ape ‘2ﬁwk’-—k—)\n(nko+%)
(i) — (e’ —e)®

A (Niw—ert3)

+ 2

k,k/,¢

] birs e icr— 1o i oCio-

(2.31)

Thus, the effective interband electron-electron inter-
action is attractive for AQ~AQ> | evt—e |, €., in
an energy shell of width 2 | #Qx— Es. | about the Fermi
surface.

The first term in the curly bracket of (2.31) depends
on the phonon occupation number. Approximating
(e*—ex?) ~Ey. and noting that | & | < |k'—k |, this
term can be written, after integration over X, as

(2 | Age |28,
(7o) 2 — En*
Independent % summation is justified since X spans a
small volume in the momentum space. Estimates show

that (2.32) will be comparable to the pure phonon-
induced matrix element (BCS) provided (Nyr—i/V)~

V 3
)ﬁ‘;—(zvk,_ﬁ%). (2.32)
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10%/cm®. This amounts to injecting coherent phonon
pulses, necessarily of a specific wave vector. Accord-
ingly, the matrix element becomes extremely aniso-
tropic with respect to the direction of injected phonon
wave vector. In the final analysis, the energy gap will
also become anisotropic. However, this process also
restricts the volume of the interaction momentum
space. Furthermore, it is much more difficult to pump
phonons than photons.

The second term of the curly bracket of (2.31) does
not suffer from these limitations. This can be written as

2| Ay PR
__L"_Lﬁ’_z (g +-1).

(7o) *— En (2.33)

This will be comparable to the phonon-induced (BCS)
process if the factor
25 (wp ) 2 (m0,/ V')
AER[ (7€) 2— EpeZ |

is of the order of unity. This implies that .,/ V should
be of the order of 10%/cm3. This is within the range of
feasibility in view of recent developments in modern
laser and maser technology. For further calculations,
we shall reduce the effective Hamiltonian so as to
retain terms relevant to interband pairing only, in the
presence of photon pumping.

Hra=HO+HO—A D biro e iy Tbic o010,

kk/¢

(2.34)

where A is a parameter defined as

<2(7lﬂxo/V) | Voe 128 (T ) 2 (re/ V)
AERY (7)) 2— Epc]

dre?/V
‘|—k:k"1—+‘z€‘> (2.35)

Here the second term in (2.35) represents screened Cou-
lomb potential for interband Coulomb scattering. K, is
the corresponding screening parameter. The first term
in (2.35) is positive inasmuch as iQ\,> Ey., and for suffi-
ciently high degeneracy of photons (#,/V>10%/cm?)
it will dominate the repulsive screened Coulomb term.
It may be noted, in passing, that the interaction term
(2.34) can be derived by the path integral method by
eliminating photon and phonon coordinates, as has
been shown recently for the pure phonon case.!®

3. DETERMINATION OF ENERGY GAP AT
T=0°K AND TRANSITION TEMPERATURE

We shall follow a method similar to that adopted by
Gor’kov.® We define the following normal (G) and
anomalous (F) Green’s functions since the present

18 N. Kumar and K. P. Sinha, Nuovo Cimento 51B, 547 (1967).
YL. P. Gor’kov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958)
[English transl.: Soviet Phys.—JETP 7, 505 (1958) ’]
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interest is interband pairing:
Gopar, (1—1) = (= 1) (Tar (N e (1)), (3.1)
exp[i(2u+ Evo) t/h] Foppoy T (0—1)
=(N+2| To; ") et () | N), (3.2)
exp[—i(2u+Epe) t/1] Fo_yeq (1—1)
= (V| Toy(t)exy (') | N+2).  (3.3)

The bracket (N | T+ +« | N) refers to time-ordered con-
traction between appropriate states. The equations of
motion for these functions are derived following the
usual method.?? We get

[i#(8/81) — 9 JGo_ o1y ((—1F)
HIACE ooyt (0 Foygecns (=) =10 (=) (34)

and
[ (8/8t) +e® — (2u+Eve) PFope, T (1—1)
—A (; Forp oy, 1(0) )GC—kLC—k‘v(t“tl) =0, (3.5)

where we have made use of Gor’kov? factorization
appropriate to interband pairing. The inherent time
dependence of the quantities on the right-hand side of
(3.2) and (3.3) has been shown explicitly by introduc-
ing the factor exp[==4(2u+Es.)t/#] on the left-hand
side, where p is the chemical potential for each band
measured from the bottom of respective bands. This
follows from the general quantum-mechanical equation
of motion of any operator in the Heisenberg represen-
tation. Here we have assumed equal population of the
two bands b and ¢ for simplicity; Ep. is the band gap.
Next we carry out the energy Fourier transformation
of the two equations.
We obtain, in the matrix form,

E—e© A Z B2 (0)
k’

—ih D Foioyyt Ete®—(2utEy,)
x/

Geoyyemy (E) hi
X = . (3.6)
Fbk1c-k¢,T(E> 0
Displacing all energy levels by p and then solving for

Ge ooy (E) and Foye 1 (E), we get
_h(Ete®—Ey,)
B D

D 7

where D is the determinant of the coefficient matrix on

G°~k$5—k$(E) (37)

Fbk'fc-kl, (3~ 8)

% A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinski,
Meth ods of Quantum Field Theory in Statistical Physics (Prentice-
Hall, Inc., Englewood Cliffs, N.]J., 1963),
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the left-hand side of (3.6) ; explicitly
D= (E—ék(c)) (E+€k(b)—Ebc) —Abc27 (3‘9)
where
Apt=A? Z Fb-—k’LCk”t (O) Fck"'fb—-k”er(O) : (3.10)

/K’

The roots of the determinant give the poles of the
Green’s functions and in turn determine the energy
spectrum of the elementary excitations. The two roots
are

Ey=Ep£ (a2 Ap2) 12, (3.11)
Thus the two functions of present interest can be
written as
h(E+ea®— Ey,)
(E—Ey) (E—E-)’

iAh 3 Faproyt'(0)
(E—Ey) (E—E.)

The poles of the Green’s function [cf. (3.12)] are to
be treated so as to satisfy the Landau condition.?! In
the present case, this amounts to the condition that
the imaginary part of the Green’s function should have
sign opposite to that of (E—E;). It can be shown
that

Gc_kic_kL(E) = (3. 12)

Frge i '(E)= (3.13)

[ 14a®/ (e®24Ap2) V2]

GC—kLC—kl(E) =

(E—E +1)
11— a®/ (6®24 Ay ) V2]
2
: 3.14
e L CRTY
I AR v Fonp ot
Fogo =0 2o PO )

~ (E—E,+i) (E—E_—%)"’
satisfy the above conditions.

In order to get a self-consistent equation for the

energy gap we take the inverse Fourier transform of
(3.15):

2087 [ Fuger (B) expl—~iE(i—1) /K] dE2
_ iRk 2 Fonn 1(0)
27h,

© dFE exp[—iE(t—t)/h]
—w (E—E,+18) (E—E_—15)

Putting ¢=¢, performing k-space summation, and not-
ing that

; Fbk?G—kLT(O) = ; FCk”fb—k'LT(O);

we can write

(3.16)

. w dE
1= (iA/2m) ;/_w (E—E;+18) (E—E_—19)

2 L. D. Landau, Zh. Eksperim. i Teor. Fiz. 34, 261 (1958)
[English transl.: Soviet Phys.—JETP 7, 182 (1958)7].

(3.17)
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Performing the E integration, we get

o
1= (AV/161) fm , (3.18)
Wa de®
1= (AV/167%) pa, /_Wam, (3.19)

where we have replaced summation over k by integra-
tion. It should be noted that the cutoff W in the
present case should be chosen to be W,= (iQ— Es.) <
inasmuch as the interaction is attractive in this range.
Integration yields

Ape=W, csch(8w3/AVpn), (3.20)
where py is the average density of states given by

%k /%2)3/2
pA‘,zu—l-/“p(E)dE:(zm—/h)/um (3.21)
0 3m?

and 7* is the mean effective electron mass. Thus the
superconducting energy gap at the absolute zero tem-
perature,

Ape=W, csch(x/ul'?), (3.22)
where

x =6V AV, (3.23)

The superconducting transition temperature is related
to this gap parameter; i.e.,

ks ToR (/) Abe, (3.24)

where y=0.577 (Euler’s constant).

We shall now examine the energy gap arising from
the term that depends on phonon occupation number
[cf. first part of Eq. (2.31)7, the coefficient being re-
duced as (2.32). Accordingly, we put Nis_x==8r—x,qoNo
in (2.32), where N,/ V is the phonon occupation-number
density per unit volume for one specific mode qo. Equa-
tion (2.35) then takes the form

A= <2'ch2(h97\u) 2g2(ﬁwD/V) V7\03(N0/V)
‘ [ (7iQxy)*— By 2]

dre?/V
I q() ‘2+Kb62

Here, we have assumed that the dispersion in the in-
jected phonon wave vector is sufficiently large com-
pared with & to justify the integration over A, as in
(2.32). It is to be noted that it is anisotropic with
respect to qo. Rest of the calculations are similar from
(3.1) to (3.15). However, we have to recalculate the
subsequent steps. Equation (3.18) gets replaced by

Fbk’fc_“kLT(O) = 2A Ft:k‘qa’[b,.(k_qoﬂ.r (0) [ékb2+ z&bcu2 (k) ]_112-
(3.20)

This can be readily solved for certain specific condi-
tions. For example, if we take k normal to qo, we can

> for K'—k=qo. (3.25)



488

approximate
|k—qo|~ |k | for |qo|<K |k |~k
Then we get
1=2A. (&4 Ap22) 712, (3.27)
This gives

Ap2(k) = (4A2—ed?) 12, (3.28)

In this case the anisotropic gap is a function of the
electron wave vector, and, of course, the anisotropic
coupling coefficient. The maximum value of this is
Ap2(max)~2A,.

4. ESTIMATES AND DISCUSSION

We shall now make estimates of the various param-
eters involved in the expressions of the energy gaps
derived in the preceding section. For this purpose, it
will be appropriate to compare the magnitudes of the
attractive two-boson process derived here with those
of pure phonon (BCS) process. Thus, disregarding
screened Coulomb part, we get for A given by (2.35),

A(2-boson) s (Fuwp)? (@)
Vphonon(BCS)  AER[A—Esc ]\ V

(4.1)

For the typical choice of parameters
(ihg— Epc) =0.05X 1.6 X 10712 erg;
Yae=1071 (erg cm?) 2,
Tuwp0.02X1.6X 1072 erg,
AER=10718 erg,

we get the ratio as 107X (#,/ V). Thus for this process
to be comparable or larger than the phonon process, we
must have (n),/V)>10%/cm3. Assuming that the sys-
tem is bathed in a photon field with (75,/V)~107/cm3,
we estimate the transition temperature from Egs. (3.24)
and (3.25). This will involve the magnitude of a few
more parameters. The chemical potential u is chosen
to be of the order of 10~ erg, which corresponds to a
population 10?°/cm? in either band b or ¢ and x~4X10~7
erg!/2, With these values the transition temperature is
of the order of 10° °K. It is to be noted that for larger
effective mass, higher carrier concentration, and higher
photon density the estimate of T', goes up considerably.

For completeness we next estimate the gap param-
eter for the term that depends on the phonon occupa-
tion number. Here we find that the gap parameter
[cf. Eq. (3.28)] for highly anisotropic situations has
the maximum values 2A,. For the same value of the
parameters chosen above we get

Apt(max)~1072%X (No/V) eV.

For this to be comparable with the usual (BCS) en-
ergy gap (i.e., 10~* eV) the occupation-number density
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(No/V) must be of the order of 10?/cm?. Present ultra-
sonic techniques for the generation of coherent phonons
go up to 10%/cm?3.3 Perhaps future developments may
lead to sources that can give phonon densities as high
as 10®/cmd.

In the foregoing sections, we have treated the case
of interband pairing between two conduction bands
separated in general by a gap Ey.. For E;.#0 one has
to resort to optical pumping to create carriers in the
otherwise empty band ¢ up to a concentration 10%0/cm?.
If the two bands overlap, i.e., E,.=0, then the optical
pumping can be dispensed with; there will be a suffi-
cient number of carriers in each band. We shall, how-
ever, require in both the situations a strong coherence
source of photon or phonons to boost the respective
boson occupation numbers. As shown above, the photon
case seems much more favorable and feasible.

In view of the higher reflectivity in the superconduct-
ing state, one has to use only thin films of the materials
since the mechanism is likely to be confined to surface
layers only. This restriction does not apply to the case
of phonon pumping.

Further, in an indirect bandgap system (i.e., one in
which the conduction-band minima do not coincide in
the momentum space) there is always a nonzero mo-
mentum transfer required by momentum conservation
in the two-boson processes (one photon and one phonon,
normal or unklapp). The large momentum transfer
has the merit of screening the Coulomb repulsion more
effectively. This leads one to the conclusion that the
phonon-assisted photon exchange mechanism is the one
most favorable for realizing photoinduced superconduc-
tivity, providing the boson occupation-number density
is sufficiently high. To eliminate the heating effect
associated with the incident radiation flux an effective
heat sink has to be provided by suitable cryogenic
techniques.

In order to detect the interband pairing effect pre-
dicted here, it may be preferable to use coherent radi-
ation pulses of duration shorter than thermalization
time (time required by the coherent radiation to be
recognizable as blackbody radiation at the tempera-
ture in question).

In conclusion, we would like to remark that we have
considered some optimal conditions favorable to the
realization of photoinduced superconductivity. Esti-
mates show it to be a physical possibility and it is
desirable to carry out appropriate experiments to test
the occurrence of induced superconductivity in degen-
erate semiconductor systems. Such two-conduction-
band systems can be obtained by heavily doping a
semiconductor so as to create an impurity band ex-
hibiting almost metallike conductivity. The fact that
the physical realization of such systems will place at
our disposal controlled superconductivity (with high
enough T.) is bound to open up numerous avenues to
practical applications.



