PHYSICAL REVIEW

VOLUME 174,

NUMBER 2 10 OCTOBER 1968

Electric Field Dependence of Positronium Formation
in Matter

WERNER BraxpT* AND HOoWARrD FEIBUST]
Department of Physics, New York University, New York, New York
(Received 1 May 1968)

Positronium (Ps) can be formed whenever positrons, on slowing down in a substance, pass through an
Ore gap, i.e., a range of energies, just below the ionization threshold of the substance, of width comparable
to the Ps binding energy. We have studied the time evolution of the energy distribution of the positrons
below the ionization threshold in an external electrostatic field, and find: (1) The field induces diffusion
out of the Ore gap, which decreases Ps formation. (2) The over-all heating effect of the field on the positrons
increases Ps formation. Depending on the magnitude of the relevant cross sections, (1) can outweigh (2), at
small fields, and cause a significant decrease in the Ps formation. At field strengths larger than a characteristic
value, (2) becomes the dominant effect. In this way measurements of the field dependence of Ps formation
can give access to the cross sections for Ps formation and for positron-energy loss and scattering in matter.

1. INTRODUCTION

HEN Deutsch and Brown! studied the Zeeman

effect and the hyperfine splitting of positronium
(Ps) in gaseous argon, they noted an increase of the Ps
vield in the presence of an electric field. They con-
jectured that thermalized positrons in a sufficiently
strong field can gain enough energy during their lifetime
that they pass the threshold for Ps formation in the
gas, and thus increase the Ps yield. Detailed experiments
by Marder et al.? on a number of gases and their analysis
by Teutsch and Hughes® confirmed the effect and this
interpretation.

In one heavy gas, sulfur hexafluoride (SFg), the Ps
vield showed a significant decrease with increasing field,
which has remained unexplained. At higher fields,
Obenshain and Page* found a minimum in the Ps yield
followed by a rise to values higher than the field-free
value. The field-induced decrease in SFg was an isolated
anomaly until Bisi et al.5 observed a large drop of the Ps
yield in some molecular solids (polyethylene, Teflon)
at fields up to 100 kV/cm.

It is the purpose of this paper to explain the initial
decrease of the Ps yield in an electric field, and to
investigate what new information can be extracted
from the quantitative aspects of this phenomenon.
We find that a decrease always occurs in principle, but
it is large enough to be observed only in systems where
scattering processes are not totally overshadowed by
the Ps formation in the relevant range of positron
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energies. Conversely, measurements of the decrease and
subsequent increase of the Ps yield in an electric field
give access to the cross sections for Ps formation and
for positron scatter and energy loss in the target
substance.

The physical processes that cause the field dependence
of the Ps yield are examined in Sec. 2. A comprehensive
Ps yield function is derived from simple arguments
which show why and when an initial decrease occurs.
The formal solution as presented in the Appendix
confirms and justifies the results of Sec. 2. The yield
function and its application are discussed in Sec. 3.

2. Ps YIELD FUNCTION

Positrons can form Ps in a substance if their kinetic
energy E falls into an energy range (1), the so called
Ore gap (cf. Fig. 1). It is bounded by an upper E,
nearly equal to the internal ionization threshold of the
substance, and a lower E; such that the gap Eor=
E,—E; is equal to the Ps ionization energy in the
substance. Positrons that fall below the Ore gap into
the energy range (2) between zero and E; annihilate as
free particles.t

After their last ionizing collision at energies above
I, the positrons are injected with a probability

g(Eo)dEo (1)

somewhere into the energy range between zero and E,
with an initial energy FEo, such that

By
/ g(Eo)dEo=1.
0

Starting from E,, the positrons lose energy at some
mean rate

—dE(f) /dt=~,E(t) = Aye (1), (2)

where v, is the rate of energy loss characteristic of the

6 For recent reviews and references, see Positron Annihilation,
edited by A. T. Stewart and L. O. Roellig (Academic Press Inc.,
New York, 1967).
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energies of the Ore gap, A is the mean fractional energy
lost per scattering collision, and v is the number of
scattering collisions per unit time. The positrons with
an initial energy FEo> E; can form Ps only as long as
E(t, Eg) > E;. At later times they become part of the
population in range (2). Therefore the actual Ps yield,
@n, 1s less than the fraction

Ey
o= g(Lo)dEq
popl
deposited initially in the Ore gap. Clearly, the larger
the ratio

N=v/vr=0s/0s 3)

of Ps formation to positron energy loss, the closer
©,(A\1) will be to ¢1. Here and in the following, we denote
rates by v and cross sections by o. They are interrelated
as v =nvo, where # is the density of scatterers and v the
positron velocity; in the present context it suffices to
set v=2v;, the positron velocity corresponding to E;.

The positrons initially in range (2) reach thermal
equilibrium at a mean temperature 7%, before anni-
hilating. If kg7 is sufficiently large compared to £,
the tail of their distribution ~ exp(—E/kgTy) can
reach into the Ore gap and contribute to the Ps yield
with a probability W (7). We determine the con-
tributions of ¢, and W to the total Ps yield as follows.
Consider a positron with an initial wave vector ko.
Under the influence of an electric field &, the probability
of finding the positron at k is given by the solution of
the Boltzmann equation:

(0f/0t) +H1e8V f+ (df/dt) |se— (vatvs)f=0. (4)

The third term accounts for the influence of scattering

ENERGY RANGE

(2) (1)

EoRe

0 EsmEy E,
£

F1c. 1. Positrons that fall into Ore gap (1) between [, and
E: can form positronium. Positrons in range (2) annihilate as
free particles. In many Ps-forming substances E,~Vion, the in-
ternal ionization energy, and E;~Vien— Vps, where Vps~3% Ry
is the ionization energy of Ps in the substance. Typically, the
value of the parameter n= E;/E, ranges from 0.4 to 0.7 and, in
the absence of an electric field, the Ps yield is ~1—7.
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processes that occur at the rate vs. The last term re-
moves particles at rates v, and v, from the distribution
through free-particle annihilation and Ps formation,
respectively. The field makes the distribution aniso-
tropic in % space. We expand f in Legendre polynomials
in the usual way and, on retaining the first two terms,
cull from Eq. (4) the equation

) a | k%% 0
Boopr 21T L sk i et ©
for the isotropic part fo. Since v, is large only in the Ore
gap, two Sturm-Liouvile equations of this kind must be
solved, one for each of the distinct energy domains (1)
and (2), subject to the condition that the eigensolutions
match at the boundary E,; Insistence on the exact
boundary conditions precludes solutions other than by
computational means. Therefore, we in effect decouple
the two equations by appropriate boundary conditions
in each domain. The final result turns out to be in-
sensitive to the detailed choice. It is made such as to
render the problem soluble while approximating the
physical situation as closely as possible. The functions
¢, and W then are independent of one another, and
the total Ps yield becomes

P=p,+(1—¢) W. (6)

Teutsch and Hughes?® took ¢, to be field-independent
and derived the function W(T) in various approxima-
tions. The effective positron temperature 7', depends
on the strength of the applied field &. The temperature
of the substance, 7', and E; are normally such that
kpT/E;<1072 The contribution of W(7T,) to ®,
therefore, becomes significant only when 77, (8)>T,
and the dependence of ® on 7' can be neglected. In
terms of the effective positron mass m.* the
positron temperature in a field is given by T (8) =
2¢282/3kpm *yryse. Since we are interested in comparing
kT (&) with E, it is convenient to use the reduced
field variable

p(8) =[ksT+(8)/E/]M?
= (26%/3my Fyrysolin) 1126, (7

ot ok

which is linear in §. We have rederived W from Eq. (5)
for a slightly different set of assumptions than those
considered by Teutsch and Hughes, as shown in the
Appendix. We find

W(p)=T(p)/[T(p)+1], (8a)

where

T'(p) =N[14(2/7'20) exp(—p~2) — erf(p)]. (8b)

The appearance of the parameter

>\2E'Y//'Ya=a'f/‘7a: (9)
indicates that if Ps formation is much more likely than
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free-positron annihilation, W can approach unity at
large fields and, by Eq. (6), so can the total Ps yield ®.
The function W (p) is shown in Fig. 2 for various values
of N\s. It is vanishingly small as long as p<0.1, begins to
contribute to @ when p>0.2, and rises rapidly at larger
fields to its saturation value Ay/(N\o+1). This is the
normal field effect observed in monoatomic gases.

The decrease at small fields, then, must be found in
a field dependence of ¢,. We solve Eq. (5) for the
positrons initially in the Ore gap with the boundary
condition that all positrons leaving the Ore gap become
part of the particle population in range (2). This is a
good assumption even for positrons that attain energies
in the field in excess of E, since they lose most of their
energy promptly in an ionizing collision. The calculation
is given in the Appendix. Presently, we derive the
field dependence of ¢, from a simple physical argument.

Under the influence of an electric field, the positrons
in the Ore gap execute a random walk in energy space
about their mean trajectory F(t, E,), at the rate vy
and to first order in the field in steps of size

AE(8) = 468/ vsen (10)

In other words, the field-induced motion is a diffusion
in energy space away from E({, E,), characterized by a
diffusion constant

D(8) =3 | AE(8) [vse- (11)

The probability per unit time, ¢;., that a positron
crosses the lower or the upper boundary of the Ore gap
to join the population in (2) is then

| E@, E)—FEy |
M AD(8) (]
| E(t, Ey) — Epu |?
xe [ 1D(e)!

The last exponential term accounts for the removal of
positrons through Ps formation and direct anni-
hilation, with a probability per unit time

- ('Yf+"/a){, . (12)

4r.a="7.0 €xpL — (vs+va) 1. (13)

The Ps yield from positrons initially in the Ore gap
becomes

B
en®) = [ amg(m)
E;

E(t, Eo)=E
X / dt[‘]f(t)_ql(’, Eo,g) _Qu(t; EO) 8)]'
0

(14)

We insert Egs. (12) and (13) and for g(Fy) =,
obtain, to terms linear in &,

3N

2 /2
%(8)=¢n(0)—>\—2§-_—1[mJ 1p(8).  (15)

W. BRANDT AND H.

FEIBUS 174
We have abbreviated E;/E,=7, and denoted the
yield at zero field by

¢4(0) =2(0)
=N/ Mo+ 1) {1=9[NN\/ (=1 ]} (16)

p(8) is given by Eq. (7), A by Eq. (3), and \s by Eq.
(9). In most Ps forming substances A; and A, are so
large that the factor Ao/ (\s-+1) and the factor

N=1-)\tphrt (17)

can be set equal to unity. Equation (6) with Eqgs. (8a)
and (135) gives the total dependence of the Ps yield on
the applied field.

Our result accounts for the initial decrease. The
function ¢,, and thus &, diminishes linearly with
increasing field in the range of small p where W(p) is
vanishingly small (cf. Tig. 2). As the field increases
further, W begins to rise sharply, and ® goes through a
minimum. This is shown in Fig. 3 for the reduced yield
function ®(p)/®(0). At large fields, & becomes in-
dependent of ¢, and reaches its limiting value con-
currently with . The minimum disappears and we
retrieve the result of Teutsch and Hughes if A=
or/ov>10%, ie., under conditions where practically
none of the positrons initially in the Ore gap can escape
positronium formation.

3. DISCUSSION

In summary, the field dependence of the Ps yield is
determined by two processes. One is the increased rate
of escape of positrons from the Ore gap under the
influence of a field; this decreases the yield at low fields.
The other is the heating by the field of the thermalized
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F16. 2. Probability W (p) that positrons initially below Ore
gap can form Ps, Eq. (8). The variable p(8) is proportional to
the electric field, Eq. (7). The parameter M=os/0s, Eq. (9),
determines sharpness of the rise in W,
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positrons such that the tail of their distribution reaches
into the Ore gap; this increases the yield at high fields.
Given oy and o,, our analysis points to the cross sections
for energy loss, o, and for scattering, g, as the impor-
tant parameters that determine the rate and the mag-
nitude of the decrease of the Ps yield in an electric field.
The initial slope s of the yield function is given by

= (dq)/dg) &=0
= — (/M yrvselon) 2. (18)

Since E, can be equated to ionization potential of the
substance, and ®(0) determines ~1—®(0), the
initial slope is a direct measure of the product (y;yse) /2.
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F1G. 3. Reduced Ps yield function ®(p)/®(0) shows the de-
cline of ¢,, Eq. (15), until p(8) is so large that the rise in W (p)
becomes dominant, Eq. (8) and Fig. 2. The variable p(8) is pro-
portional to &, Eq. (7). The parameter \y=oy/0r, Eq. (3), de-
termines the magnitude of the field-induced minimum. The
parameter A\s=oy/0., Eq. (9), determines the sharpness of the
rise at high fields.

The magnitude of ®min and any of the values of § at
which ® reaches ®n;, or attains some other specified
characteristics on the rising part of the curve, determine
M1 and A, separately. One need only use the fact that
p is related to the applied & through the measured
slope s as p=(+/2) | s | M¥26. Thus, from an experi-
mental Ps yield function, one can extract information
about the cross sections for Ps formation oy, for energy
loss o, and for scattering o of positrons with energies
comparable to E;.

We have analyzed the available measurements on
SFg in this way. Figure 4 shows the fit we obtain with
the accurate data by Marder et al.? on the initial decline
at 2 atm. The experimental method used by Obenshain
and Page* gave less accurate information on the change
of the Ps yield at higher fields. Their data are shown in
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F1G. 4. Field dependence of the Ps yield in SFs at 2 atm as
observed by Marder et al. (Ref. 2). The solid line shows the
decrease of the Ps yield with a slope given by Eq. (18) as deter-
mined by the constants listed in Table I.

Fig. 5, together with the last point of Fig. 4 for reference.
The constants chosen to fit the calculated curves to
these data are listed in Table I. The difference in
accuracy between the two sets of experimental data
leaves the absolute magnitude of the individual cross
sections uncertain by a factor of 2, or so. However, the
trends in their relative magnitudes are clear. Starting
with the last column, the fractional energy loss per
scattering collision, A, is just equal to 2m,/M (SFs) =
6X 1078, as it should be for classical momentum transfer
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Fic. 5. Electric field dependence of Ps yield in SFs. The ex-
perimental points are those of Obenshain and Page (Ref. 4) and
one point from the series of measurements by Marder ef al. (Ref.
2) shown in Fig. 4. The curves have been calculated with the
constants listed in Table I,
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Tasre I. Ps yield curves shown in Figs. 4 and 5 for SFs are
calculated with the parameters listed here. The conversion factor
from o to v/p is ¢ (cm?) =1.8X10%y/p (sec! atm™). E,=
19.3 eV; ®(0)~1—%=0.33; v./p=4.1X10" sec! atm™.

SFs Cross sections (10716 cm?)

p(atm) s or Tso A
1.0 3.8X1071 6.5X107¢ 1.1X10? 6.0Xx107¢
1.5 9.0X102 6.5X10™ 1.1X10? 6.0X107¢
2.0 1.1X1072 6.5X10* 1.1X10? 6.0%1078

in elastic positron-molecule collisions. In the investi-
gated pressure range, o, and o are insensitive to
changes of the gas density. In contrast to the situation
in light monoatomic gases, the difference between
positron and electron scattering cross sections of large
molecules at energies ~E; are minor, and both should
show the same trends with the molecular structure of
the scatterer. Indeed, the value of oy listed in Table I is
similar to the electron value.” The pressure dependence
of ®(8) stems from the change of o;; the Ps formation
cross section decreases with decreasing free volume in
the gas.

A similarly comprehensive analysis of the decline of
the Ps yield in semicrystalline organic solids reported
by Bisi ef al’ is not possible because the field de-
pendence was not pursued far enough to show the
minimum our theory predicts. Moreover, the in-
homogeneities in these materials may cause special
effects that have not been discussed here. In solids the
interpretation of the relation between o, and oy as
given by Eq. (2) differs from that in gases. For example
in nonpolar solids where the positron-phonon inter-
action is the dominant loss mechanism, we have
0= Apnoph =Aos, Where og=opn+os, the subscripts
referring to positron-phonon and positron-defect scat-
tering, respectively. Knowing o, and o, we can separate
opn and og if we introduce an effective phonon mass
Mon* by the relation

Mpn*=(ksT/c?)y cothy, (19)

where y= (m.*c¢*nE,)"*/ksT, ¢ being the sound velocity.
When y<1, Eq. (19) becomes equal to the Davydov
value Mon*=kT/c28 In the limit y>>1 of interest here,

Mpw* =m*(nEy/m*?) 12, (20)

Then Aph=2m*/M,* in formal analogy to the result
in gases.

7 Progress in Dielectrics, edited by J. B. Birks and J. H. Schul-
man (John Wiley & Sons, Inc., New York, 1959), Vol. I, p. 156;
and F. Llewellyn-Jones, Ionizaiion and Breakdown in Gases
(John Wiley & Sons, Inc., New York, 1957), pp. 17-21.

8 B. Davydov, Physik. Z. Sowjetunion 12, 269 (1937).
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APPENDIX

In solving Eq. (4), it is convenient to define the
function

H(k, ko €) = / 0 / Ay (R f(k ko, &, 1) (A1)

in terms of the rate v =v,+7v;-vs at which the particle
leaves the volume element d°k at k. The integration
over the solid angle Qi averages over all directions
relative to & and retains only the isotropic part of f.
With the abbreviation p,=+,/v, the Ps yield becomes

B(8) = / Phog (ko) f k(B H (B, ko, 8).  (A2)

If €=0, one can solve directly for H. On writing
vse(K) =Jw(k, k') d®F’, one obtains the integral equation

H(E, ko) =H,(E, ko) + / PR )k, ) H(E, ko),

(A3)

where H, is the source term (4wk?)~6(k—ko). We
incorporate the fractional momentum loss per collision
(—08k/k) =%A by setting

w(k', k) = (47k?) Tarys (k)6 (kK —ak),
where a=1—(3A). The iteration solution of Eq. (A3)
becomes

H(k, ko) = (40k2) "o (b—arky)  (A4)
and therefore
®(0) =pL2) pe—n 20 (@pec)”].  (AS)

The primes mark the summation range bounded through
the condition o™k, =k;. Summation yields Eq. (16).
If €520, we calculate W (&) with the ansatz

Jo=C(ko) (k) exp[(rk)*—(T+va)t],  (A6)

where 72 = (pk;) =3 ( Ay, 2h2/e28?) ; it lends itself readily
to satisfy the boundary conditions that the current in
k space be zero at £=0 and that f; be bounded every-
where. In terms of the separation constant T, Eq.
(A6) converts Eq. (5) into the Sturm-Liouville equa-
tion

e or— opy >

dk (k a5 Sl 0R)°]

+4(7k /v ) [T = (k) Jo (k) exp[— (rk)*]=0. (A7)

As did Teutsch and Hughes in one of their approxi-
mations, Eq. (A7) can be solved simply if vy, while zero
in range (2), is finite in range (1) but small enough for
Ps formation to act merely as a perturbation on the
thermalized positron distribution. The eigenvalues of
the unperturbed equation are T',=#ny, where =0, 1,
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2, «+-. Since 7.y, only the lowest perturbed eigen-
value I' contributes, for which we obtain directly Eq.
(8b). The integration according to Eq. (A2) yields
Eq. (8a).

We determine ¢, when %0 by making the trans-
formation k—k+-(e8¢/7) in Eq. (A1) or, equivalently,

s —s1mtinarae) [ (2 22)) i ()]
(A8)

H(x, xp) = /d3x1

exp(— | x—x1|) 8(x %o)
4r | x—x |2

n=1

One can simplify Eq. (A9) by considering its Fourier
transform

tan—lg\"*! sina”gux
H(q, %) =ZPS°"< q 9) -

a”qxo

(A10)

because in the range of relevant values of o and pg,
close to unity the inverse of Eq. (A10) can be written
concisely in terms of the principal solution gy of the
characteristic equation

1—peg ! tan~g=0
in the form

H (x, %0) = 2_H,(x, )

—ch D

—qo ‘ x—l—a"xo D]J
where go=[(1—ps) ]2 This function H(x,x) is

A
= 1—
Pn M—1 [

— exp( (A11)

L S L) T
M—1

M2 A —1 21
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in Eq. (A3), where

Ey(x) = f ytexp(—y)dy.

Following the work of Stewart and Gerjuoy® on loss-
free media (A=0), one proves explicitly that Eq (A8)
is the correct transformation in lossy media where
a=1—(3A) <1. We solve Eq. (A3) with Eq. (A8) by
iteration and retain only terms of order A. With
x= (fikvys./e8), the result is

| =250 D 8 (®ny1—a™xo)

drr | j—ajp1 ? ? ] (49)

47!' Xn+1

/ %41 exp(

=1

normalized in the sense that

(=) [l ) =1, (A12)
ie., the two channels of disappearance account for
exactly one particle.

We impose the conditions of absorbing boundaries by
noting that each term H, in Eq. (A11) represents the
outcome of a random walk in energy space of positrons
surviving just » steps before disappearing. The effect of
energy losses on this particle is equivalent to translating
its initial position from xp to a™x,. A particle that
crosses «; or x, reaches thermal equilibrium and dis-
appears from the positron ensemble at the rate v,, and
the approximation incorporated in Eq. (5) applies.
In effect, then, the boundaries eliminate all sequences of
steps that permit a particle to cross a boundary more
than once. We expand

H, (x, x0; 21, %) = Hy (2, %)
—H,(2x—2xy, %0) —H, (22, —
On inserting into Eq. (A2) one obtains

x, %0). (A13)

N\

<1+ ; e llz) +OLexp(—gur) ]] . (A14)

Eq. (A14) confirms the essential field dependence of ¢, as given in Eq. (15).

9 G. W. Stewart and E. Gerjuoy, Phys. Rev. 119, 892 (1960).

K. M. Case, F. de Hoffman, and G. Placzek, Los Alamos Scientific Laboratory Report, 1953 (unpublished).



