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Theory of Nonlinear Effects in a Gas Laser Ampli6er.
I. Weak Signals*
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Using classical 6elds and the density-matrix formalism, we analyze the nonlinear characteristics of a
gas laser ampli6er subject to an axial magnetic 6eld, operating with two optical-frequency signals of arbitrary
polarization. Perturbational solutions, valid for relatively weak intensities, are obtained which describe
the saturation interaction of the signals and the generation of combination tones. An arbitrary amount of
Doppler broadening is considered throughout. The simple J=1—+J=O inodel is found convenient to
describe the physical processes taking place. In general, however, the interactions are found to depend
on the J values of the levels. We find that only saturation and no combination-tone generation occurs for
two opposite circularly polarized signals, while both eBects are, in general, present for two linearly or
elliptically polarized fields. The limiting case of zero magnetic field is examined separately. It is also found
that in many cases the medium is made effectively anisotropic by the nonlinear interactions. Applications to
measurements of atomic parameters such as J values, g values, and lifetimes are discussed.

1. INTRODUCTION

"ONLINKAR interactions of electromagnetic fields
in a population-inverted gaseous medium have

received considerable attention recently. Lamb' has
calculated saturation e6ects, valid for arbitrarily
strong fields and stationary atoms in a single-frequency
traveling-wave maser, using a scalar electromagnetic
6eld and a model of two nondegenerate levels. Strong
saturation in a gas laser amplifier was also studied by
Gordon, White, and Rigden, ' who used a rate equation
approach. Lamb' has given the scalar theory of a multi-
mode laser oscillator including the e6ects of atomic
motion. The induced polarization was calculated to the
third order in the fields and the results are valid for
low intensities only. Aronowitz' has performed a single-
mode calculation for a ring laser and included isotope
eBeets.

Several attempts have been made to include the
vector nature of the electromagnetic field without
going to more complicated level structures. Haken and
Sauermann' used a model of two nondegenerate levels
and the "classical" method of averaging over possible
atomic dipole orientations. Tang and Statz' used the
same method with a somewhat simpler model containing
one decay rate only. Close~ has made a detailed study
of a laser amplifier using Lamb's atomic model. Both
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perturbational and strong-field results were obtained
and the vector nature of the fields included by the
method of the previous authors. The strong-field results
for paralle1 polarized (i.e., scalar) fields were reported
separately. '

Lamb's oscillator theory has been extended to lasers
in magnetic fields, using vector fieMs interacting with
atomic levels that are eigenstates of angular momen-
tum. Fork and Sargent ' have given amplitude and
frequency-determining equations for axial magnetic
field and a J= 1—+J=0 transition. Culshaw and
Kannelaud have treated the J= ~~J=

2 transition
in axial field" and the J=1—+J=O transition in axial
as well as transverse magnetic 6eld."Durand"' also
treated the J= 1—+J=0 laser using a rate equation
approach. D'Yakonov and Perel" gave a theory for
an arbitrary J,~J& transition valid for weak axial
magnetic 6eld. Beer and Graft' outlined a very
general theory valid for ampli6ers, standing wave or
ring lasers. They included atoms with arbitrary angular
momenta and hyperfine structure, magnetic field at
arbitrary angle to the direction of propagation. How-
ever, they did not evaluate the coefFicients in their
expressions. In zero magnetic 6eld calculations of a
J—&J~ transition Polder and Van Haeringen'7 and
Doyle and White" obtained results for the polarization
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states of the modes in a laser oscillator. More recently
Sargent, Lamb, and Fork" gave a detailed theory of a
Zeeman laser oscillator with numerical results covering
a general state of polarization in the cavity, any degree
of cavity anisotropy, arbitrary angular momenta, and
hyperGne structure. As in La,mb's scalar theory' and
in Refs. 9-19, the induced polarization is calculated
to third order in a perturbational series giving results
valid for weak Gelds. Some results on combination-tone
generation in a magnetically tuned laser amplifier were
reported by this author. "In this paper we give a theory
of nonlinear interactions of electromagnetic waves of
arbitrary polarization in a laser ampliGer subject to an
axial magnetic Geld. The zero magnetic Geld case is
also considered. In addition to the perturbational
results, we also obtained equations that are valid for
arbitrarily strong field intensities. These are presented
in II." The velocity integrals are evaluated exactly
throughout and the results are consequently valid for
any amount of Doppler broadening. (This is especially
important for the strong-Geld results of II, since at
high intensities even a strongly inhomogeneous line
becomes partly homogeneous. ) There is, so to speak,
one more degree of freedom in a laser amplifier than in
an oscillator. The frequencies and polarization states
of the fields are not determined by the cavity and the
active medium. They can be entirely arbitrary. This
generality is fully explored in this paper. Emphasis
is placed on the interpretation of the results in terms
of the physical processes that take place. Both a simple
J= 1—+J=0 and a general J—+Jq transition are con-
sidered. Collision effects are ignored.

Ke are concerned principally with two nonlinear
effects which we call saturation interaction and com-
bination-tone generation. Before proceeding to calculate
them it is useful to discuss briefly the nature of these
eGects. Figure 1 shows schematically a simple J= 1—+

J=O level system where the sublevels are split by an
applied magnetic Geld. The polarization vector of the
dipole moment is indicated for each transition. Gain
nonlinearities are caused by self-saturation of the
circularly polarized components, by cross saturation
due to transitions terminating on a common level, and
by double quantum interactions in which an atom
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hereafter referred to as II.

acquires an electric quadrupole by interacting co-
herently with a left and a right circular Geld. These
physical processes occur regardless of the polarization
states of the input fields, and are exhibited in the
calculations that follow.

If the electromagnetic field E(s, t) contains two
frequencies v» and v~, new frequencies can appear in
the laser due to nonlinearities of the medium. LE(s, t) 7'
can contain terms oscillating at 2v2 —v» and 2v» —v~,

fE(s, t)7' terms at 3vs —2vi and 3vi —2vs in addition,
etc."This effect we may call combination-tone genera-
tion. Physically it is caused by a coherent modulation
of the population-inversion densities. If a given transi-
tion is acted on by two fields of frequencies v» and v2, an
atom in either state of that transition sees a Geld with
beats at frequency Av= v» —v2, and the population
inversion is modulated. Because the gain is proportional
to the population inversion, this results in a parametric
generation of new frequencies at v»+eAv. The necessary
condition for this process is that two (or more) fields
of different frequency must be connecting the two levels
of a given transition. If different transitions are in-
volved no combination-tone generation occurs unless
the relevant sublevels are connected by some other
interaction such as collisions. We expect therefore that
no combination tones occur in our laser amplifier for
two opposite circularly polarized input signals, but
that combination tones can be observed for two linearly
or elliptically polarized waves.

2. ELECTROMAGNETIC FIELD AND THE
POLARIZATION OF THE MEDIUM

In order to keep our results both tractable and
sufficiently general, we shall assume that the electro-
magnetic field consists of two nearly monochromatic
plane waves of frequencies v» and v&, with arbitrary
polarization states, propagating in the s direction. It
will be found convenient, however, to work with circu-
larly polarized waves. Accordingly, the Geld at each
frequency will consist of two opposite circularly polar-
ized components. Defining a vector base system by

E=geE,
m=0, g

where e~= (1/V2) (e,Kiev) and es ——e, and E =E e
the electromagnetic field is

E(t, s) = ReIe~Ei+ expi(kis —vit+yi+)

+e Ei expi(kis —v&t+&i ) +8+E&+ expi(k&s —vst+itls+)

+e Es expi(kss —vst+ps ) I. (2)

and &, are slowly varying functions of position
and time. Arbitrary linear, circular, and elliptical waves
result by choosing the magnitudes and initial phases
appropriately. For convenience, k is taken to be equal
to the free-space propagation constant v,jc, and the

"E 0. Schulz-Du Bois, Proc. IEEE 52, 644 (1964).
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total phase shift. 6&&e to the medium is accounted for

The polarization of the medium is obtained by
calculating the expectation value of the dipole moment
for a single atom and summing up over all atoms that
at some time are excited to the pertinent energy levels.
The method used for the perturbational calculations
is similar to that of Sargent, I,amb, and Fork, " and
only its outlines will be given. The equation of motion
for the truncated atomic density matrix p is"

ip= )Ho ', (i«r—)-~p pro—+ ', (i«r)-)+H'p pH', —(3)

where Ho is the unperturbed Hamiltonian, H'= —y.E
is the interaction Hamiltonian, and I" is the phenom-
enological decay constant matrix. The macroscopic
density matrix p(», r), t, t) is defined by

Xp(n, «, to, r), t) &L»—»p —r)(t—tp) g. (4)

P(», t, o) =TrI pp(», ~, t, t) j. (6)

The total macroscopic polarization is found by in-
tegrating over all velocities. In this paper the set of
equations implied by (5) are solved by iteration, and
P is calculated to third order in the Gelds. First, the
simple J= 1—+J=0 transition is treated in some detail.
Next, the results are extended to the general J,~J~
transition.

3. J=1 TO J=o TRANSITION

The energy diagram, showing the interaction with
the electromagnetic Geld, the spontaneous decay rates,
and the pumping of the levels, is given in Fig. 1.Defining

P;„(», t, i)) = ReL(P, (r)) expi(k;» —v, t+y;,.) j, (7)

macroscopic density matrix is

i&p(», o, t, t) /re= [EEo—ot (@r)jp p[—Ho+ ,'(i«-1') j
+H'p pH—'+zA (», r), t) . (5)

The induced polarization due to atoms of velocity ~ is

p(n, »p, tp, v, t) is the density matrix, at time t, of an.

atom that is excited to the level o, at time to and position
»o with velocity r), and l), (»p tp r)) is the density of Z+(o), v) =y.bLy.b+i(o) —v+kr))]-, (8a)
excitation per unit time per unit volume. Thus p(», r),

t, t) describes an ensemble of atoms at time t. These
atoms are moving with velocity e and at time t are we find the left circular component of the polarization
located at the position s'. The equation of motion of the at the input frequency vj to be

(v/2"~) )P -(o) = —i lf'(o) E -C+(~+, ~ ) I1—(»-'/2E. ')
I ~+(~+» ~ ) +~-(~+, ~ ) l

—(E -'/2Eo') I:~+( +, ~ )+~-(, ') 7—(E -'/2Eo') (v.v /2v. ) L(v.—~ ) '+(v —~ ) 'j
XL~.( ~, )+~ (., )j—(E.'/2E')(v. /2~. )L~.(, )+~ (, )j
—(Es+ /2Ep ) (p~/2p~b) LZ+(o)~, vs) +& (o) b, vs) 7—(Ei+ /2Ep ) (p~yb/2yab)

X ('Y +io)+ ) 'L&+(o)+b, vi)+&—(o)-b vi) j—(Es+'/2Eo ) ('Y "Yb/2 Y,b) b,+i (o)+ —Av) j '

XL&+(ro+»»)+&+(o)—»») 7}+in%(r)) (E&+Es+E /2Ep) (y.yb/2y. b) I (yb —i~v) '

Ep'=3«'~-vb/I & II P II » I',

0= +'-c =-,'L(~ --~~) —(~ --~.)j

XI &+(&~,»)+&—(oo-» vs) j&+(o)+» ») + (7.+™+)'L~+(o—)+b») +&—(&-b») j&+(o)+b, ») I exp(i2~) . (9)

The constant np=Ppv I(a II p II b) I'/6ep«cp~ is the is the angle between the major axes. The o)~b are the
small-signal gain parameter, where 1Vp=li, /y, —Xb/yb atomic transition frequencies originating on the M=&1
is the excitation density and (a I I p I I

b ) is the reduced sublevels, respectively, and o)+ ——o)+b—o)~ is the
matrix element of the dipole operator p. Eo' is the Zeeman separation of the two circularly polarized
saturation Geld intensity, deGned by transitions. The right circular component (v/2epcl tPi~(r))

is obtained from Eq. (10) by interchanging + and-
subscripts. Similar expressions hold for (v/2epc) (Ps~
which we get from the above by interchanging sub-

and 1Y(r)) is the velocity distribution, assumed to be scripts 1 and 2.
Maxwellian, with average velocity e. In addition, this third-order calculation gives two

new frequency components, or combination tones, at
the frequencies v0=2v~ —v2 and v3

——2v& —v~. These are

(v/2epc) (Pp (v) =inW(v)Z+(o)+b, 2vi —vs) ( (Ei Es+2Eos) (yoyb/2ya) p(y~ —ihv) '+ (y itbv) '5—
XL&+(o)m, vr) +& (o)+b, vs) ]+(Ei E]+Es+/2Eo ) (VsVb/2Taa) [(&b i &v) 5&+(o)m~ vr) +—2 (o)m~ »)1—

+PV +i(op+ Av) j '[2+—(oo+b vl) +& (o) b, vo) j ] expiL2ejI, (10)
~ L. R. Wi1cox and W. E. Lamb, Jr., Phys. Rev. 119, 1915 (1960).
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and similar expressions for the other three components. The total polarization is calculated by performing the
integration over the velocity distribution. The integrals are expressed in terms of the error function of complex
argument, ~ de6ned by

w(s) =exp( —s') erfc( —is) = (2/V~) exp( —s') exp( —ts)di.
g

This is related to the "plasma dispersion function" by

w(x+iy) = isr '—lsZ(—x+.sy) .
The result is

(v/2poc) 0'r = inL&'r—{w'"(xp+y ri+ia—) —(E& '/2Eo') Hz(xo, y, ri) —(Er+'/2Eo') [Hs(xo, y, ri) +Hs(xo, y, ri) 7

—(E '/2Eo') [H (xo, y, g) +H. (xo, y, g) 7- (Esl.'/2Eo') [Hp(xo, y, ri) +H7(xo, y, g) 7}

(12)

&hei e

H~ a{2/&m——2[a+i.—(xo+y ri) 7w (—xo+ y-11+su)

+ (1/a) Rewe(xp+y —si+iu) }, (14)

Hs A(i/2y) ——[w*(x,+y ran+i a) —w*—(xp y —ri+—ia) 7

+[0 5/(a+iy. ) 7[w*(xo+y ri+ia)—
+w(xo —

y
—ri+ia) 7, (15)

Hs [AB/(A——+iy) 7{2/47r —2[a+i (xp+y rI) 7—
Xw*(xo+y ran+i a) +[0—.5/(u+ iy) 7

x [w*(*,+y —g+ia)+w(xo —y —v+ia) 7},
H, =a{(i/2') [w*(xo+y+si+ia) —w*(xo+y —si+ia) 7

+[0.5/(u —isa) 7[we(xo+y —ri+ia)

+w(xo+y+n+&a) 7}, (1&)

H, = AB[(A —i~)-'+ (8—i~)-'7

X {2/vm 2[a+—i (xp+y g) 7w—*(xp+y si+ia—)
+[05/(a i.ri) 7[w—'(xo+y ri+ia)—

+w(xo+y+ri+ia) 7}, (18)

H, = A {[i/2(y—
&) 7[w (*,+y—&yiu)

—w*(xp —y+ri+ iu) 7+0.5[a+i (y—ri) 7-'

X[w*(&+y—„+ia)+w(*,—y+,+ia) 7},
II&= AS[A+i(y —ri) 7 r{2/%sr —2[a+i(xo+y —si) 7

Xw*(*o+y—v+ia)+o 5[a+i(y—~) 7 '

X [w*(*o+y 5+ia)+w(xo y—+~+ia) 7} (—20)

H.=[»/(~-'. ) 7{('/2y) Lw*("+y-.+'a)
we(xo y ri+ia) —7+0 5[a—+i'—(y ri) 7 '—

X[w*(xo+y+ri+ia) +w (xo y+n+ia) 7} exp—[i»7
(21)

+in(Er+Es~~+/2Eo ) [Hs(xp, y, p) +Hs(xo, y, ri) 7, (13)

with the limiting case

lim (0 5i/A. ) [w*(s+6+ia) —w*(s—6+ia) 7

= 2/Ver 2(a+is—) w*(s+ia) . (23)

In the above equations,

xo= [(pp+o+po —o)
—(vr+vs) 7/2ksr = (uo —vo) /kl, the de-

tuning of the mean frequency from line center;

y=(polyp —co~)/2kl=a&+ /2kl, the Zeeman shift or
half the line separation;

rl= (v&
—vs)/2kN=Av/2kN, half the frequency separa-

tion of the input signals;

a=y, p/ku, the natural linewidth;

A=y, /2kss, B=pp/2kN, the decay rates of the upper
and lower levels.

+1m ~+2m interchange subscripts 1 and 2, let q
—+—g,

interchange subscripts + and —,let y~
y.

All the above are given in units of the Doppler width
parameter kN. The quantity

n=ano=/pal v {(a {{p )] b)j'/6p&ckN

is the small-signal inhomogeneous gain constant.
To obtain the other three components of the polariza-

tion the following simple rules are to be used:

Hs = [A&/(A+ sy) 7{(i/2') [w*(xo+y+ri+ia)
w*(x,+y—g+ia) 7+—0 5La+i(y . g)7—

x[w'(*o+y g+sa) +w(*o y+—n+ia) 7} exp[i»—7

(22)
~4HaauEbook of MathematicaI, Ezcmtzoes, editei by M. Abram-

wits and I.A. Stegun (National Bureau of Standards, Washington,
D. C., 1964), AppL Math. Series, Vol. 33, pp. 297-304, 323-328.

The new frequency, or combination-tone, components
are calculated from (10) in the same manner.

(v/2epc) Po =in{ (Er 'Es-/2Eo ) fIr(xo, y, ri)

+ (Eg Ey+Es+/2Eo ) [Us(xp y ri) +Up(xp y ri) 7}

Xexp[i287, (24)
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interchange subscripts 1 and 2, let q
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interchange subscripts + and —,l tan —,et y—+

Each of the functions Hi —H and U —U
of t

9 an i 3 co11slsts

inhomo
o two parts. It can be shown " that fora or strongly
in oinogeneous broadening (a=y,o/kN-+0) the first
part in each is negligibly small, while for homogeneous

roadening (a~~) both parts contribute equally and

"H. R. Schlossber andg and A. Javan, Phys. Rev. 150, 267 (1966).

where

Ui ——AB[(A —irI) '+(8—iiI) '7

&& I (i/2g) [wa(xo+y q+ia) w—*(xo+—y 3rI+ia) 7—

+[0.5/(a —2iI) 7[wa(xo+y —3iI+ia)

+w (xo.+y+rI+ia) 7I, (25)

~=[A&/(& —'n)7I[/2(y —n)7[ *( + —3+ )

—w*(*o—y
—~+ia) 7+k[a+'(y —2~) 7-'

&& [w*(xo+y—3q+ia)+w(xo y+i7+—ia) 7}& (26)

Us= AB(A+i(y —iI) 7-'I (i/2') [w*(xo+y—iI+ia)

w*(xo+ y 3—n+ ia) 7+ ',—[a+i(y 2g)-7—
X[w*(xo+y—3n+ia)+w(xo —y+n+ia) 7I (27)

The rules for obtaining (Po+, 5'3+, and 6'3 are

the non'inear interactions are twice tassrongasint e
previous case.

A. Twwo Opposite Circularly Po1arized Signals

For this ca,se on
and P t

, on y i and E2+ are present. I'
the new frequency terms of the induced

~ 0+

polarization, are identically zero. Thi
ualitative r

tones for opposite circularly polarized field I'
2+, e polarization terms at the in ut fin u requencies,

consist only of the linear term d than ose non inear
terms involving Hi, H6, and H7. I'q and I'

ica y, indicating that left circular wave does not
generate right circular and mice versa. Sub t t
an into Maxwell's equations, neglecting tran

'ves and such higher-order derivatives as B'E/Bs',
a'g/Bs', (ap/Bs) (BE/Bs), etc. , we obtain the two
equations

[ayj~/Bs+c (ayj~/al) 7E' (v/2ooc) (Pjsgy (28a)

BE,„/Bs+c '(aE; /BI) = (i/2soc) (P;„„(28b)
where 5' =5';~=6';~,—i5';m, and only the subscripts 1—
and 2 are allowed. Assuming that the spectr 1 'dthcra wi

e eld components is much smaller than their
frequency separation, the Geld amplitudes can be hscan ec osen

p e y space or purely time-dependent. The former
is appropriate for the treatment of an ampliler while

he latter is suitable for a ring laser. Setting time deriva-
tives equal to zero we obtain the amplifier gain and
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I'io. 4. Hole-burning interpretation of the behavior of 5'2.

'P W. R. Bennett, Jr., Phys. Rev. 126, 580 (1962) .

example, depletes the population inversion of the-
field by filling up the common lower level. By its nature,
this coupling must be weaker than the self-saturation
since the upper level is not influenced and the effect
of one field on the population inversion of the other is
therefore smaller than that on its own. The strength
of this interaction (both real and imaginary parts)
depends on the relative sizes of y„y~. If y ((y~ the
coxnmon level decays much quicker than the other one
and Hs is negligibly sma, ll. Equation (19) also shows
that this part of the nonlinear polarization has a reso-
nance at y—p =0, where the signal frequency separation
equals the Zeeman splitting, with a width equal to
2a=2y, b/ku How.ever, when we vary the detuning
xo about zero while keeping y—g fixed, the interaction
has width 2 about x0=0. These properties can be
explained physically in terms of hole burning. "Each
signal burns a hole not only in its own Doppler gain
profile, but also in that of the other signal. This situa-
tion is shown in Fig. 4. For the sake of graphical sim-
plicity only the holes made by the right circular (v+)
signal are shown. The atoms involved are those travel-
ing with velocity sz, such that v (1—sz/c) =rp+&.

Because the width of the holes equals the natural line-
width 2p, &, only when

I
6 —~ I

(2p,& is there signifi-
cant saturation interactio~ between the left and right
circular waves. The above condition can be written as

I (~+p —~-) —(~~—~+) I

=
I ~~—~~

I &».» which
leads to the behavior discussed above. Variation of
Kp pp (i.e., xp),—on the other hand, merely introduces
a slowly varying Doppler weighting function.

The cross saturation described by H& is due to a
coherent interaction of an atom with both fields. This
results in a coherence of the magnetic sublevels, mani-
fested by a nonzero p+ . The relative magnitude of
this interaction compliments that of the common level
interaction: Hq is large when y,((yq and vice versa. This
double quantum process has the characteristics of the
Raman effect. That is, it remains significant only if
the frequency separation Av~co+ . The width depends
only on y„ the width of the upper sublevels. (The
common lower level plays the role of the virtual level
and its decay rate does not inhuence the width of the
resonance. ) In addition, the real part of H7 changes sign
in the vicinity of pp~ —hv=p, (y—

r) = A). This is due

C =()+ -()-+/0+0 (32)

and the coupling is strong or weak according as C is
larger or smaller than unity. I oosely put, strong cou-
pling means that the effect of one fieM on the other is
stronger than on itself. The result of strong coupling
in an oscillator is a bistable situation in which one of
the two modes is suppressed. In a laser amplifier the
consequence of C being larger than unity is not exactly
the same. In the region where dE/ds appears to become
zero or negative Eqs. (29) and (30) are invalid. Al-

though the effective gain of the weaker signal is made
smaller by the stronger field, no quenching takes place.
Instead, an intensity unbalance between the input fields
is amplified. This will be discussed further in II,"
which contains results valid for arbitrarily strong fields.
The coupling between opposite circularly polarized
waves for a J= 1—+J=0 transition is critical (C= 1) if
co+ = Av. Otherwise the coupling is weak and there is a
tendency in the amplifier for the field intensities to
equalize. "

'~H. R. Schlossberg and A. Javan, Phys. Rev. Letters 17,
1242 (1966)."It has been experimentally observed in a J= 1.—&J=0 laser
oscillator LR. L. Fork, W. J. Tomlinson, and L. J. Heilos, Appi.
Phys. Letters 8, 162 (1966)g that the coupling is actually strong
if co+ —0v is zero or small. This has been attributed to collision
effects )Phys. Rev. Letters 20, 647 (1968)j which increase the
coupling between opposite circularly polarized 6elds. In other
transitions where the coupling is clearly weak or strong the neg-
lecting of collision eA'ects does not result in such di6erences of
behavior.

to the fact that the induced polarization due to p+
contains another atomic response function, which mixes
the real and imaginary parts of p+ . This behavior
does not show up in the total interaction of the two
opposite circular waves, however, because a cancellation
takes place between H6 and 87. As a result the variation
of Hp+Hr with y —

ri is particularly simple, the real
part having an essentially Lorentzian shape with a
width 2A =y„/km. Although this behavior is apparently
present even for intermediate Doppler broadening, it
is easiest to show mathematically for a strongly Doppler
broadened line. Assuming a, A, 8((1, expanding to
lowest order in these quantities and using the fact that
y—

p (a for any significant contribution, we have

Hs+H7 A/PA+——i(y r))—j exp( —xp')

=V./LV. +s(~+ ——») 3

X expI —
(ppp

—vp) '/(ku) 'j, (31)

which shows the simple behavior discussed above, with
a Gaussian weighting envelope. Similar resonance
behavior of the interaction has been obtained using a
scalar theory by j'avan and Schlossberg, " who make
use of the extremely small p, in the Xe 3.37-p laser
transition to experimentally probe the hyperfine struc-
ture of the upper level. "

Since the form of our gain equations is identical
to those of laser oscillators, it is convenient to use the
same terminology as well. The "coupling parameter" is
defined by
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It is interesting to note that with y or g (~+ or hv)
as the independent variable the real and imaginary
parts of H6 and H7 are related to each other by the
Kramers-Kronig relations but those of the self-satura-
tion function H~ are not. On the other hand, with
xo as the independent variable, the Kramers-Kronig
relations hold for all three functions.

B. Two Signals of Arbitrary Polarizations

The induced polarizations are given by Eqs. (9) and
(10). The characteristics and physical significances of
the additional functions (H;, U;) will now be described.

H2 describes the common level mutual saturation
interaction between the —and the + components of
one linearly polarized wave (vi), and Ha is the contribu-
tion of the corresponding double quantum interaction
of the atoms. Accordingly, the properties of these
functions are those of H6 and H7, respectively, but with

y —z replaced by y (since the left and right circular
components have the same frequency) and xo replaced
by xo—g (since xo—g is the detuning of the frequency
vi from line center).

H4 is a new term, caused by the competition for the
same population inversion by two diferent fields of
the same polarization. Thus, it has an equivalent in the
scalar theory of Lamb"' and others. 4" ' In terms of hole
burning, the two fields interact if the two holes, burned
by them in the gain curve of the sarge polarization,
overlap. H4 thus has a width of 2a=2y q/ku about
q=0. In addition, since the center of the transition is
given by xo+y=0, a dependence on xo+y can be
observed with a width equal to the Doppler width.
Since the same transition is involved, the magnitude
of the interaction is independent of the relative size
of the decay rates.

The function H5 also describes an interaction not
previously discussed, although a parallel exists in
scalar theories. It results from the coherent modula-
tion of the population inversion density by the two
fields, at the difference frequency Av=v& —v2, which
gives rise to "sideband" generation. Two of the side-
bands coincide with the original frequencies and con-
tribute to the gain and phase correction of the input
fields. The important characteristic of this term is the
factor P(A —iit) '+ (8—iq) 'g which causes it to
decrease as g becomes larger than A and 8 (i.e., d v)
y„yq). Physically, this is due to the fact that only
when the frequency difference is smaller than the
decay rates is the population inversion capable of
following the pulsations of the field. As expected a
Doppler variation with xo+y, identical to that of H4, is
also present.

H8 and H9 are the contributions resulting from the
interaction of three Geld components to the induced
polarization of the fourth (e.g. , of Ei+, E2, and E~+ to
Ei ). These functions contain a multiplying factor
dependent on the phase diGerence of the circularly
polarized components. These are the terms that deter-

mine the dependence of the interaction on the polariza-
tion characteristics of the input fields. H8 is a "side-
band" term somewhat more complicated than H5. The
modulation Of the common-level population by two
field components of a given circular polarization LEi+
and Ei+ for the case described by (21)j induces a side-
band with the opposite circular polarization (—) at
the input frequency (vi) . Accordingly, the characteris-
tics of both the common-level mutual saturation (H6)
and of "sideband" terms (H,.-) appear together in
Ha. The interaction is proportional to the ratio y,/2y, i,

(i.e., it is small when the decay rate yb is large) and has
the characteristic dependence on (~+ —Av) shown
by the multiplicative factor La+i(y —g) j ' appearing
in the second and significant term. In addition, how-
ever, it contains the factor (8—ig) '. Because of this
factor, H8 is significant only if the common-level popula-
tion is following the pulsations of the Geld. The com-
posite dependence on the two variables y, g is rather
complicated. It is evident that the magnetic Geld must
be small, for otherwise y is large and the conditions

y
—q=0 and q=0 cannot be fulfilled simultaneously.
The last term H9 complements H8, it is proportional

to yq/y, t,. It can be described as follows. The interaction
of the atom with both Gelds E2+ and E2 produces a
coherence between the upper sublevels, The resulting
p+ contributes to the polarization at 8& by another
interaction of the atom with E~ ~. For the double quan-
tum interaction, the Raman condition id+ ——0 (y=0)
has to be satis6ed. (The condition is as shown, since
v+ —v =v2 —v2=0. ) Since the lower level acts as a
virtual level, the width of this resonance is y. The
additional condition that vi —v2=~+ (y —g=0) must;
also be fulfilled for p+ to contribute to P~, the width
here being the natural linewidth. The resulting Gnal
dependence on y and p is again complex, as it was for
Hs. The frequency separation must be small to satisfy
both y= 0 and y= g. A Doppler variation with xo is also
present in both Hs and H9.

Finally we note that for strong Doppler broadening
(a=y,q/kN~O) and the limiting case of coo—v0=0,
re+ =0, and 6~0 we have H~=H4 ——H5 ——1, H2 ——

H6=HS=A/a=y, /2y, i„and H3=H7 HQ J3/a=-———
y~/2y, q, while for natural broadening (a=y, ~/ku~~)
the functions have twice the above values, provided we
replace n by no.

The functions U, , appearing in the "sideband"
components of the polarization, are closely related to
the saturation functions. BrieQy, Uj corresponds to
H5 and is caused by direct modulation of a given popula-
tion inversion; U2 corresponds to H8 and is due to the
modulation of the common-level population; U3 corre-
sponds to H9 and results from the coherent interaction
of two Geld components of opposite circular polariza-
tions. Since the induced polarization contains frequency
components not present in the input, the form assumed
for the field is obviously not correct. The new com-
ponents must also be included. These can cause non-
linear saturation and induce still new Gelds. Exact
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Pro. 5. The J, to Jy transition. C~, ~ =—relative transition
probability for M—+M'.

treatment of the problem would require an infinite
set of nonlinear equations. In practice, however, the
combination-tone fields are small and any nonlinear
eRects caused by them may safely be neglected. Equa-
tions (28a) and (28b) can thus still be used for the
input fields with either time or space derivatives set
equal to zero, while the combination-tone fields require
separate treatment.

Further discussion of the nonlinear behavior of
the laser amplifier is postponed until the results for the
general J to J~ transition are derived,

e. J. To J& TRaNsnrom

Mathematically, the calculations for this general
case proceed as for the J= 1—+J=0 model. The results,
while appearing quite complex, can be interpreted in
terms of the same nonlinear interactions that take
place in the simple J= 1—+J=O model and were dis-
cussed in some detail in Sec. 3.

A typical portion of a J,~Jq transition is shown in
Fig. 5. The gain due to the %~M—1 transition is
saturated by the nonlinear interactions with the same

transition, described by the functions H~, H4, and H5. In
addition, cross saturations (with opposite circularly
polarized components) are present due to the 3II—2-b
M 1a—nd the M—bM+1 transitions, each of which has
a common level with M—+Sf—1. The first of these
introduces the nonlinear functions H~, H3, and HII to
H9 while the latter adds a similar set in which the roles
of the u and b levels are reversed. In the results that
follow the superscript u indicates that the twin sub-
levels (M, M—2) are in 43 and the common level (M—1)
is in f2 while b indicates twin sublevels in b (M—1,
3II+1) and a common level in Ib (M). Unlike in the
J=. 1—+J=O model, the transition probabilities are in
general unequal and the contribution of each transition
is weighted by its relative strength. Since there may be
different Zeeman splitting in the lower and upper
levels, the arguments of the nonlinear functions diGer
slightly from those in Sec. 3 and may be different for
each sublevel. An additional subscript M shall designate
the functions saturating the transition which originates
on the 3f upper level. Defining

y =IOa, a,M, M—2/2~24)

oIbbM, M ,—2/2 I324 )

the new nonlinear functions are found by

(33)

(34)

(35)

replace xo by xo+MII and y by y' or,
equivalently,

replace xo by xo+ (M 1) 5 and y b—y y';

H&~H&M leplace xo by xo+ (M 1) 5 and y b—y y';

replace xo by xo+M8 and y by yb, and
interchange A and B.

The circularly polarized component 6'& is given by

(I /26oo) IP1 = inE1 g—CMM 1'IoI*(,xo—+M3+y +ia) —(E1 '/2Eo') CM, M—1'H1M
M

—(E1+ /2Eo ) [&M-2,M 1(H2M'+H3M') +CM, M+1 (—H2M +H3M )j—(E2 /2Eo ) CM, M 1—(H4M+H6M)—

—(E2 '/2Eo') &&M 2,M 1(H6M +HV—M ) +— CM, M+1 (H6M +H2M ) ]I
+242(I 1+E2 E2+/2Eo') g CM, M 1(+M 2,M 1(H6M —+H9M —) +—CM M+1 (H6M +HgM )j. (36)

In the above,

CM M' |3/(2 Jb+1) jL (J„1, M——, 222
~

Jb, M' )$2,

where m=M' —M, and the sununation runs over all
M values of the upper (a) level. (P1+, (Pg, and (P2+ are
given by similar equations. To obtain 6',.+ from (P,.

'

interchange + and —subscripts and replace y, yb, 3,
and M by —y', —y', —3, —M. To obtain (P2 from
6'& interchange 1 and 2 subscripts and replace y by

fl.

Similarly, the induced polarization at the new fre-
quency vo= 2vq —vq 1s

(~/260o)&0 =i~E1 Q CM, M 1'
M

X I (E1 E2 /2E0 ) CM, M 1 U1M

+ (E1+E2+/2E0 ) LCM—2,M—1 ( U2M + U3M )

+C , ~M(MU 1+2MU3M ) g exp(i20) I, (37)

where the same rules apply to the U;~'s as to the H;~'s.
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TABLE I. The Clebsch-Gordan coefBcient combinations determining interaction strength and combination-tone generation.

1 3 3
1

2 2 2

1 1 3
0 1

2 2 2
2 3

C1

] &1—(("2+&2) (

1 3 12 21 21
0 1

4 8 50 100 100

1 12 1 21
0 0 — 0

4 50 100 100

1 3 24 22 42
0 1

2 8 50 100 100

1 5 17 46 26
1

2 8 50 100 100

2 7 24 16
1 0 0

8 50 100 100

28

200

31

200

73

200

42

200

32 18 9

175 175 56

32 3 9

175 175 56

64 21 18

175 175 56

37 53 10

175 175 56

27 32 8

175 175 56

18 12 11 77

224 84 168 600

3 12 3 77

224 84 168 600

21 24 14 154

224 84 168 600

58 13 38 82

224 84 168 600

37 11 24 72

224 84 168 600

C3

C2

)4—(C2+&S) I

A. Two Circularly Polarized Signals

Only Hj~, H6~', EX6~~, H&~', H&~' appear in the
induced polarization. For strong Doppler broadening
these become

H1M—+exp —Lxp+ y'+ MS—
7fjs

=exp —L(o& b,M, M 1—v1 )/kll, (38a)

fields is determined by the thoro Lorentzians" and by
the constants C~,~'. Evidently, in zero or small
magnetic GeM and small frequency separation the
coupling between the circularly polarized signals is
strong when

g )~M,M 1CM 2,M 1+CM—,M—1 C—M,M—+1j)g CM, M
3f

or
HpM'+H7M'~A/A+7', (y' rl) 5 '— C2+Cs) C1, (40)

The nonlinear coe@cients are

p = (rr/2Ep2) Re Q CM, M 1'H1M, (39a)

f)—+= (a/2Ep ) ReLQ CM, M 1 CM 2,M 1 (HpM +H7M )

+Q CM, M—1 CM, M+1 (H6M +H7M ) 7, (39b)

p = (rr/2Ep') Im p CM, M 1'H,M, (39c)

r +=( o2/Ep) Imf g CM, M 1'CM 2,M 1'(HpM'+H7M -)—

+ Q CM, M 1'CM,M+1'(HpM'+H7M') 3 (39d)

For the corresponding coefficients with + and
subscripts interchanged we replace y', y', b, 7f, and M
by their negatives.

The strength of the interaction between the two

Xexp —Pup+ (M—1)8(2, (38b)

H 2Mb+ H7Mb —bB/B+i (yb rf) P' exp [xp+—M8—
'
js

(38c)

and weak when the inequality is reversed. The values of
these codBcients are tabulated in Table I. It is seen
that, with the exception of the J= I—+J= 1 transition,
strong coupling occurs whenever 6J=O. Since C~= Ce
for A, J=O, the region .of strong coupling in zero mag-
netic Geld is determined by the condition

y st y 2+ (gp) 21-1+ybsfybs+ (gp) 2+1)C2/C1 (41)

For large magnetic Gelds, because the g factors are
usually unequal, the two resonances do not coincide.
Although there are peaks in the interaction ("dips"
in the gain) where the Zeeman splitting of the upper or
lower levels equal hv, the coupling remains weak. For
hv=0 (single, linearly polarized signal) and near zero
magnetic Geld, our results agree with those of Beer
and Graft, " who did not, however, calculate the fre-
quency and magnetic Geld dependence of this eBect.
Figure 6 shows the variation of the coupling coefEcient
C with frequency and magnetic Geld for various transi-
tions. These may be compared with the corresponding
curves of Sargent, Lamb, and Fork' for oscillators.

"By Lorentzian we mean, in the broader sea,se, a function of
the form 7(y+27r) ' whose real part represents a Lorentsian
line shape.
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coeKcients are determined by the functions B;~.
Equation (13) can be used to calculate these coef5-
cients for any specific case. In the next section the
special case of zero magnetic field is discussed in more
detail.

I.O

3. Taro Elliptically Polarized Fields.
Zero Magnetic Field

We define two complex unit vectors e~ and e2 by

81=61 e +&r+e+,

8s=+ 8 +++8+,

(43a)

(43b)
I

-l.2 -I.O -5 +.5 + I 0 + l 2
where u;+=X,g(E;+s+E, s)'~s. The electromagnetic
6eld then can be written as

I'IG. 6. The coupling coeKcient gC versus frequency or mag-
netic field for two circularly polarized signals and strong Doppler
brOadening; y, =0.2P~, yb 1.8yrrb. SOlid lineS: either g faCtOrS are
eqnal and y'=(co+ —hv)/2p" or co+ 0 and y'=~r/2y&. (1)
7=1~7=1, (2) 7=2~7=1, (3) J=1~J=2, (4) J=2~
7=2. Dashed line: 7=2~2, y'= (co+ e —av) /2y, b, a&+

b —ca+

1.2 Qb

It is well known that for 6J=+ 1 the outer transi-
tions (e.g. , M = J, &Mb —Jb) ——are strong and the inner
transitions (e.g. , M, = J,—&Mb ——Js—2) are weak be-
cause of good and poor overlap of the electron distribu-
tions, respectively. This unequal distribution of the
transition probabilities results in weak coupling, as it
is shown in a simpliled form in Fig. 7. Most of the gain
is contributed by the M = &1—+M =~2 transitions
which are very weakly saturated by their neighbors.
For 6J=0, on the other hand, the transition prob-
abilities are more evenly distributed, resulting in strong
coupling.

For the special case of a single elliptically polar-
ized signal in zero magnetic field, the effect of weak
or strong coupling can be more readily seen by re-
casting the gain equations into an equation for the
ellipticity and another for the total intensity. De6ning
r= (E E+)/(E +E+) a—nd E"=E '+E+s' we obtain

Jf
(C,—C,—C,) ReH, (x„o,0),

Ch 2Ee' &+»'

(42a)

E(s, 1) = Re IkrEr exp'(krs —vrt+yr)

r;=(E, E, )/(E; —+E; ),

ZLJ=+ I. WEAK COUPLlNG

(45)

IO

I dE 6 I 6 g I pi—=-—=-—~l--E --E )E dz Io Io IO +
I g i%6

10( lo — Io +)
J=2

Q lo +—{i-—E-—E )
3 3 2 3 2
lo IO lo +

J=2

6J=0. STRONG COUPL I N G

+82E2 exp'(kss @21+$2)I. (44)

We can calculate the components of the induced polari-
zation along e~ and e2 and thus 6nd the incremental
gain and phase change for each held. Other pertinent
parameters are

8E=nE Rewed(xs+ia) ——
c/8 2E2

I—r2
X C,+-', (C'+C,—C'), sea, (e„0,0) j. (42b)

1 r'

-2

lo 10

+2 J=2

==—(I—a ——a )
dE 2 2 p 3 P

E dz IO IO IO +

+ —(I ——E ——s )
3 3 p 3+2 p
lo lo — lo +

J=2

It is seen that r increases for strong and decreases for
weak coupling of the circularly polarized components.
Equation (42a) is analogous to one obtained by Polder
and Van Haeringen'~ for oscillators.

For two signals of arbitrary polarization the four
field components must, in general, be treated separately.
This results in eight nonlinear equations in which the

J=2

X IO
+ SAME

lo

J~2
+2

FIG. 7. A simple description of weak and strong coupling.
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1 1—rP 1—rss

2 1+rP 1+rss

Cs —Cs,
1 (1+rs) '(1+rs) '+ (1—r2) '(1—rs) '
4 (1+rP) (1+rss)

(47b)

1 1 rg i f2Es= Cs+- C2 cos20
2 1+rP 1+rss

1 (1+F2)'(1+vs) '+ (1—~2) '(1—rs) '
(Ci—Cs),

4 (1+rP) (1+rs')
(47c)

and a similar equation for (P2. The frequency-dependent
functions are

f2.(xo, n) =ai(xo, 0, g)

-+exp (—xos) = exp —
L (coo—vo) /kss 1', (48a)

fs(xo, q) =Hs(xo, 0, q)+II7(xo, 0, 2t)

~y, (y. iAv) —' exp( —xo'),

fs(xo, g) =f2(xo, 21; 2~5—8)

(48b)

-+go(yo —i») ' exp( —xos) . (48c)

The arrows indicate the behavior for strong Doppler
broadening. When (P~ and 6'2 are substituted into Max-
well's equations (ignoring the new frequency com-
ponents (Po and 6)s, as discussed), gain and phase equa-
tions identical with (29a)—(29d) are obtained (with
subscripts 1 and 2 replacing + and —). The nonlinear
coefficients are

Pl (a/2Eo') Ei Reft(xo g),

812 (a/2Eo') PRR Refs(xo, g) +Rs Refs (xo, q) 7,

p2= (a/2Eo') Es Imfs(xo) q) )

2'22 = (a/2Eo ) LRs Imfs (xo, g) +Rs Imfs(xo, g) g.

(49a)

(49b)

(49c)

(49d)

For the corresponding coefficients with subscripts 1
and 2 reversed g is replaced by —g and rj and r2 are

the ratio of the minor to the major axis and tI, the angle
between the major axes which has been de6ned in Sec.
3. Since the magnetic sublevels are identical, after some
simple algebra we have

(v/2ooc)(P& ———saE&Iso) (xo—21+sa) —(Ep/2Eo )R2 f2(xo) sl)

(E2 /2Eo ) t Rs fs(xo, q) +Esfs(xo, g) g}) (46)
where

r 2 2

E2= Cs+ s (Cs+ Cs —Cs) 1+fp

interchanged. These results may be compared with
those of Doyle and White" for oscillators.

From the definition of r& and Eq. (36) one hasdry, Eg' 2'—= —a(1—rp) (Cs—Cs —Cs) Ref2(xo, 21)
ds 4Eo' 1+rP

E2 2'+ LC1 Re( f.+fs) —Cs Refs —Cs Refsj
4Eo' 1+rss

Eg
t Cs Imfs+Cs Imfsj sm28 ) (50)

4Eo' 1+rss

with a similar equation for drs/ds. The final equation is
that for 0 which will be given only for those cases when

f, (xo, g) =f;~(xo, —q) (either x,=0 or strong Doppler
broadening) . Then,

2rl +12 g22—=a
t (C2—Cs —Cs) Imf1(xo, q)

dh 1+rP 4Eo'

+C, Im( fs+fs) —Cs Imfs —Cs Imfs)

EP+Ess+ [C., Rej,+C, Ref j eie2)}. (51)

The above suggest the existence of various nonlinearity
induced anisotropies. The only stable equilibrium
(isotropy) is for two perpendicular linear fields. Parallel
polarized fields are in unstable equilibrium. Other
linear and all elliptical polarizations are not in equilib-
rium. For small frequency separation of linearly polar-
ized signals, dr;/ds is approximately zero, i.e., the
polarizations remain linear. Then the relative orienta-
tion change is

d8 EP+EP—=a (Cs Refs+C, Ref, ) sin28, (52)
ds 4&0'

which indicates that the polarizations will rotate apart.
The coupling of E2 and Es will be discussed by further
specializing to two identical, two arbitrary linear, and
two orthogonal elliptical polarizations.

a. Two Identically I'olarised Signals

For this case, 0=0 and r~=r2, and R2, R3 become
identical with Eg. Then

C= (Re( fs+fs)/Reft)s, (53)

which is the same as the result of the scalar theory. 7

C is maximum for Av= 0 and is equal to 4.

b. Linearly I'olarised Signals

Since r&=r2=0, the results simplify considerably.
If in addition strong Doppler broadening is assumed, the
coupling coeKcient is

(Cs+ Cs+ Cs cos28) Ly, '/(p, '+ (») ')j+(Cs+ Cs+ Cs cos28) t.vo /(Vo'+ (») ')) '
C2+ Co+Co

(54)
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For small frequency separation, Av((y„y~, this becomes

(2ci+2(co+Co) cos'tl1'
55

Ci+ Cs+ Co j
For parallel polarization of the input signals (0= 0) the
coupling is strong, C=4. For perpendicular polariza-
tion the interaction depends on d J. If &J=1, &is)Pi
(strong coupling), while if AJ=0, His(Pi (weak cou-

pling). This is the reverse of the situation for opposite
circularly polarized fields. The J= 1~~J=0 transitions,
however, are special cases and give critical coupling.

For arbitrary frequency separation and angle 8 the
region of strong coupling can be determined by Eq.
(51). Figure 8 shows the coupling coeflicient C versus
Av. The results of this section have been used in another
paper" to investigate the validity and signidcance of
the two nondegenerate levels model in nonlinear vector-
field calculations.

c. Orthogonal Etliptical Signals

For this case r~= —r2 and 8= ~x. The coupling coeS.—
cient for strong Doppler broadening is

I
o.sp (c,—c,—c,)+c3L7.'/(~. '+(~ )')j+Lo.sp (c, c, c—,)+—coj vo'/(vo'+(~ )')T'

Ci+ 0.5p'(Cs+ Co —Ci)
(56)

where p = (1—r') /(1+re) . For Dv&(y. , yo

C= p'(Cr —Cs —Co) +Cz+ Cs

Ci+0.5p'( Cs+ Cs—Ci)
(57)

direction of the major axis is

C'o= s(4o-—4o+) = 24'i —C's+4

= c'i—8+/'. (61)
Figure 9 shows the variation of C with the ellipticity. It
reveals the remarkable fact that for 5v((y, y~ critical
coupling occurs at the same eccentricity, independent
of the J values. From Eq. (57) we find r.„&=0.319.

C. Combination Tones

Combination-tone generation for two arbitrarily
polarized signals and nonzero magnetic field has been
considered in an earlier paper. ' Here we shall examine
in more detail the generation of new fields for zero
magnetic field and two elliptically polarized signals of
the same eccentricity and opposite sense of rotation.
Noting that for zero ma, gnetic field Ussr'+Uzi =
U,sr'+Ussr'= Ui, one has

(i'/2ooc) (Po+ = zcr I Ezk(Ei'/2Eo') L (1 r') /(1+ r') j
XLci+(Co+Co) e+"jUi(xo, 0, zt) I

The expected polarization patterns are shown on Fig.
10. It is interesting to note that for the 1—&0, 0-+1, and
1-o1 transitions, since p'=t), the polarization of (Po

is identical with that of E~. For these transitions,
however, we also And that (Po is identically zero for
8=90', i.e., for orthogonal polarizations of the input
fields. This apparent contradiction with the qualitative
predictions of Sec. 1 can be explained by the fact that
for these (and only for these) transitions there exist
orthogonal combinations of the magnetic substates
which result in perpendicular linear or orthogonal
elliptical transitions. This situation is shown in Fig. 11.
In the equally valid representation shown on the right,
E~ and E2 interact with different transitions, producing

X expLi(2ooip —
q sp) j. (58)

The phase angle of the bracketed quantity is &P',
where

2.0— !'(
I
I

II
II

(Co+Co) sin28
tan

Ci+(Co+Co) cos28
(59) I.O

Thus 6'Op is

(~/2ooc) (Po~ =z~ IEz+(Ei'/2Eo') L(1 &') /(1+r') j
X Lcl'+ (Cs+ Cs) '+ Ci(co+ Co) cos28$'t'I

X Ui(xo, 0, rt) exp(iso~), (60)

0
- I.2 -).0 -5 0

hv/27ab
+5 +l.0 +l.2

where '4p = 2&i' —Psp&P'. We can now find the polari-
zation of the combination tone at vo. Since there is no
field originally at vo it builds up 90' out of phase with
6'0. It is evident that (Po is elliptically polarized with
eccentricity and sense of rotation the same as Ei. Th&

FIG. 8. The coupling coeKcient QC versus Av for two linearly
polarized signals. Strong Doppler broadening, y, =0.2y~, yq=
1.8y~. (1) J=1-+J=O, (2) J=1-+J=1, (3) J=2~J=1,
(4) J'=1-+J=2, (3) J=2-+J=2. Solid: 8=90', dashed: 8=43',
dash-dot: 8=0', all transitions.

zo A. Dienes, IEEE J. Quantttm Electron. gE-4o 260 (1968).
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no combination tones. " For all other J values com-
bination tones are present with polarizations as shown
in Fig. 10."For 0=90' these are in agreement with the
work of Doyle and White. "

S. CONCLUSIONS

We have derived equations for the nonlinear behavior
of two weak signals in a laser amplifier. The results
show a complex dependence on the polarization states,
on the J values of the levels, and on various other
atomic parameters. We have attempted to explain
these in terms of simpler interactions of circularly
polarized field components with the corresponding
transitions between magnetic sublevels. For full useful-
ness, it is necessary to investigate the nonlinear behavior
of the laser amplifier for arbitrarily strong field intensi-

I l Z I

vO~Rsi-~ il v2 s~~2s2-vl

J*!~0
Je 1~ 1

J» = Jg

Yi Y2

e*so.

vO vl v2 v5

e e90~

Fxo. 10. The predicted polarization pattern for the
combination tones.

1.8

I.6

1.2

Ic

.2

.6 .8

Fro. 9. The coupling coefficient gC versus ellipticity. (1)
J=g-+J =-„ (2) J=1-+J=2, (3) J=2-+J= 1, (4) J=2~
J=2. Solid: Du =0, dash: Av =y, =0.2y~.

oscillators. '4 In particular, measurements can be car-
ried out on a medium with absorption instead of gain. It
is necessary only to change the sign of the gain param-
eter a. for our results to be applicable. Also, the experi-
mental results are not complicated by the presence of
the cavity.

While in laser oscillator experiments'" the atomic
parameters are extracted from observations of the
output intensity, in amplifier (or absorber) experi-
ments it is most convenient to observe directly the
dependence of the coefficient 8~~ on some convenient
parameter by detecting the effect of one signal on the
other. The quantity e» is ahnost identical to QC,
shown in Figs. 6, 8, and 9 (for zero detuning they be-
come identical). Such an experiment has been recently
performed by Shank and Schwarz" with parallel linearly
polarized waves /this is a special case of Eq. (49b) j,
who measured in this manner the natural width of the
6328 A. Ne line in both He —Ne (population inverted)
and pure Ne (passive) discharges. By performing
similar measurements for perpendicularly polarized

ties for which the perturbational results of this paper
are no longer valid. This is the subject of the following
paper. "

The results of the previous sections are well suited
for the determination of various atomic parameters.
Methods utilizing nonlinear wave interactions in ampli-
fiers can, under some circumstances, have advantages
over those using the nonlinear properties of laser

M= —I

E+(v2) y

M=O

M=+I
J=l

Vl)
V2»

E= Ex ( vl )+Ey(v2)

( —)[]M=+I&+)M.-i&] ( —)[]M=+I&-[M -I&]Jz JF

Ex(vl) & E~(vp)

IN=0

"This picture is of course only va1id for completely degenerate
levels. In nonzero magnetic 6eld the U,~'s are not equal and
the cancellation does not take place. Combination tones appear
as soon as the sublevels are separated beyond their natural width.
Results showing this have been graphically presented in Ref. 20.

"We do not attempt to calculate the growth of the combina-
tion-tone Gelds but only 6nd the magnitude and polarization
characteristics of the induced polarization at the new frequencies.

~W. M. Doyle and M. B. White, Appl. Phys. Letters 10,
224 (1967).

Fzo. 11. The physical reason for the lack of combination tones
for orthogonal polarized Gelds in the J=1~0 transition.

'4 Section VIII of Ref. 19 describes how atomic constants may
be found by laser oscillator experiments. See also W. J.Tomlinson
and R. L. Fork, Phys. Rev. 164, 466 (1967};and Ref. 2/.

~ 8» is a meaningful quantity only in low-gain amplifiers, with
weak saturation sects. Possible measurements in high gain,
strongly saturated media will be briefly discussed in II.

'6 C. V. Shank and S. E. Schwarz, Appl. Phys. Letters (to be
published) .
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waves (see Fig. 8) the individual decay rates y, and yb
can also be extracted.

Measuring the variation of 012 with the angle between
the polarization vectors provides a way of identifying
the J values of the levels as well. This curve is unique
for any given pair of J values and is easiest to interpret
if v1=v2."The g factors of the levels can also be found
conveniently using two circularly polarized input
fields, and applying an axial magnetic field on the anipli-
fier. The relevant curves here are similar to the dashed
curve of Fig. 6. This experiment separates the reso-
nances due to the lower and upper levels and thus
serves also to determine y and y~.

As it is indicated by Eqs. (28a) and (28b) any of
the gain and phase equations in this paper may be

'7 This curve has been measured recently for the 6328 A. line.
Excellent agreement with the theoretical results was found. C. V.
Shank and S. E. Schwarz (to be published).

transformed into ones for. a ring laser (with 6elds
circulating in one direction) by carrying out the follow-
ing changes:

dE;/ds +c —'dE—,/dt+O. S (Q,X;)

dy, /dh —bc-'(v —0 )

The steady-state oscillation solutions then are found by
setting dE,/dt=0 exactly in the manner of Sargent,
Lamb, and Forl. .'9 These authors have discussed the
possible forms and useful transformations of the cavity
loss matrix Q.
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The model given in the preceding paper is used to calculate the nonlinear gain and phase of a laser amplifier
operating at field intensities that may be too large for the perterbational results to be valid. The induced
polarization is calculated exactly by integrating the macroscopic density-matrix differential equations. The
incremental gain and phase shift are found to be complicated functions of the circularly polarized field intensity
components. Simple physical interpretations of these functions are given. The results are used to compute
the change in the ellipticity of a single-frequency signal in a high-gain amplifier.

i. INTRODUCTION

N Paper I' a weak-signal theory of a laser amplifier
. was given. In this paper a strong-signal theory is

developed by solving the density-matrix equations
exactly. Owing to considerable difficulties encountered
in obtaining exact solutions, the results presented here
are not as general and complete as those of the previous
paper. In that paper the polarization of the signals,
the frequencies, and all atomic parameters are treated
in a general fashion, but the results are limited to weakly
saturated signals. In the present paper the results
are available only for special cases of polarization,
frequencies, and atomic parameters but are valid for
arbitrarily strong Geld intensities. Although we pri. -

marily deal with two opposite circularly polarized

~ at=~ 0 +al (E- /Es") Vab $rab~+ (aal v-+ke) ] '+a1

signals, in Sec. 4 we briefly discuss linearly polarized
signals.

2. SIMPLE TRANSITIONS

Under this heading we include the J=1~&—J=o,
the J= 1—+J= 1, and the J=—,~J=~ transitions.
These are all constituted of noninteracting 3-level
subsysten~s. The density-matrix equations for such a
subsystem will now be solved. The equations are the
same as for the J=O—&J= 4 transition except that the
matrix elements (relative transition probabilities) are
kept general. The level diagram is shown in Fig. 1(a).
(The notation is slightly different from that in I.) For
two opposite circularly polarized fields, Eq. (5) of I
can be integrated. After some manipulation we have

C. (f-+r'/E~o') s ("Y«b7b) L'r b'+ (bs s v++») '1 '& s

—&at&as(& &+/Eo') I srVabLprs'(7ab+S(boat —v +ke) )—'+prs' (gab —s(bear —v +km) )—']
+ (j yb) Lpls (Yab s(bea2 v++ks) ) +p12 (7ab+Z(Ma2 v++ke) ) ]}. (1)

.V,s
——same as Ã, r but with + and —and 1 and 2 subscripts interchanged.

' A. Dienes, preceding paper, Phys. Rev. 1N, 400 (1968), hereafter referred to as I.


