
PHYSICAL R EVIEW VOLUME 174, NUMBER 2 10 OCTOBER 1968

Mass Dependence of the Angular Distribution of Charged-
Particle Emission'from" Crystals: Transition to the

Classical Limit

R. E. DE WAKES, W. F. HALL, AND G. W. LEHMAN

Sctence Center/Aerospace and Systems Group, Nortk Amertcan Rockwelt Corporation,
Thousand Oaks, Calif ornea

(Received 1 April 1968)

In recent years, the emission of charged particles from crystals has received considerable attention, both
experimentally and theoretically. The customary interpretation of the emission partterns has been derived
from classical mechanics, which predicts patterns very close to those observed for heavy charged particles
(protons, n particles) but only qualitatively similar to those exhibited by electrons an.d positrons. In the
present paper, it is shown that at least one consequence of the classical model, namely, mass independence
of the angular distribution at constant energy, is violated dramatically by the quantum-mechanical calcula-
tion of the emission pattern. Specifically, the emission patterns for electrons and positrons are shown to
dier from the emission patterns for much-higher-mass particles by factors of up to 4 in half-width and
intensity. The condition under which the classical limit is regained is that the lattice spacing be large, not
compared with the particle de Broglie wavelength, but compared, rather, with Xo=k/2(mV)'I', where V
is an average value for the interaction potential inside the unit cell, and m is the particle mass.

I. INTRODUCTION

~

CHARGED-PARTICI E emission from and penetra-
~ tion into crystals has received considerable atten-

tion since the discovery, a few years ago, of marked
directional eRects in the range of heavy ions in crystals.
The qualitative features of this phenomenon have been
readily derived from a classical mechanical model in
which the incident particle moves in a periodic charge
distribution, and it has been repeatedly stated in the
literature' ' that such a model is very nearly exact at
high energy, with no quali6cation in regard to the mass
of the incident particle or the strength of the potential
of interaction. It is the purpose of the present paper to
show that the quantum-mechanical description of this
phenomenon gives results which depart markedly from
the classical predictions at small mass and that, for the
electron, the emission patterns are only superficially
similar to the classical "envelope. "

It is easy to show that, according to classical me-
chanics, the trajectory described by a particle of de6nite
energy moving through some fixed potential field V(r)
remains the same if the mass of the particle is changed.
Only the time of arrival at each point on the trajectory
is altered. Since the classical mechanical model used to
derive directional eRects in crystals conforms exactly
to these conditions, the predicted emission patterns are
rigorously independent of particle mass when the energy
of emission is held fixed. In the corresponding quantum-
mechanical problem, there is a direct dependence of the
emission pattern on particle mass, which only dis-
appears as the mass becomes arbitrarily large. Therefore
one can use the mass dependence of the calculated

~ J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 34, No. 14 (1965), especially pp. 3 and 4.

'P. Lervig, J. Lindhard, and V. Nielsen, Nucl. Phys. A96,
481 (1967),especially pp. 481 and 482.

'K. Uggerhgfj and J. W. Andersen, Can. J. Phys. 46, 543
(1968), especially p. 543.
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emission patterns as a measure of the applicability of
the classical results. This is precisely the course that
we follow in the present paper.

In Sec. II, we start from the Schrodinger equation
which describes the propagation of a charged particle
through a periodic potential field, adjoin boundary
conditions appropriate to the emission problem, and
set forth the techniques that we have used in obtaining
solutions. The dependence of the emission pattern on
particle mass is illustrated in Sec. III for a screened
Coulomb potential of realistic strength and range, with
particular attention being paid to the discrepancy
between the angular distribution for electrons and that
obtained for much-heavier-mass particles. Section IV
is devoted to a discussion of the potential dependence
of the emitted intensity, which exhibits interesting
structure as the mass is varied. Finally, in Sec. V, we
discuss the limitations implied by these results on the
applicability of the classical model.

II. EMISSION IN A PERIODIC POTENTIAL

The process of particle emission from a crystal occurs
in three steps: First, the particle escapes from the atom,
then it propagates through the potential field of the
crystal, and, 6nally, it leaves the crystal at a surface
with some probability distribution over the outgoing
directions. The classical model of this process, which
has had considerable success in matching the emission
patterns for heavy charged particles, ignores the possi-
bility of energy transfer from the particle to the crystal
subsequent to its escape from the atom. The particle
is taken to move only under the inhuence of the periodic
potential field of the crystal lattice. It thus behooves
us to ask when motion in a periodic potential Geld can
be described by the classical limit. When it cannot, i.e.,
when quantum eRects become important in this simpli-
fied version of motion in real crystals, it is certainly
392
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dangerous to employ the classical results so obtained.
Thus we shall consider that the propagation of the
particle inside the crystal is governed by the single-
particle Schrodinger equation

$(—PV'/2rrt)+U(r) —Ef&p(r) =0, (1)

except in the immediate vicinity of the emitter. In this
equation, U(r) is the periodic potential 6eM of the
classical model and. E is the particle energy at emission.

Near the emitter the external wave function must be
matched to the internal wave function corresponding to
the state from which the particle escaped. However, if
the internal state is taken to be spherically symmetric,
the solution to this boundary-value problem far from
the emitter is identical with the solution of Eq. (1)
with a 5-function source located at the emitter (r= r,):

geometrical diGraction resonances known as Bragg
peaks; when the potential is strong, these resonances
broaden out and blend into one another; motion of
the particle into the classically "forbidden" regions
diminishes.

These effects are in large measure properties of the
individual crystal eigenfunctions onto which the in-
cident wave is tied. Each eigenfunction, because of the
periodicity of the potential U(r), will be expressible
as a sum over the reciprocal lattice of the crystal:

y(r) =exp(ik r) gttsexp(ik~ r.), (5)
h

where kq is the reciprocal-lattice vector corresponding
to the index h. If one expands the potential in a similar
fashion,

U(r)/E= g fr, exp(ikh r.),

Outside the crystal the potential vanishes, and at
distances large compared with the crystal size, the wave
function which matches onto the solution inside the
crystal has the form of a spherical wave:

the Schrodinger equation inside the crystal takes the
forIIl

(28p+lh) stg+Q fs sue=0,

Here Pks'/2rN= E, and 0 and rt are angles defining the
direction of r—r, with respect to some set of axes fixed
in the crystal.

The problem of determining f(e, q), which is propor-
tional to the angular distribution of the emitted par-
ticles, can be solved relatively simply by making use
of the reciprocity relation

which follows from Eq. (2) for an arbitrary real poten-
tial U(r). This relation, introduced by von Laue' to
treat inelastic electron scattering in crystals, enables
one to find q (r; r,) by evaluating the intensity at the
emitter site due to a spherical wave emitted from the
point r outside the crystal. When r is far from the
crystal, as in Eq. (3), this wave arrives at the crystal
surface as a plane wave directed along r,—r. The
remaining task, then, is to match this onto the eigen-
solutions for the periodic potential of Eq. (1) to deter-
mine lt (r, ; r) inside the crystal.

It is at this point that the strength of the potential
enters forcibly into the problem. Take, 6rst, the ex-
tremes: If the crystal potential vanishes, the incident
wave reaches the emitter site unaltered; the intensity
is unity, independent of the angle of incidence. If, on
the other hand, the potential is repulsive and suKciently
strong, no particles will be able to reach the emitter
site, and the intensity there will be zero. In between
these extremes, when the potential is weak, one sees
the intensity depart from unity only at or near the

4M. vorr Laue, Matereereellel reed ihre Irttefereasel (Alra-
demische Verlagsgesellschaft, Leiprig, 1948).

(5'/2rrt) O' E=—25sE,

(5'/2rrt) (kh'+2k' k) =1'hE. (8)

Now, angular structure in the intensity is a direct
consequence of prominence of some of the coeKcients
Nh for h different from zero in the expansion of q. From
Eq. (7), when l'h is small compared with 1th, then Ns

will be comparable in magnitude with us, when la is
large compared with fq, then stt, (~Is~la) will be
negligible. Note that, no matter how large one takes
k, there will always be an angle (the Bragg angle) at
which t'z =0, so that for a small but finite crystal poten-
tial, one expects angular structure in the intensity only
in the immediate vicinity of this angle. On the other
hand, if Eph is very large, then 1th/ta will remain ap-
preciable over a wide angular range, even overlapping
the Bragg angles for other reciprocal-lattice vectors.
Alternatively, from Eq. (8) one sees that if the mass
of the incident particle becomes very large, Efh will
remain small over a large angular region. Thus, when
either the potential or the mass is su6iciently large,
many terms in the sum expression for y will be of a size
comparable with No, whatever the direction of k. It is
under these conditions that the angular variation of
the intensity will be found to approach the classical
limit.

The contribution of each eigensolution to the wave
function inside the crystal is, of course, determined by
the requirement that the logarithmic derivative of
q (r, ; r) be continuous at the crystal surface. However,
we shall be interested in particle energies such that
Ph is small and incident wave vectors ks which are
directed within a few degrees of the normal to the
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crystal surface, and under these conditions one can
show that the reflected wave outside the crystal is
negligibly small. In this case, the boundary condition
can be replaced with the requirement of continuity at.
the crystal surface

exp(ik, r) =g &, exp(ik&~'I r) Pu~'~

and

k&" = ko+k0280t" n/ko n

A;=z~o

(10)

where the bar over No denotes complex conjugation. The
intensity at the emitter site can thus be written as

I p(r. ; r) I'=I duo"'exp(ik'~' r) Zu""

xexp(ik, r) I'

=g I
uoI" g uh "I exp(ikh r) I'

2 h

+2 Re g [uo&'" g ut, I"' exp( —ikh ~ r) j
P&~ h~

&&[uo&&'& Q uh&&' exp(i' r)]

&&expi[k02(bo' 8o" ) n'r/ko nj. (12)

In the second line, the intensity contributed by the
cross terms between diRerent eigensolutions has been
written separately in order to display their dependence
on the distance (n r) of the emitter from the crystal
surface. Their evaluation, while straightforward, is
tedious and adds nothing to the basic character of the
solution. In what follows, we shall choose a simple
geometry for the crystal and for the incident beam
which ensures that these cross terms will oscillate
rapidly with emitter depth, so that a collection of
emitters spread over a small thickness will yield an
average intensity which is just the sum of the diagonal
terms in Eq. (12).

The final step in obtaining the emitted intensity is
the solution of the eigenvalue problem represented by
Eq. (7). As was pointed out earlier, those reciprocal-
lattice vectors kq for which I{h/fq is sufficiently small
can be treated by perturbation, so that the sums in
Eq. (7) can be restricted to a {inite number of terms
and the resulting set can be solved by standard matrix
diagonalization techniques. Specifically, we note that
the coefficients corresponding to reciprocal-lattice
vectors which are not nearly perpendicular to ko (i.e.,

Xexp(ikh r) on r n=0, (9)

where n is the direction of the inward normal to the
crystal surface, the superscript j is used to label the
eigensolutions of Eq. (7), and X is the number of terms
which are kept in the reciprocal-lattice expansion for q.

One satisfies this boundary condition by choosing

to planes not nearly parallel to k, ) can be neglected
when the energy is suQiciently large.

For the simple cubic lattice, this means that one can
choose a direction of incidence for ko such that ko has
large projections on two of the three principal reciprocal-
lattice directions, so that only coeKcients corresponding
to the third reciprocal-lattice direction need be retained
in Eq. (7). The resulting set of equations is identical
with the set that one would obtain if the crystal poten-
tial U(r) were replaced with its spatial average over
the reciprocal-lattice directions not nearly perpendicu-
lar to ko, so that the effective charge distribution is
constant in these directions. Because of the relative
simplicity of the mathematics, this effective planar
lattice geometry has been chosen to illustrate the
mass dependence of the angular variation of the in-
tensity in Sec. III.

A simplification of a different nature becomes possi-
ble when ko is exactly perpendicular to a principal
reciprocal-lattice direction. In this case, each eigen-
solution of Eq. (7) will be either odd or even with
respect to reQection in the appropriate plane, and one
can show that only the even eigensolutions can be used
in satisfying the boundary conditions at the crystal
surface. This reduces by a factor of 2 the number of
lows in the matrix which must be diagonalized to obtain
the emitted intensity.

An even greater saving is possible when ko points

I.

i/I
0.

—I.2

—0.4

I i I ~ l i I ~ I i I

0 0.004 0.008 0.012 O.OI 6 0.020 0.024
lt {radians3

Fzo. 1. Mass dependence of the angular variation of the in-
tensity for planar geometry and positive interaction potential.
Top curve m=0. 1m„middle curve m=m„and bottom curves
m=100m, and 200m, .
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along a reciprocal-lattice direction, and so is per-
pendicular to both of the other principal directions in
the crystal. In this case, for the simple cube, there are
eight operations which leave the scattering geometry
invariant, and proper use of group theory to classify
the eigensolutions of Eq. (7) enables one to reduce
the number of rows in the matrix by a factor of 8. A
technique for accomplishing this reduction is outlined
in the Appendix. This application of symmetry has
allowed us to obtain the mass dependence of the in-
tensity along a "string" direction even when several
hundred terms had to be retained in the original sum-
mation form of Eq. (7) .

III. MASS DEPENDENCE OF THE ANGULAR
VARIATION OF INTENSITY

The purpose of. this section is to illustrate in graphical
form the variation of the angular intensity as a function
of the mass of the particle for a screened Coulomb
potential whose parameters are those associated with
the copper lattice. (The calculations are actually made
for a simple cubic lattice with a lattice parameter equal
to —, that of the copper lattice. This choice is made in
order to correspond to allowed rejections for the fcc
lattice. ) For simplicity, ko is chosen to make a small
angle with only one set of planes.

The point here is that there are two distinct regions.
For low mass (see topmost curves, Figs. 1 and 2) the
angular variation is completely controlled by Bragg
angles 8~ and Bragg widths lN~. In this situation, the
angular variation of the intensity can be calculated
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FIG. 2. Mass dependence of the angular variation of the in-
tensity for planar geometry and negative interaction potential.
Top curve m =0.1m„middle curve m =m„and bottom curves
m=100m, and 200m, .

using the two-beam theory t i.e., when only two terms
are retained in Fourier expansion for p(r)]. It can
easily be shown from the analytical solution of the
two-beam theorys that the outer "wing" in the intensity
pattern falls at

=-'Laky/(2nzE)'"]+([ Vy, ]/Big) (2m/5')'~ (13)

where VI, is the Four';r transform of the interaction
potential evaluated at k=kh, and kh is the reciprocal-
lattice vector for the erst-order reRection. The intensity
at the origin is slightly below background for the
positively charged particle (Fig. 1, top curve) and
above background for the negatively charged particle
(Fig. 2, top curve). The variation at twice the Bragg
angle occurs because of the Sragg reRection of second
01del.

Ke note that in the small-mass limit, whether the
particle is positively or negatively charged reQects
itself in whether we have 6rst a maximum or a minimum
in the intensity as we approach the Bragg angle. From
Eq. (13) it is easily shown that the neutron, which has
a mass comparable with that of the proton, should show
patterns as illustrated in the top curve of Fig. 2. This
occurs because, even though the mass is large, the
interaction potential is very weak.

One should note that the energy is only a scaling
factor in Eqs. (7) and (13), and, consequently, chang-
ing its value can only lead to a contraction or expansion
of the |I scale, but not to a change in the characteristics
of the angular variation of the intensity. From this
observation it is easily understandable that the de
Broglie wavelength cannot be the important charac-
teristic length which characterizes the correspondence
limit. A change in all the other variables, however,
changes the ratio of 0~ to LNB and should be expected
to lead to diferent characteristics in the angular varia-
tion of the intensity.

The middle curves in Figs. 1 and 2 illustrate what
occurs if the mass is increased to that of the positron
and electron. The intensity for 100 and 200 electronic
masses are illustrated in the bottom curves of Figs. 1
and 2. Let us 6rst discuss Fig. 1, which represents
positively charged particles. We note that the angular
variation about the origin has changed considerably.
The value at the origin has decreased markedly com-
pared with the lower-mass case. For the positron, the
angle where the intensity has achieved a value greater
than unity occurs at about 28&. As we remarked in our
previous paper, however, the two-beam solution at this
mass is still an adequate representation for the qualita-
tive behavior of the intensity pattern. The structure
beyond 28~ resembles closely those in Fig. 1 (upper
curve) and is associated with higher-order reQections.

~R. E. De Names and W. F. Hall, Acta Cryst. A24, 206
(&968).



DE WAMES, E4ALL, AND LEHMAN

As we increase the mass to correspond to 100 and 200
electronic mass, the angular-intensity variations for
these two cases are very nearly identical. Clearly, the
Sragg angle has lost its significance to characterize
the angular variation, since its value faHs in the region
where the intensity is Qat. Furthermore, since these
patterns are found to be nearly insensitive to changes
in the mass, one immediately concludes that neither
0~ nor 68~ can be characteristic angles.

For this case, the two-beam theory loses meaning;
this certainly is not surprising, since using a single
reQection in the expansion of p can only be justified if
8~/68~))1. This new behavior for the angular variation
of the intensity, which is independent of the mass
(and of 5), can tentatively be identified as the classical
result. We see that its onset is governed not by the
requirement kp,)«&1, where ) is the de Broglie wave-
length of the particle, but by

(8'/g8ri) '~' =5kg/2 (tn Vi, )
'~'

=kg) „«1)
where the effective wavelength )„defined above tends
to zero with increasing mass or potential strength, but
is independent of particle energy.

It now becomes very interesting to compare the pre-
dictions of the simplified classical model of Lindhard
with the predictions of the dynamical theory in the
high-mass limit. To this end, we have studied empiri-
cally the dependence of the angular half-width on
several parameters and found that for a screened
Coulomb potential the dependence on the planar
separation d„=2m./kq and the range of the potential
A ' appears to be much closer to

8~ ~ (8iih8ii) '~',

than to Lindhard's critical angle'

where (x') is the mean-square displacement of the
atom, p is the particle density, and y is the average
planar potential defined by Lindhard. The point here
is not in the actual values but in the functional de-
pendence on the above parameters.

In Fig. 2, the angular variation for the intensity of
negatively charged particles is illustrated. For the
electron, 8~ indicates the position of the wings as
calculated from the two-beam theory. We note that, as
in the case for positively charged particles, the angular
variation of the intensity at large mass becomes in-
sensitive to further changes in the mass. However, the
electron behavior can hardly be considered to be in the
high-mass limit. In particular, the intensity about zero

angle, apart from having diHerent values, exhibits
quite a different, character. We also note that the value
of the intensity at zero angle, in contrast to the behavior
for positively charged particles, is still mass-dependent
at 100m, . This behavior, however, appears to be re-
stricted to a very narrow angular region.

To conclude this section, let us state again: It is
certainly evident that for masses including those of
electrons and positrons, the calculation of the angular
intensity must be carried out quantum mechani-
cally, if one is interested in anything beyond gross
phenomenology.

Furthermore, for light-mass particles, the angular
variation of the intensity is properly accounted for by
8~, which is an explicit function of the mass of the
particle. On the other hand, for the screened Coulomb
potential whose characteristic parameters are those
appropriate for the copper lattice, the angular variation
of the intensity is found to be nearly mass-independent
when the mass of the incident particle exceeds the
electronic mass by about two orders of magnitude. In
Sec. IV, this behavior is studied in more detail by
calculating the value of the intensity for zero angle of
incidence.

IV. POTENTIAL DEPENDENCE OF
EMITTED INTENSITY

A. Planar EBects
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E&IG. 3. Mass dependence of the intensity for zero angle
of incidence and positive interaction potential.

In this section, we evaluate the intensity for zero
angle of incidence for the planar geometry of Sec. III.
Several potentials are considered in order to illustrate
some of the difficulties in defining a classical limit for
the intensity.

For the screened Coulomb potential and for reason-
able values of the mean-square displacement, the
intensity seems to tend towards a limiting value, as
shown in Figs. 3 and 4. For zero mass, as can be shown
from the two-wave solution, the intensity starts at
unity. As the mass of the incident particle is increased,
the probability density on the nucleus decreases for
positively charged particles and increases for negatively
charged particles. Figure 3 shows a smooth behavior



CIIARGED-PARTICLE EMISSION FROM CRYSTALS

4,2-
PLANAR LATTICE

for the positively charged particle, tending towards a
limiting value quite sensitive to the value of (x'). It is
interesting to note that the heavier-mass particle is
more sensitive to the potential, in that a change in
(x') leads to large changes in the intensity, in contrast
to the behavior in the low-mass region. The actual
potential of interaction when (x')WO is a convolution
of the screened Coulomb potential with the Debye-
Waller factor.

Figure 4, which is the intensity for the negatively
charged particle, fails to show limiting behavior through
200 electronic masses; however, as mentioned above,
this mass dependence seems to be contained within a
very small angular region.

A more interesting property of the curve is the fact
that, in contrast to the positively charged particle, it
is less smooth. In fact, between 1 and 10 electronic
masses the intensity exhibits considerable structure.
This, however, when viewed as a result of changing
the mass, is of only academic value. But one should
remember that for zero angle of incidence the prob-
ability density is symmetric in the mass and the atomic
number Z of the host crystal, so that the curves in
Figs. 3 and 4 can be viewed as a variation in Z for 6xed
mass. The point labeled 1 electronic mass corresponds
to Z=29,

From the discussion presented so far one could con-
clude that, for the screened Coulomb potential with
constants appropriate for the various elements, the
angular variation of the intensity appears to converge
towards a limit independent of the mass or of 5. One
might be tempted at this stage to generalize this result
to other potentials, and, in fact, simply require that
the strength of the potential and the mass of the in-
cident particle be large enough to ensure a limiting
form for the angular variation of the intensity.

To illustrate the danger in generalizing numerical
results, we have plotted (in Fig. 5) the intensity at zero
angle of incidence for a variety of potentials. The
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0.01 0.1 1,0 lO 100 1000

(m/me )

FIG. 5. Mass dependence of the intensity at zero angle of
incidence for a variety of positive interaction potentials.

simplest of these is the square-well potential, which, in
fact, has been used for calculations in channeling
phenomena. This potential shows peculiar anomalies:
The first distinct behavior is the upswing of the intensity
towards unity for positively charged particles of suIIi-
ciently large mass. Our present method of calculation
cannot determine the behavior for masses beyond that
of the proton. However, by using a diferent mathe-
matical procedure, ' it is possible to establish the high-
rnass limit for zero angle of incidence. It turns out that
for this potential there is no limiting value for the
intensity in the sense discussed previously. In fact, the
intensity tends toward a periodic function of the mass
of the incident particle. The angular region over which
these anomalies occur represents, for masses much
beyond that of the proton, a fair fraction of the critical
angle, so that averaging the intensity over a small
angular region will not remove these eBects.

In an attempt to identify which property of the
potential is responsible for these anomalies, we have
studied a variety of potentials which were constructed
by a convolution of the screened Coulomb potential
and the Debye-Wailer factor. These potentials, for
large mean-square displacement, have in common
with the square-well potential a large region about the
nuclei where the variation in the potential is small. As
indicated in Fig. 5, we again obtain oscillatory behavior,
but of quite diBerent character. These characteristics
will be discussed more fully in a future paper. 6 The
point that we wish to make here is that using simple
criteria to establish a correspondence limit can lead to
erroneous results. Furthermore, the use of the square
well to make calculations for charged particles leads to
predictions which are inconsistent with results obtained
for more realistic potentials.

I.O—
0.0 I O, l

(m/me)

1

IO
J~~L

IOO IOOO

FIG. 4. Mass dependence of the intensity for zero angle of
incidence and negative interaction potential.

B. String Effects

When the incident wave vector is taken to lie parallel
to a principal lattice direction in the simple cube, the
crystal is eR'ectively a square array of continuous
"strings" parallel to ko. As mentioned above, in this
circumstance, advantage can be taken of the reAection

6 G. W. Lehman and R. E. De &ames, Bu&1. Am. Phys. Soc.
13, 438 (1968).
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FIG. 6. Mass dependence of the intensity for the two-dimen-
sional lattice at zero angle of incidence with positive interaction
potential. .

and rotation symmetry of the scattering geometry to
obtain the intensity for fairly large particle mass, which
would normally require the diagonalization of large-
order matrices.

The primary purpose served by these calculations
is to show that there is no intrinsic difference in the
emitted intensity obtained in a string direction; one
does not reach the classical limit any more quickly
than in the planar case. The results of our calculations
are illustrated in Figs. 6 and 7.

Comparing Figs. 3 and 6, we note that for the string
case the intensity near the positron mass is decreased
by about a factor of 2. The two curves, however, are
very similar in shape. The percentage change due to
thermal vibrations seems to be more pronounced for
the string case.

The intensity for the negatively charged particle
is illustrated in Fig. 7. Here again, just as in the planar
case, we note structure in the mass dependence. The
magnitude of the intensity, however, is much greater
than in the planar case.

To summarize our numerical studies of the potential
dependence of the intensity, it seems reasonable to
say that for realistic potentials the quantum-mechanical
calculation is tending toward a limit which is inde-
pendent of the mass of the particle. This limiting value
depends upon the mean-square displacement (x') of
the crystal atom. It is entirely possible that when.

(x2) =0, the intensity is tending toward zero as m~00,
which is believed to be the classical result for the emis-
sion problem. However, as was indicated in Fig. 3, at a
mass corresponding to that of the proton, the intensity
cannot yet be said to have achieved this limit.

I7
TWO- DIMENSIONAL LATTIC E
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so that our results provide a useful measure of the appli-
cability of the classical theory to emission experiments.

The case of electron and positron emission deserves
special attention in this regard, since these particles
are frequently used as experimental probes in crystals.
To use a classical theory for emission when it is well
known that the transmission patterns are controlled
by Bragg angles and Bragg widths is simply incon-
sistent. Moreover, our calculations show (c&. »g. 2)
that, although there is a superficial similarity, the
emission patterns di6er from the classical limit in
half-width and in intensity by factors of up to 4, with
pronounced differences in shape.

The dramatic mass dependence that we have illus-
trated in this paper should dispose, once and for all,
of the often-voiced notion that the emitted-intensity
pattern for charged particles, regardless of mass,
consists of a broad, dominant classical envelope on
top of which is superposed small, detailed structure
due to the (quantum-mechanical) Bragg resonances.
The emission patterns at I'0 electronic mass no longer
possess any resemblance to the classical envelope; the
value of the intensity at |I=0 is unity, regardless of the
sign of the charge, and departure from this value occurs
only in the immediate vicinity of Bragg angles.

Even the more plausible suggestion that for a given
scattering potential the emitted intensity tends every-
where toward a classical limit as the mass increases
is called into doubt by the results that we obtain at

CONCLUSIONS

By solving the emission problem quantum me-
chanically, we have been able to investigate the mass
dependence, at constant energy, of the emitted in-
tensity. Classically, there should be no such dependence,

O.OI
l ~jul.

Fxo. 7. Mass dependence of the intensity for the two-dimen-
sional lattice at zero angle of incidence and negative interaction
potential.
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zero angle for the square well or for the screened Cou-
lomb potential at sufficiently large mean-square dis-
placement. While these anomalies are of limited angular
extent, their existence points up the difficulties inherent
in defining when a classical limit can be used for this
problem.

Finally, let us point out that much of the current
controversy over the adequacy of the classical descrip-
tion results from the inadequacy of the energy and
angular resolution achieved in the experiments to
date. As we pass to the use of more nearly monoenergetic
particles (e.g., E-conversion electrons) and better
angular resolution, the gross differences between the
classical predictions for electrons and positrons and
their actual behavior will become detectable.

APPENDIX

We denote by F~ the point in the Brillouin zone
(BZ) where ko =k0„=0. If we are considering cubic
crystals, then the group of the wave number k is a
subgroup of the full cubic group and is denoted by
C4v. The amplitude y(r) must then transform like the
I'~ irreducible representation of C4y. We can therefore
expand y(r) in terms of these symmetrized plane
waves and derive equations for the coeKcients in the
expansion. The resulting equations, as we shall show,
are very similar to those derived previously. However,
matrices of lower order can be used to obtain the same
accuracy in the calculation.

We write

&r~(r) t,a, g g y r, (r)
n1)n2

(A1)

(A3)

~vhere Q is the volume of the unit cell.

where n=(e~, n2), n) and m2 are Miller indices, k is
the magnitude of the wave vector in the medium and
needs to be determined from Eq. (1), and f„r' is a
linear combination of plane waves constructed in the
following way:

P~"=[(Q8)(Q b) „s) )"'] ' P exp(iR&n r), (A.2)
8 B

where E. represents the elements of the group C4y and
8 is Kronecker 8. The above basis functions have been
normalized so that

Now, using Eqs. (A1), (A2), and (7), we obtain for
the A' s

[(P/2m) (k'+k„') —FJA„

2 ~ Q~ U(k„—Rk )

&11&'+2~ [(Q ~k„~I tk ) (QR„) Rk„))

where

U(k —Rk..) =(1/0) f exp(~(k —Rk ) ~ r]U(r)dr.

Equation (A4) is very similar to Eq. (7), which we
developed for the eh's. The important point to note is
the reduction in the sum over that obtained without
the use of group theory. We now proceed as before to
obtain the wave functions inside the crystal by match-
ing to the incoming plane wave at the entrance surface.
This enables us to write

, exp[i(k(&)K+2k ) r]qr' r =Z A(); ~ A„~'
j B n))nm (Q8) ( Q 8g. g, )

(A6)
where K is a unit vector in the s direction.

To obtain the wave function at the nucleus, r is
simply equated to a lattice point. In Eq. (A6), the
exponent through the term k makes the intensity
oscillate as a function of the thickness through the
sample. However, if this thickness is greater than the
extinction distance, the oscillations are very fast and,
after averaging over a 6nite interval At, give zero con-
tribution to the probability density. We de6ne this as
the envelope, which simply is

I
~" I'--= (&8) 2 I

~ I'[ 2 ~- ~/(2 ~. ~ )"9
n1)ng t

(A7)

This function represents the probability density at the
nucleus averaged over a small thickness interval ht
at a finite distance in the crystal. The A's occurring in
Eq. (A7) are obtained by solving Eqs. (A4) . The sum
over j runs over all the roots of the secular equation
(A4). The normalization condition for the A's follows
from Eq. (A3) and is given by

g f
a, ['=1.O. (A8)

nI)ng


