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We present a calculation of the Z dependence of the atomic capture of negative mesons in simple com-
pounds. We choose a self-consistent Fermi-Thomas potential and solve the resulting Schrodinger equation
describing the meson in the solid. The results give better agreement with experiment than the Fermi-Teller
linear Z law. The observed oscillatory behavior of the capture ratio as a function of Z for oxides is qualita-
tively explained.

I. INTRODUCTION

DESCRIPTION of the capture processes of mesons
.k in matter was erst given about twenty years ago

by Fermi and Teller. ' Using simple models, they were
able to argue that the capture probability for negative
mesons in solids should be proportional to Z, the atomic
number. Since that time, it has become possible to
check the theoretical predictions experimentally, and
although the results agree qualitatively with the the-
ory, there are quantitative differences. The experimen-
tal results show that the capture probability' is not
Just linear in Z for all materials, but rather it appears
to be proportional to Z", where 0.55&n& 1.4j..

%e mention, as an aside, that other discrepancies
between experiment and theory existed. It was found'
that the capture probability of m mesons by hydrogen
in nuclear emulsions is much less than that of E
mesons. This is contrary to what was expected on the
basis of the theory of Fermi and Teller. ' This problem
has been discussed by Baker, 4 and he shows that the
experimental results for hydrogen can be explained if
one considers meson captures which arise from both
radiative and Auger transitions.

In this work, we consider the Z dependence of the
capture probability for negative mesons in solids. Ke
begin by assuming that the solid can be represented
by a collection of independent atoms and describe the
scattering processes using this model. This model is
appropriate for meson captures at energies above ap-
proximately 100 eV with the assumption that neither
the mesons nor the electrons are in high-quantum-
number states (i.e., large orbits). Jn this case the
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crystal potential, which aGects only the high-quantum-
number states and is of the order of 10 eV, can be
ignored. This model has only limited validity.

In most systems, the captures occur below 100—500
eV, and the predominant mechanism is the Auger inter-
action with valence electrons causing meson transitions
to high-quantum-number states. The "solid-state" ef-
fects are therefore important, i.e., the crystal potential
and charge transfer eGects are important. This conclu-
sion is supported experimentally by comparing the cap-
ture ratios of two atoms in compounds to those in
mixtures. For example, in the case of ZnS the value'
is j..7. To compute the eBect of the crystalline poten-
tial, we compute the valence state wave functions for
the mesons in a solid. Once these are obtained, we
calculate the probability for the transition from these
valence states to the localized atomic states in the
same manner as was done for the noninteracting atoms
case.

To compare the results with experiment, we consider
binary compounds and compute the ratio of transitions
into the low-lying localized states of the atoms. The
matrix elements involved in this calculation are evalu-
ated only approximately, and the capture ratio is
evaluated at only two points in the Brillouin zone.
It is found that the capture ratio depends weakly on
k for compounds composed of atoms with low atomic
numbers and can vary by about 30% for large atomic
numbers. If a Hrillouin-zont: average is taken, the re-
sulting ratios are in"good agreement with experiment.

Finally, using simple models we are able to give a
semiqualitative description of the periodic behavior of
the capture ratios for oxides as a function of the
positive-ion atomic number.

II. ISOLATED ATOMS MODELS

In this model, the transition probability R for the
transitions of an unbound meson into all the bound

& D. Jenkins (private communication) .
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states by means of Auger and spontaneous radiation
processes are calculated. We assume hydrogenic states
and allow all possible energy states of the unbound
meson. The total transition rate for the meson as it is
slowed down from the initial energy E, (of order MeV
in most experiments) to zero energy is then propor-
tional to

where CL~'/Ch is the stopping power. In practice we can
only calculate the rate E for a few values of the energy,
and the integrand is interpolated between these values.

We will begin by finding CE/Ch and the transition
rates for radiative and Auger transitions. These will
then yield the total rate and capture ratios.

The standard expression' for CE/Cx is not accurate
for very low energies. In the energy range where the
meson has a velocity near or below that of the valence
electrons, this expression no longer holds. For vr and

means with masses of approximately 200 electron
masses, the lower limit of validity is about 10 keV.
Below 10 kev we shall use a result due to Rosenberg. '
In Rosenberg's treatment of this problem, the nucleus
and the meson form a two-center potential for the
electron, and the transition rates for the electron from
a bound state to ionized states are calculated. The
ionized state wave function is approximated by a free-
particle wave function. This model was applied to the
case of unit effective charge, Z=1, of the nuclear
center. However, for the low-energy region, the excita-
tions of the valence electrons are mainly responsible
for the energy loss (Z~1), so that the results for this
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Fro. 1. The inverse stopping power function !f(E}} r as a
function of the incident meson energy. 3II is the mass of the meson
in units of electron mass.

6 J. D. Jackson, Classical Electrodynamics (John Wiley & Sons,
Inc. , New York, 1962), p. 429.' R. L. Rosenberg, Phil. Nag. 40, 759 (1949).

f(E) =g(v)
and

Q(E) =
I cE/ch I-'= LED(E)1-'. (2)

The function 1/f(E) is plotted in Fig. 1.
We now calculate the transition rate 8' in the dipole

approximation for the scattering of a meson in a mesonic
plane-wave state to one of the mesonic atomic states
by radiative process,

W= (4e'aP/35c)
I r;f I' (3)

where co is the energy between the initial and anal
states, and r;f is the dipole matrix element between
these states. We shall use hydrogenlike wave functions
for the mesonic atomic states, we consider this to be a
rough approximation for two reasons: 6rst, the high-
lying states (large radii) interact strongly with the
electrons; second, for large nuclei, the nuclear penetra-
tion of the mesonic wave function produces a large
correction to the point-nucleus approximation.

The initial state for a particle in the Coulomb held is

+;=Cg(r)/L l's
where Cq(r) is the Coulomb wave function, ' and the
anal state is

pf F("(0, Q) (R„((r)——,
where

(2Z~s (n —l—1)!
(R„~(r) = I I

'
e I'~'p'L~rs'+'(p)

l, na, / 2nI (n+l)!js
L P'+'(p)

(n —l—1—k)! (2l+1+k)!k! '

p= (2ZM/nas)r, and M=M „,/ns, .
8 G. Sreit, in Tables of Coulomb 8'ave Functions, U.S. Na-

tional Bureau of Standards, A pplied 3fathematics Series-17 (U.S.
Government Printing Once, Washington, D.C., 1952), Vol. I.

case can be used provided we multiply the particle
density S by the total number of valence electrons
for each atom, n. Rosenberg obtained an expression
for the stopping power as a function of meson velocity
v, in terms of a function g(v):

CE/—Ch =Eng (v), (1)
and he computed g(v) numerically for v&1. The value
v=1 corresponds to a meson having (13.6&(M) eV,
BE=mass of meson in m, , His results are valid only
for low energies. We shall see that for most materials,
all significant captures occur below (13.6&&M) eV, and
so the above curve covers the entire range of interest.

Ke shall be interested in the function

1/ I (cE/c~) (E) I,

and we therefore dedne
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To calculate the Inatrix element of the radius vector
we will let k be parallel to 8, so that we have'

form of the radial integral can be written as

where

Cq(r) = g (2l'+1)i"C i(kr) Pi (cos8),
zI—{)

e"&Fi(rI; kr)
Ci(kr) =

kr

o i ——arg I'(i+1+i'),

Fi(q; p) =Sic'&p'+'F(i+1+i'
~
2l+2

~

—2ip),

(6)
J= Cz kr e "r"dr,

0

where e is an integer greater than 2. This integral must
be evaluated numerically, and to do this we need to
know the properties of Cg. As expected, for large values
of kr, C~ exhibits the characteristic oscillating behavior
of ji(kr); in fact

C~~(e'"/kr) sinLkr —
g ln(2kr) ——,'(hr)+aij (11)

for

„)F(i+1+i')
~

(2l+1)!
i1= —MZe'/Pk,

and F (d
~ p ~

Z) is a confluent hypergeometric function.
This gives

IG=O

XL(n—l—1—k)!k!(2l+1+k)!j'

1',~(0, p) P& (cos8) r

X p'+'Ci. (pkriao/2MZ) e ~i'p2dp dD, (7)

where

1 (2ZcV ' (I—l—1)!(I+l)!"' ciao

( riao 2e 2MZ

The integral is a product of a radial and an angular
integral. The radial integral is

p'+'+'Ci (keaop/2cVZ) e ~"dp

and the angular integral is

2x 1

Pi (cos9) Pi (9, P)

( cos8

X ~
sing cosP ' d(coso) dP, (9)

9 A. R. Edmonds, Angular 3fomerltum ~n Quantum Mechanics
(Princeton University Press, Princeton, N.J., 1960), p. 63.

, sin0 sing I

where the three entries of the matrix correspond to
each component of the radius vector, s', x, y.

The angular integral is a product of three spherical
harmonics, and its value in terms of Clebsch-Gordan
coeKcients is given by Edmonds. ' The most general

kr =q+ Lrl2+l (l+1)j'".
Because of these oscillations the numerical evaluation
of J is difficult for large values of e or k. In practice,
with the storage available in the CDC 6600 computer,
ii is limited to about 30 for k very near to zero (i.e.,
mesons with energies less than about 1 keV).

For Auger transitions, we treat the Coulomb repul-
sion between the electron and the meson as a perturba-
tion on the system and 6nd the transition rate for going
from a free meson, bound electron state to a free elec-
tron, bound meson state. We shall neglect all other
excitations of the electron except ionization.

We use time-dependent perturbation theory and the
transition rate is

W=(2~/5} ) 11 (13)

The initial state is C!„(r&)/La!' for the meson, and
+„-;-{rl) for the electron, and the final meson state is
p„ i ~ (ri), where the bar indicates a wave function
in which the electron mass is replaced by the meson
mass. The final electron state is C (!r )/2L ' ~iThe mo-
mentum of the 6nal free electron is k& and k~ is the
momentum of the initial free meson. The transition
matrix element becomes

Kq' ——(e'/L') +„;„*(r2) C&-, '-( ri)

X
~

r, —r, ~-'g„!„.(r,)C„(r,)d'r, d!!r„

and k2 and k& are related by energy conservation:

5'k ' Z'e 3I jPk Z2e2

2m, 2agn" 2~m, 2~yP
'

kr»(ly1) i+~2.

The general behavior of Cz as a function of kr from 0
to ~ can be roughly described in the following way:
For kr((1, Ci increases as (kr)', then as kr gets larger,
C& increases more rapidly until kr=r!+PrP+l(l+1) ]'I';
after this point, Cz oscillates and goes to the asymptotic
expression above. The behavior of Ci(kr) is therefore
very similar to that of ji(kr), except that oscillations
do not start until
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where

1lf ™meson/racy as before.

Cq, (rq) = g (2l'+1)i "C~ (kqrq) P~ (coseq); (17)
(l~

Cj„(r,)
7r

=4n Q Q i"C,.(k,rg) I' t;"'*(8p„(Pg,) F)."'(e„y,) .
i~=0 m&=—I,I

We note that for some values of k~ and n, there is a
maximum allowed e'. Using this expression

I
ri- r2 I-'

oc s
g ~l= 4v' Q Q,+, (2l+1) 'I'P*(ei, @i)I'i" (~r, 6),

l=o m l ~O

(16)
and taking k~ as the direction of i,

0;=PR,NA Ds = PR;NA—QDE. (20a)

0;= (hC;/At) dsA =Ave, . (20b)

Combining Eqs. (20a) and (20b) we have, in the limit
of small changes,

transition rate R= Rq+Rq, and the total captured meson
density C=C&+C&. Let P(E) be the meson beam den-
sity (per A.') and v(E) be the velocity of the meson.
The energy E, at any point along the rod, is taken to
be the average energy per meson of the beam at that
point. We note that there is a one-to-one correspond-
ence between the distance along the rod s and the
energy E.

Consider a small length As of the rod. at s (energy
E); the corresponding change in energy is hE. N—ow
the total rate of capture for one atom type i is I'E;,
and the total number of atoms of type i in the length
As is EAhs. The total rate of capture 0; by all the
atoms of typei in the length As is, therefore,

The matrix element becomes vdC;= —NR;PQdE. (21)

The two equations ('21), (i=i, 2), are to be solved
simultaneously subject to the three boundary condi-
tions

(2l+1) r)'+'

XCi" (~mr2) R t (r2) R 'l' (rl) d rid rR

X I'p*(eg, Qi) I P(02, qh)

X Pa(cosel) I'l'~ (~2& 42) I'~"*(ttm, A)

I')."'(O„yg) dQgd02I'p (eg„y)„). (19)

The angular integrals are again expressible in terms
of Clebsch-Gordan coefficients. We need not consider
the angular part of k~ since we shall be integrating
over all directions after squaring the matrix element.
The radial integral is again done numerically.

These expressions allow us to calculate the radiative
and Auger transition rates for a meson density of one
meson per I.' on one atom, and we need now to apply
these results to the experimental situation in which a
beam of mesons is used.

Consider a meson beam with initial energy E, mov-
ing in the z direction (with a flux of 1 particle per
sec A.') impinging on a solid with N; atoms of type
i per A'. We consider only one-to-one binary com-
pounds, so that i=1,2 and E~=E~=E. For conven-
ience we take the solid in the form of a rod in i direction
of cross-sectional area A square angstroms. Let R,(E)
be the total transition rate (Auger plus radiative) for
meson density of 1 particle per A.' and for one scatter-
ing center of type i, and C;(E) be the corresponding
number of captures per A'. Define the grand total

P(E) =(1/v.A) —C(E), Ci(E.) =Cm(E. ) =0 (22)

The term 1/(v, A) is the initial density of the meson
beam. Therefore, the first condition expresses the con-
servation of the number of mesons at any point along
the rod. The last two conditions merely state that at
the initial energy (the initial end of the rod) no mesons
have been captured by either atom type. The coupled
equations (21) subject to Eqs. (22) have the solution

Cg=A (NR~Q/v) exp N(QR/v—) dE dE,

(23)

(NR2Q/v) exp N(QR/v) dE dE—,

with
(24)

Cg+Cg=v, ' 1—exp —N (QR/v) dE, (25)

where A and 8 are constants to be determined by
using Eq. (25), and C,=C,A is the capture per unit
length by type i atoms.

It is easily seen that the fraction captured at any E
is given by the exponential term of Eq. (25). If this
term is small compared to unity, then most of the beam
is captured when the beam energy is reduced to this
value of E and Eqs. (23) and (24) can be used to Gnd
the ratio of captures by the two types of atoms.
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Pro. 2. Auger transition rates for Zn and S as a function of
the anal w meson states n', for various initial electron states n.
The calculations are for initial electron states with l =0, but
the nonzero-l states do not contribute much to the transitions.
The maximum allowable e' for each value of n is shown in pa-
rentheses. The initial meson energy is 100 eV. Broken curves
are for Zn and full curves are for S.

We note that the theory in this section can be com-
pared with experimental numbers quantitatively only
if most captures involve lottt lying st-ates of both elec-
trons and mesons, so that the individual-atom theory
holds, as stated earlier.

Typical results are shown in Figs. 2—5. We shall dis-
cuss them individually. All the rates (R) shown are in
sec-', using1=1 L.

In Fig. 2, the Auger transition rates are given for
Zn and S. These are typical of rate versus meson
quantum number n' for various electron quantum n
curves. We see that the largest contribution to the
capture comes from the largest allowed e', i.e., from
high-lying states. Since our computations are good only
for n' smaller than about 30, and for most atoms of
interest the highest allowed I' (limited both by the
size of the atom and also by energy conservation) is
about 40 to 70, we see that the capture rate for Auger
processes can only be obtained by extrapolation. In
addition, we also expect that the individual-atom the-
ory will break down.

In Fig. 3, the radiative transition rates calculated
for Zn and S are given, and again these are typical of
rate-versus-I' curves for most materials. In contrast
to the Auger rates, the largest contributions come from
the smallest values of ss' (except s1s). The largest
rate for a single transition is about one order of magni-
tude larger than that for an Auger process; however,
the rate quickly drops down for higher n"s. Because
of this, the total Auger contribution is about one order
of magnitude larger than the total radiative contribu-
tion. Note that the rate for e'=i is a few orders of
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FIG. 3. Radiative transition rates for Zn and S as a function
~f the anal m meson states e', for initial meson energy of 100 eV.
The rate for I'=1 is not shown because it is a few orders of
magnitude smaller.

~o If the initial energy E of the meson is so small that its wave-
length is much larger than (rss/NZ), then the radiative tra'nsition
rate for /=0 goes as 8, whereas that for l&0 goes as a constant.
This value of energy is much larger than 100 eV.

magnitude smaller than that for e'=2. This arises
from the fact that the n'=1 state has no 1'&0 con-
tribution. " Baker' stated that the radiative capture
cross section is much smaller than electron ejection
capture cross section by calculating only the n'=1
case, and, because of the above considerations, this
statement does not seem to be justified.

In Fig. 4, the energy dependence of the Auger and
radiative rates are given. We see that both rates de-
crease as the energy increases, and the radiative rate
drops much more rapidly, making it much less impor-
tant in its contribution to the captures.

Figure 5 contains a plot of the integrand of Eq. (25),
and only the Auger contribution is included. We see
that this function decreases extremely rapidly with
increasing energy. This arises from the fact that all
of the three factors R(E), Q(E), and 1/v(E) decrease
with increased E. Numerically, we Gnd fusing Eq.
(25)] that most captures occur between 100 and 500
eV. From Fig. 5 we see that by taking E, to be 500 eV
or above involves an error of less than 10%. We re-
mark that if radiative contributions are neglected and
we assume that R~(E) curve is the same except for
normalization for both elements in the compound, then
the ratio of capture is just the ratio of capture rates
at any E, say 8=100 eV, as is easily veri6ed using
Eqs. (23) and (24). Such a procedure is applicable
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s. These are completely specified by the symmetry of
the lattice and are determined by expressions of the
foal

~ LI- ]=L~")P'"] (31)

where X is the energy eigenvalue. Thus the determina-
tion of the wave function reduces to three processes:
(1) finding the lattice harmonics for a given symmetry,
(2) solving for P, after finding the appropriate V(r~),
and (3) applying the conditions Eq. (28) to determine
the coefficients in Eq. (29). We shall proceed in this
ol del .

We can use the de6ning relations to compute the
coefFicients for the lattice harmonics expansion. How-

ever, for a variety of crystal structures, this has been
done" and we shall simply use the results. For simplicity
we shall only consider k= 0 and lr = (n./a) (1, 0, 0) and
consider only s waves. This should give a representative
eigenfunction of the Schrodinger equation (26), and
should not differ grossly from the average eigenfunc-
tion.

For usual band-structure calculations for electrons,
the potential can be calculated or 6t to experiments.
However, for the meson case, the potential felt by the
meson is diferent from that felt by an electron, because
the Pauli exclusion principle is not applicable. In this
case, to get calculations which are manageable, we ap-
proximate the potential by a sphericalized Fermi-
Thomas potential. "

The effects of charge transfer (the Madelung po-
tential) should also be taken into account. The sim-

plest way to do this is to estimate the charge transfer

by the effective charge parameter (or the amount of
ionic character'4 times the number of valence electrons)
Zg. We shall simply use this parameter and the Made-
lung constant for agiven symmetry to give the Madelung
potential. The effect of this on the Fermi-Thomas po-
tential can be simply thought of as an ion having Zj
unscreened charged and Z—Zy screened charges if the
ion is positive, and —Zr unscreened charges and Z+Zr
screened charges if the ion is negative. This neglects
the redistribution of the electrons, but serves as a 6rst-
order correction to the potential of the atom in the
solid state. The parameter Zy is obtained from Pauling. "

"D.G. Bell, Rev. Mod. Phys. 20, 311 (1954).
13 V. Bush and S. Caldwell, Phys. Rev. 38, 1898 (1931).
'4L. C. Pauling, The Nature of the Chemical Bond and the

Structure of Molecules and Crystals (Cornell University Press,
Ithaca, N.Y., 1960), 3rd ed.

where R;Q (group of the wave vector Ir), and I'p is
the mth irreducible representation of E;.

The functions P, (r„, X) are solutions of the radial
equation

L
—(ft2/2m) V,.'+V(r~)+l(l j1)/r~' h]P, (—r„, X) =0,

His empirical form for the ionic character fits the
measurements of the dipole moments of the compounds
and it thus gives a good approximation to the param-
eters needed.

The potential obtained in this manner cannot be
expressed as a simple function and it is therefore used
in a tabulated form.

Having obtained the potential we can now solve the
radial equation. It can be written as (at any site p)

(d2X,/dr2) yy, (r) X,= 0, (33)
where Xi—rP(r) —and fi(r) = (2m/5') (X—V (r) )—
Ll(l +1)/r']. This equation can be solved numerically,
but before solving it we note that since the meson is
about 200 times the mass of the electron, the equation
is similar to that for the electron except that the po-
tential is multiplied by a factor of 200. Thus we see
that, depending on the sign of the function f(r), the
wave function either oscillates very rapidly (f is posi-
tive), or is damped out very rapidly (f is negative).
This is consistent with our understanding of the mesonic
atom, since we know that for equal energies, the elec-
tron state has a much smaller principal quantum num-
ber n than the meson, i.e., the meson wave function is
much more oscillatory.

The fact that we are essentially dealing with an
electron in a huge potential brings out a problem which
is not usually encountered in band-structure calcula-
tions: numerical methods are difFicult since the wave
function in high-lying atomic states depends very sensi-
tively on the conditions imposed at the origin. (Nu-
merical solutions of differential equations usually result
from a scheme of generating the solutions from one
point. ) It is generally impossible to specify the correct
condition at the origin to give an exponentially damped
wave function f far from a given point. A different
method must be used. We used here the WEB approxi-
mation. It is used in its region of validity, )

f'
~

&&
~

f41'
~,

and other numerical methods are used when this con-
dition is not satisfied.

One more simpli6cation is made. Since we are only
interested in states which are localized near the surface
of the ions, and since we know also that the wave
function is damped out very rapidly for f(r) having
negative values, then if X is an energy eigenvalue for a
valence state f(r) must be negative only very near the
surface. Now the region of zero potential is not clearly
defined and we Inay neglect it and assume that the
ion's edge lies at f=0.

To use the expansion LEq. (29)], we truncate and
limit the largest value of the angular momentum to
some number I.. The expansion itself will then contain
n constants to be determined, where n is the number
of nonvanishing lattice harmonics below I.+1. The
total number of constants for a two-ion compound is
then r4+r4' —1, where r4, e' correspond to the two ions;
the absolute normalization is unimportant.
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TABLE I. The capture ratios of some compounds. Comparison of
the calculated to the experimental and also the 2-law values.

Compound
Calculated Experimental Ref-

Z ratio ratio ratio erence

ZnS

AgI

MgO

Cao
CdO

1.87

0.89

1.5
2.5
6.0

3.0
1.9
0.82

1.6
6.0

2.6&0.4
1.5&0.2

0.83w0. 1

1.4a0. 1

6.7+1.5

a Reference 5.
b Reference 15.

k= 0, n'= e= 2 and so it is assumed that S=5 is suK-
cient. )For k= (~/a) (1, 0, 0), 1.=3 to give n =e'= 2.$

It is to be noted that we do not take proper account
of the valence character of the electrons. This affects
our calculations in two important ways: (1) through
the potential that the meson valence wave function
feels and (2) the interactions with the meson, i.e.,
cascade processes. The first objection is not as serious
as the second for two reasons. The potential arising
from other electrons is large compared with that from
the valence electrons for most of the volume of the
atom, and our calculation involves a sphericaBized po-
tential, which tends to smooth out the details of the
potential from valence electron screening. The second
objection is more serious; however, calculations show
that for heavier atoms in most of the regions where
the meson amplitude is large, the contribution of the
other electrons to the total electron density is larger
than that from the valence electrons. In fact, the Fermi-
Thomas atom contains only half the total electrons
within a radius of (1.33/Z'I') aa.

In Table I, we tabulate our calculated results and

We now choose a few points on the boundary of the
two ions, and apply the conditions Eq. (28), which
become for k=0 simply the continuity of the wave
function and its gradient across the interface. The
number of independent points E (some points are re-
lated by symmetry) must be such that it satisfies

4$))e'+I—1,

since there are four equations for each point and we
must have an overdetermined set of equations to solve
the eigenvalue equation. The actual determination of
the eigenvalues involves varying the energy parameter
), and for each ) a least-squares 6tting procedure is
applied. The best fit will then indicate the presence of
an eigenvalue. The m+m' —1 constants are also deter-
mined at the same time.

In actual calculations, we used L=4, and for both
the zinc blende and the sodium chloride structure at
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FIG. 6. The variation of the capture ratio with the charge transfer
parameter Zy for MgO.

o

N

Q 3

s 2

O.
0

0 EXPERIMENTAL

Linear

0
0 10

1 I

20 30
Atomic no. Z

— III I IJ'

I

40

Period

FIG. 7. Schematic plot of the capture ratio of oxides as a func-
tion of the atomic number Z of the positive ion, assuming a linear
Z-law background, and using Fig. 6. The plot is normalized
for MgO. Experimental values from Ref. 15 are included for
comparison.

compare them with experiment. We note that the num-
ber of compounds calculated are few compared with
the data available. This is because of the three limita-
tions of our model: (1) The compound must be one-
to-one binary, (2) it must have a simple structure
(we consider only NaCl, Zn blende, and CsCl), and
(3) the ions must have about equal size. A qualitative
comparison with all the data is to follow.

Zinov e] a/." noted that the capture ratio for the
oxides as a function of the atomic number of the posi-
tive ion follows a periodic pattern as a function of
atomic number. Because of the restrictions on our
model we are not able to calculate all the ratios which
are obtained experimentally; we can qualitatively ex-
plain the periodicity using our model. It is reasonable
to expect that the parameter which produces the peri-
odicity is Z~, the effective charge transfer. If we look
at Table 3.8 of Pauling, " we see that the electro-
negativity is periodic in atomic number.
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Fxo. 8. The experimental capture ratios for oxides.
This is Fig. 6 of Ref. 1S.

To explore this periodic behavior further, ere note
that the general character of the electronegativity is
that it increases as one goes from group I toward
group VIII of the elements. Slight irregularities occur
in the transition region, but Pauling's list shows that
an increase in electronegativity of the positive ion re-
sults in a lower ionic character I; thus I decreases as
one goes up from group I. If we recall now that the
parameter Zf is the number of valence electrons, E
(in the corrnnon oxidation state) times I, and that S
increases as the atomic number Z increases from group
I, Zy is thus a produce of an increasing and a decreasing
function of Z.

%e plot in Fig. 6 the dependence of the capture
ratio on Zf when all other parameters are held 6xed;
e.g., we vary Zy for one compound like MgO. V/e see
that the ratio of capture increases as Z~ is increased.
This can be understood as the result of the increase of
the attractive part of the potential in the positive ion
(and the decrease in the negative ion) when Zr is raised.
(The Madelung potential is not big enough to offset
this trend, since it is comparable to the attractive part
coming from Zr only near the surface of the ion. )

In Fig. 7, we plot the ratio of capture for oxides
versus the atomic number Z of the position ion, for

n V. G. Zinov A. D. Koning, and A. I. Maklin, Yadern. Fiz.
2, 859 (2965) English transl. : Soviet J. Nncl. Phys. 2, 613
(1966)j.

the second, third, and fourth periods. We assumed a
linear Z-dependent background and normalized at
Z=12 (Mg) on the plot. We see that it goes through
a maximum in each of these periods, corresponding to
the maxima of Zf, as speculated before. On the same
plot we put in some of the experimental points. Zinov's
plot (Fig. 6 of Ref. 15), containing most of the experi-
mental points, is reproduced in Fig. 8. Before compar-
ing the calculated and the experimental points in Fig. 7
we must bear in mind that we have neglected all other
changes (e.g. , crystal structure) except that coming
from the parameter Zf, and also a bnear Z law is
assumed as the background (which is roughly correct
experimentally) . In addition, we assumed in the calcu-
lation that the dependence of the capture ratio on Zy
is similar to that given on Fig. 6, i.e., for Z=12. How-
ever, Fig. 6 is based on a 6ctitious variation of the
parameter Zf, and although we believe that the mono-
tonic (or nearly so) behavior of the function is general,
we do not expect that the actual behavior itself is
correct for all Z. Also, we assumed that the total efI'ect
of Zf can be represented by the change in the positive
ion only, and yet we know that Zf a6'ects both the
positive and the negative ions. Finally, we have to
consider the oxidation states of the element since the
curve in Fig. 7 is based on the "corrnnon oxidation
states"" of the elements and is therefore not necessarily
the states of the elements in the compounds of the
experiments.

A comparison of the calculated and the experimen-
tal capture ratios for oxides (Figs. 7 and 8) shows that
there is good agreement for Z &20. This is to be ex-
pected since the calculation is normalized at Z=12.
%e notice, however, that even for high Z's the dis-
crepancy is not gross. Qualitatively, the oscillatory
behavior of the capture ratio with the period of the
periodic table and the positions of the maxima and
minima agree quite well between theory and experi-
ment especially considering the crudeness of the model.
%e are, therefore, led to conclude that the main fea-
tures of the capture of mesons are included in this
model.
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