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A general solution is presented for the line shape of radiation emitted by a system whose Hamiltonian
jumps at random as a function of time between a finite number of possible forms VI, V2, ~ ~, V„. The
solution is valid even if these forms do not commute with one another (PV;, V,j/0), so that the Hamiltonian
need not commute with itself at different times: t SC(t), X(t ) gAO. This is a generalization of the Kubo-
Anderson model in which it is assumed that the Hamiltonian does commute at diferent times. The treatment
given here thus extends this adiabatic or random-frequency-modulation theory to include the nonadiabatic
eGects of transitions induced by the Quctuating Hamiltonian. The solution involves the inversion of a
matrix and is similar to Sack s solution of the Kubo-Anderson model. The matrix found in the present case
is labeled by quantum-mechanical as well as stochastic indices, and it reduces to the form found by Sack
when the possible forms of the Hamiltonian commute with one another. Numerical evaluation of line
shapes can be accomplished easily with a computer, and in the simplest cases analytical expressions can
be found. The applicability of the theory to NMR and Mossbauer line shapes and to perturbed angular
correlations is discussed. A specific example of the NMR line shape of a spin--, nucleus in a fixed magnetic
Geld and a fluctuating 6eld perpendicular to it is considered in detail as an illustration of the utility of
the derived expressions. The solution uses the Liouville-operator notation and this is discussed in an Ap-
pendix.

I. INTRODUCTION

T 1HE stochastic theory of motional narrowing as dc-
' .veloped by Kubo' and Anderson, ' among others,

has been widely applied in the calculation of magnetic
resonance and Mossbauer line shapes. According to
this theory the frequency of the system (i.e. , resonant
spin or Mossbauer nucleus) changes at random from
one to another of a 6nite number of possible frequencies,
and the line shape may be calculated as a function of
the rates of transition between these frequencies. A
detailed and elegant derivation of the theory is given
by Abragam. ' An example of the type of system treated
is given by the case of a nucleus in a randomly varying
magnetic 6eld which jumps between the values &h
along the s axis. The Hamiltonian for such a system
is4, 5

X(t) =gt.hI, f(t),
where f(t) is a random function of the time, which takes
on the two values &1.The Larmor frequency of a nu-
cleus would then jump between the values &gph as
f(t) jumped between its two possible values. It should
be noted that the Hamiltonian (1) has a specific prop-
erty that is essential to the development of the Kubo-
Anderson theory, namely K(t) commutes with itself

*Work performed under the auspices of the U.S. Atomic
Energy Commission.

R. Kubo, J. Phys. Soc. Japan 9, 935 (1954); also, see the
article in Fluctuation, Relaxation and Resonance in Magnet&
Systems, edited by D. ter Haar (Oliver and Boyd, Edinburgh,
1962), p. 23.' P. W. Anderson, J.Phys. Soc. Japan 9, 316 (1954) .' A. Abragam, The Theory of Nuclear Magnetism (Oxford Uni-
versity Press, London, 1961), Chap. X.

4 M. Blume, in HyperfI, ne Structure and Nuclear Radiations
(North-Holland Publishing Co., Amsterdam, 1968), p. 911. See
also, Phys. Rev. Letters 14, 96 (1965);18, 305 (1967).

~ M. Blume and J. A. Tjon, Phys. Rev. 165, 446 (1968).

at clifferent times: )X(t), BC(t') j=0. This means that
it is possible to diagonalize X at some instant of time
and find that it then remains diagonal at later times.
The time variation of X(t) will then not cause any tran-
sitions between the eigenstates of X. The only e6ect of
this variation will be to cause the frequencies of the
eigenstates to change with time. For this reason the
Kubo-Anderson theory is referred to as the adiabatic, or
random-frequency-modulation theory of motional nar-
rowing. It is essentially a classical theory, since the
quantum-mechanical problem of the diagonalization of
the Hamiltonian is distinct from the problem of the
evaluation of the stochastic averages, so that quantum
mechanics enters only in the determination of the pos-
sible frequencies allowed to the system.

There are circumstances in which this model is in-
adequate, because of the importance of nonadiabatic
e8ects. For example, if a 6xed magnetic 6eld H along
the positive x axis is added to Eq. (1),

5C (t) =gtzHI, +gjzhI, f(t), (1')

we find that [BC(t), K(t') j&0. The fluctuating term
gIzhI, f(t) is now capable of inducing transitions be-
tween the eigenstates of I,. It is also clear that the
stochastic and quantum-mechanical aspects of the
problem are no longer separate. This is seen by con-
sidering the limiting cases of slow and rapid fluctuation.
If the values &1 of f(t) are equally probable and the
rate of transition between them is extremely rapid,
the fiuctuating term will average to zero, and the x axis
will be the appropriate axis of quantization. On the
other hand, if the jump rate is very slow, the axes of
quantization are the resultants of the fields H along the
x axis and &h along the s axis, so that the rates of tran-
sition Li.e., the stochastic properties of f(t)] determine
the quantum-mechanical properties of the system.
35i
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In this paper, a general solution is given for the prob-
lem of the line shape of a system whose Hamiltonian
makes transitions at random betweeen a series of pos-
sible terms Vq, V2, ~ ~, V„where the operators V, do
not necessarily commute with one another. The solu-
tion is, thus, a generalization of the Kubo-Anderson
treatment of Markovian modulation to include non-
adiabatic as well as adiabatic effects. The form of this
solution is very similar to that found by Sack' for the
Kubo-Anderson model in that it involves the inversion
of a Gnite matrix and is thus suitable for evaluation
on a computer or, in the simplest cases, analytically. In
the Kubo-Anderson case the matrix to be inverted has
elements labeled by the possible values of the stochastic
function f(t), while the matrix in the solution to be
given here has quantum-mechanical indices as well as
stochastic ones. The Sack solution is found as a special
case when the quantum-mechanical operators are
diagonal.

Two problems involving a Hamiltonian with the
noncommutative property mentioned above have been
solved in earlier papers by special techniques. "The
first concerned the Mossbauer line shape for a nucleus
in a magnetic Geld that Quctuates along the s axis and
a fixed electric Geld gradient along the x axis, while
the second concerned a nucleus in an electric Geld
gradient that jumped at random between the x, y, and z
axes. These will be used. as illustrations of the general
techniques to be presented here. We make use of the
stochastic functions f(t) that jump between m different
possible values to construct the model Hamiltonian of
the system. In the next section, we discuss the general
problem and give the solution in Eq. (22). Some ex-
amples are considered briefly in Sec. III, and an Ap-
pendix treats the properties of the Liouville operator
that are used in the solution. Subsequent papers will
contain applications of the general solution to specific
problems in NMR, (Mossbauer line shapes, and per-
turbed angular correlations of p rays.

II. SOLUTION OF THE PROBLEM

The mathematical problem that we set is the solution
of the line shape of emitted or absorbed radiation by
a system whose Hamiltonian is a random function of
time, jumping between a finite number e of possible
forms. This model is supposed to represent the physical
effects of the interaction between the system (e.g., a
nuclear spin) and other degrees of freedom (e.g. , elec-
tronic spins, lattice vibrations, etc.). The random time
dependence then replaces the interaction terms in the
Hamiltonian, so that in a sense the stochastic variables
represent the "heat bath" with which the system
interacts.

As examples, we consider the problems treated in

6 R. A. Sack, Mol. Phys. |,, 163 (1958).' J.A. Tjon and M. Blume, Phys. Rev. 165, 456 (1968).

Refs. 5 and 7. The Hamiltonian'

+ 'f(t)f1-+f(t)7Q(»*' I')-—

+~gf(t)f1 —f(t)7Q(3I —I') (3)

where f(t) jumps between the values ~1 and 0, de-
scribes a nucleus which, because of electronic relaxation,
Jahn-Teller distortions, jump diffusion of vacancies, or
other physical effects finds itself in an electric field
gradient that makes transitions between the x, y, and
s axes. The factors (1—f'), -,'f(1&f) have been chosen
so that each one is unity for one possible value of f(t)
and zero for the others. This example shows how we
may construct a general stochastic Hamiltonian that
makes transitions between n different forms. Ke in-
troduce a stochastic function f(t) of the type considered
by Kubo and Anderson, which can assume one of e
different values: f(t) = i~, is, ~ ~ ~, i„.The general form
of the type of Hamiltonian we will consider is

X(t) = Z l' f (t), (4)

where the V, are quantum-mechanical operators and
the functions f, (t) are some combination of the basic
random function f(t). We might choose f, (t) so that
f;(t) = 1 if f(t) =i;, and f, (t) =0 otherwise, s but this is
not necessary. For the Hamiltonian (3) we would have

V, =Q(3I,'—I'), f (t) =1—f'(t);
l' =Q(»*'—I'), f (t) =-'-f(t) L1+f(t)7;

1' =Q(3I.'—I') f (t) = lf(t) f1—f(t) 7,

where f(t) takes on the values &1 and 0. For (2), on
the other hand,

l' =Q(».'-I'), f.(t) =1;

V2 gIJhIz) fs(t) =f(t)

Equation (4) thus provides a very general form for the

8 This is accomplished by writing

(f(t) —ii)" (f(t) —i-~)(f(t) —&+i)".(f(t) —i )
f t.~) =-

(i; ig) ~ ~ ~ (i; ~—; &) (i; i;+&—) ~ ~. ~ (i; i )— —

X(t) =Q(3I,' I')+—gtshI, f (t),

where f(t) =&1, describes a nuclear spin in a fixed
electric Geld gradient along the x axis. The randomly
varying magnetic field term then represents the eGects
of relaxation transitions by the ion (presumed to have
spin -,') in which the nucleus is embedded. If the ion
had spin 1, we would then allow f(t) to take on the
values +1 and 0. Similarly, the Hamiltonian'

X(t) = L1—f'(t) 7Q(3I.' —I')
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Hamiltonian of a system whose surroundings Quctuate
in time between a finite number of diferent possibilities.
%e want, then, to calculate the line shape of photons
or other particles emitted or absorbed by a system
governed by a Harniltonian of this form.

The line shape is capable of being expressed as the
Fourier or Laplace transform of a correlation function.
For example, the Mossbauer line shape is given by Eq.
(2.S) of Ref. 5:

W(k) = (2/I') Re dt
0

&& exp(isn't ——,'I' t) ((X' )X(+)(t) )), , (5)

where W(k) is the probability of observing a photon
k, X'~& is the interaction between the nucleus and the
electromagnetic field for emission of the photon k,
3C( &=K&+&~, and I' is the natural linewidth. The angu-
lar brackets (~ ~ ~ ) denote an average over the occupa-
tion of the initial states of the nucleus, and the round
brackets ( ~ ~ ), denote an average over the stochastic
properties of the system Hamiltonian X ()I) that governs
the time dependence of X(+)(t). This time dependence

is given by
t

X(+) (/) = exp i X(t') dt' X(+)
0

t

&& exp i— X(t') dh', (6)
0

where the exponentiated operators are suitably time
ordered. Our problem is the evaluation of this stochastic
average when the Hamiltonian. X(t) has the form (4) .
An expression similar to (5) arises in the treatment of
nuclear magnetic resonance line shapes, ' in the case of
perturbed angular correlations of successive nuclear
radiations4 and in numerous other line-shape problems,
so that the evaluation of the stochastic average given
below will be of use in these other circumstances.

Ke consider, then, the calculation of

F(P) = d( ~ y (()X( )X(+i(() ))

as a specific example. We may, as in Eq. (2.10) of
Ref. 5, introduce a complete set of states for the evalu-
ation of the correlation function in (7):

((X' 'X'+'(~) ))-= (2Ii+1) ' 2 I (Ii~i
l

X' '
I
Io~o)

mImp, m1Im pI

t

Ipmp exp i X t' dt' Ip~p' Ipse X'+) I~m~'
0

X I~m~' exp i X t' dt' Immy . 8
0 av

We must now evaluate the average of the product of the matrix elements of the time-ordered operators

t

IpÃio exp i X(t') dt' Iomo' I&m&' exp i X—(/) dh' Izmz
0 0 i av

y, 3 (—) exp z

0

so that our problem becomes the evaluation of the
quantity

The evaluation of this expression is made dificult by where X~()") is the Liouville operator for the Hamil-
the presence of two separate time-ordered series, since tonian. Eq. (7) then becomes
the stochastic average is most easily performed when all
random functions are arranged in a single time-ordered
sequence. It is convenient, for this purpose, to introduce
the Liouville operator for the Hamiltonian, since this
will allow the reordering of the two time-development
operators in (S) . A discussion of the Liouville operator dl'Se" (I )dt

~

x'+&), (I)'
is given, for convenience, in the Appendix, and we make
use here of the results derived there. From Eq. (AS) we
note that we may write

t

exp i X(t') dt' X(+) exp i X(t—') dt'
0 0

t

~
exp i Xx(t') dt'

0 av

= exp i X~()!') dt' X'+', (9) This average is a Liouville-type operator and is thus, ac-
0 cording to Eq. (A2), labeled by four indices. Indeed, the
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expansion (S) may be written as

((&' 'X'+'(~) ))-= (»i+1) ' Q (Ii~i
I
X' '

I lotto) I

fo]mg

= (2Ii+1) ' Q (Iimi
~

X' '
~
Io~o)

may, moi'm1~

exp i X~(i') dt' Xi+i Iimi
0 RV

Comparison with (S) shows that

t

I0moI~m~ exp i 3'.~ t' dt' Iomo'I~m~' I0m0' 3'.&+' I~m~' .
0 RV

(
t

Jeer Irmr (exp r ee"re') rtl )
'I,m, 'I,ee')

0 RV

t t

Ipmo exp i K t' dt' Iomo' I&m&' exp —i K t' dt'
0 0

I]mg ~
12

as is found from (AS) . The introduction of the Liouville
operator thus enables us to combine the two time-
ordered sequences into a single one. Once we know the
matrix elements of

exp i 3C~ t' dt'

then we may calculate the line shape from (11), since
the elements (Iomo' ~X'+'

I Iimi') are expressible in
terms of Clebsch-Gordan coeKcients. )In the treat-
ment of NMR line shapes BC&+' is replaced by I, and
the matrix elements are well known. $

Let us turn, then, to the evaluation of

t

exp i X~(t') dk'

0 RV

Introducing the notation

U(t) =exp i X~(t') dt',
0

we note that U(t) satisfies the integral equation

U(t) =1+i dt'U(f)X&(t'). (14)

U(t) =1+i df U(t') g V,&&f, (t'), (l5)

where V,~ is the Liouville operator associated with V, .
We wish to evaluate (U(t) ), . If we were simply to
take the average of (15) we would find that the right-
hand side would contain terms of the form (U(/) f, (t)),
which are more complicated than the simple average we
seek. This occurrence of "higher-order" terms is similar
to the Green's-function —type of analysis. In the present
calculation, however, we do not proceed in this way.
Instead, we introduce the notion of a restricted aver-

LThis follows from the fact that dU/dt=iU(t)X~(t).
integrating this expression from zero to t and using
U(0) =1 yields (14).j On substituting the form (4)
for X(t), we obtain for (14)

age' "of U(t), which we denote by (u
~
U(t)

~
t). This

is the average of U(t) over the restricted class of func-
tions f(i) such that f(0) = a and f(t) = b, where a and
b are two of the possible values taken on by f(t) . In de-
tail: we take the ensemble of functions f(t) and single
out those functions with f(0) = a and f(t) = fi, discard-
ing all others. We then average U(t) over this restricted
ensemble. The full average (U(t) ), which we require
is then obtained by summing over all values b and
averaging over all initial values a:

(U(&))-=Z P-(~ IU(&) I &), (16)

where p, is the a priori probability of the occurrence of
the initial value a. Hence the determination of U(t),
which is a stochastic as well as a Liouville matrix, solves
the problem.

We now take the average of Eq. (15), subject to the
condition f(0) =a and f(i) =b, and we consider each
term in turn. The left-hand side becomes, of course,
(u

~
U(i)

~
b). The average of unity, the first term on

the right-hand side, is not, in this case, one, but is to
be weighted by the probability that f(t) =b given

f(0) = a. We denote this quantity by (a
~
P(t)

~
b). In

averaging the second term on the right, we make use
(for the first time) of the stationary Markov property
of the functions f(t). We break the average into two
parts; one over functions for which f(0) = a and f(t') = c,
and the other over functions for which f(t') =c and

f(t) =b. This is possible because probabilities in a
Markov process depend only on the latest value as-
sumed by the function. By summing over the values
of the function a,t the intermediate time t', then, we
obtain the restricted average. AVe find for the second
term on the right in (15)

t

dt'(a
i
U(t')

i
c)

cd 0

where F; is a diagonal matrix whose elements are the
values assumed by f, (t') . For example, if f(t) = &1 or 0,
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and f, (t) =1—f'(t), then

(o o o)
F,= G 1 G

(o o o

The factor (d
I
P(t—t')

I
b) is the probability that

f(t) = b given that f(t') = d. We may write the results of
this partial averaging of Eq. (15) in matrix form. We
have

U(t) =P(t)+i dt'U(t') Q V,xF,P(t—t'). (16')

This averaged equation is now solvable, since the
averaging process has introduced the factor P(t—t')
on the right-hand side. We take the Laplace transform
of (16'), and use the notation

dt e
—"U(t),

P((p) = dt e "'P(t),

so that

U(p) =P, (p)+iU(p) Z V xF;P, (p), (17)

since the Lapla, ce transform of the convolution integral
is equal to the products of the Laplace transforms of

U and. P. The solution to (17) is

U(p)=P(p)I1-'ZV, F,P(p)j-.

In order to obtain our Anal result in usable form we
consider P(t). This matrix is given by"

P(t) = exp(Wt), (19)

where W is a stochastic matrix whose off-diagonal
elements (a I

W
I
b) are equal to the probability per

unit time that f(t) makes a transition from a to b, and
whose diagonal elements

(~
I
w

I
~) = —2 (&

I
w

I b)
b(M)

are equal to the negatives of the "lifetime" of f(t) in
the value a. All of the physical information put into the
model is in this matrix. From (19) we find that

p, (p) =f ee e ' exp(Wt)

= (pl —W) ', (2o)

and, on substituting in (18) we obtain

U(p) = Lpl —W —i g V xF ] '. (21)

This simple result gives the desired solution to the
line-shape problem. We note that from (10), (13), and
(16) only U(p) is required for the evaluation of the
line shape, so that there is no need in this case to invert
the Laplace transform to obtain U(t) .

On combining (21), (16), (11), and (10), we find
for F(p):

I'(p)
= (2Ii+1) ' Q (Iimi IX(

I
Ipmp) p p (IpmoIimiaI &pl W i g V, F—j '—IIomo'Iimi'b)(Iomo'I BC(+'IIimi').

mlmp, mlI mph ab

(22)

Let us consider in more detail the solution (21) for
'U(p). From (22) we see that this matrix is labeled by
three indices, two quantum-mechanical corresponding
to the excited and ground states of the emitter, and one
stochastic index corresponding to the possible values of
f(t). The dimension of this matrix is then (2Ii+1)
(2Io+1)e, where Ii is the spin of the excited state, Io
the spin of the ground state, and e is the number of
possible values of the stochastic function f(t) . In gen-
eral, then, it is necessary only to invert a matrix of this
size in order to solve the problem, and this inversion is
easily performed numerically on a computer for any
reasonably sized system. For example, the NMR line-

shape problem for spin -', has I~=SO=» and if the
Hamiltonian jumps between eight different forms
(e.g. , if the nucleus is in a magnetic field that jumps
between the eight I 111j directions) the matrix will
be 32&32, a size that presents no diS.culties for a com-

puter. It should be emphasized that (2Ii+1) (2Ip+1) B
is the maximum dimension for the matrix, since sym-
metry properties can be used to reduce this. If all of
the operators V, commute with one another they can
be simultaneously diagonalized. In that case the V;~
are simply numbers and an e-dimensional matrix must
be inverted. This is of course the case for the original
problem treated by Kubo and Anderson. We see there-
fore that (21) reduces to the solution found by Sack' '
for their problem if the V;~ are c numbers and if F,.=F,
the diagonal matrix of values assumed by f(t). This
incidentally illustrates mathematically the way in
which the quantum-mechanical and stochastic aspects
of the problem become separate when the Hamiltonian
commutes with itself at different times. If, on the other
hand, the different V; operators cannot be simultane-
ously diagonalized the inversion of the matrix in (22)
will cause a mixing of quantum-mechanical and sto-
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chastic indices, so that the eGects of the rate of Ructu-
ation on the quantum-mechanical problem occur as
discussed in the Introduction.

III. EXAMPLE

In this section we consider in more detail the evalu-
ation of the matrix U(p) and we present several il-
lustrations as explicit examples of the mechanical
procedures to be followed in using Eq. (22).

%e wish to evaluate the iriverse of the matrix

pl —W—i g VpF, .

To do this, we erst construct this matrix, with each row
and column labeled by three indices:

(IpmpIimia I pl W—i g—Vt+Fz
I Ipmp Iimi b). (23)

Clearly the purely stochastic matrices, such as W, must
be diagonal in the quantum-mechanical indices, while
the Liouville operators V;~ are diagonal in the stochastic
indices. Hence,

(IpmoI&mia I p& I
Iomo'Iimi'b)

(24a)

(IomoIimia
I
W I Ipmp Iimi b)

=b...,'a.,„,'(a I
W

I b), (24b)

(IpmpIlmia ] Vj Fj I
Iomo Iimi b)

(IomoI, m,
I V,x I Iomo I,m, ) (a [ F,. I a) g~,

where, in the last expression, we have used the fact that
the F; are diagonal matrices. To complete these expres-
sions we note that the definition of the elements of
Liouville matrices, Zq. (A4), allows us to express these
elements in terms of the matrix elements of ordinary
operators:

(IomoIimi
I VP I

Iomo'Iimi') = &,„,'(Iomo
I Vr I

Iomo')

—8, ,'(Iimi'
I

V, [ I&mi).
Ke therefore have

(IomoIimia [ VPF,
I

Ipmp'Iimi'b) = (a
I
F

I
a) ap

&&Lb, ,'(Iomo
I

V'
I

Iomo')

—S.. .'(I,m, '
I V, I

I,m, )j. (24c)

Hence, (23) can be evaluated in terms of the matrix
elements of ordinary quantum-mechanical operators
and the transition probabihties (a I

W
I b) by using

(24a) —(24c). The resulting matrix may then be in-
verted to obtain U(p). Finally, we must specify the
a priori probabilities p of the occurrence of a specific
value a of f(t). These are determined by the require-
ment that f(t) be a stationary process, so that detailed
balance holds for the transitions:

p. (a I
W

I b) = pp(b I
W

I a).
The p, are determined from these relations and the
normalizing condition
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The specification of W then provides sufhcient informa-
tion to perform the calculation.

To illustrate the construction of the matrix we con-
sider the Hamiltonian

X(t) =III,+h If(t), (26)

where f(t) = &1. If h is along the s axis we have the
standard case of a Quctuating field parallel to a fixed
field H. We will consider the case where h is in an ar-
bitrary direction. We take I&=I&——~. This case is of
interest in considering the NMR line shape of a spin--,
nucleus in a fixed field B along the s axis and a Quctu-
ating field h in an arbitrary direction. We rewrite (26)
in the form

se(t) =III,+[,'(h+I +-h I,)+h-.I.jf(t), (27)

where 8+= h,~ih„and I+=I,~iI„.The matrix to be
inverted is then easily found, using (24a) —(24c), to be
as in Table I. Note that if h+= h =0, i.e., for h along
the s axis, the 8&(8 matrix is reduced to four 2&(2
matrices, as in the original solution of Kubo and
Anderson. In the general case, the full eight-dimen-
sional matrix must be inverted and the quantum-
mechanical and stochastic indices are intermixed. The
NMR-absorption signal is given by an expression
analogous to (5) (see p. 101 of Ref. 3). If the radie-
frequency field of frequency co is applied along the
x axis the absorption is proportional to

dt e ' tr (I.(0)I (I) ), , (28)
0

while for a rf field along the y axis it is proportional to

I,(oi) =Re

I„(oi)=Re dt e~' tr (I„(0)I„(t)),„. (29)
0

In Fig. 1 we display the results of the evaluation of
these expressions for the Hamiltonian (27) with I=
using Eq. (21) to determine the stochastic average.
In Figs. (1a) and (1b) we show the results for Eqs.
(28) and (29), respectively. An imaginary part has
been added to ~ so that the spectrum will not collapse
to 8-function peaks: ~oi+0 Si The fluc.tua. ting field
has been taken along the x axis, perpendicular to the
applied field H, and the values H=3, h=h, =4 have
been used. In Fig. (1c) we show for comparison the
same quantities (28) and (29) evaluated for a Hamil-
tonian in which the Quctuating field is along the s axis,
i.e., parallel to the fixed field. , with H=3 and h=h, =4.
In this case I,(&)=oI„(oi). This situation corresponds
to the simple adiabatic theory of Kubo and Anderson
since here LK(t), X(t') )=0. The results illustrate the
different eGects produced by adiabatic and. non-
adiabatic Quctuations. In the case of very rapid Quctu-
ation (W=100), the time varying term averages to
zero, and the line shape is the same in the three cases.
As the Quctuations slow down, differences appear. Case
(c) is familiar from earlier discussions —in the limit of
slow relaxation we find two lines corresponding to fre-

I I I I I I I
''

I I I I I I I I
''

I I I I I I I I I I

(b) (c)
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APPENDIX

Liouville Oyexatoxs

The quantum-mechanical I.iouville operator was
introduced by Kubo, ' and exploited by Zwanzig. ' The

' R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).
io R. danzig, J.Chem. Phys. 33, 1338 (1960).

0 2 4 6 0 2 4 6 0 2 4 6 8
FREQUENCY

FIG. 1. NMR line shapes for a spin-~2 nucleus in 'a Gxed mag-
netic Geld along the 2 axis and also for a Quctuating Geld. W is
the jump rate for the fluctuating 6eld. (a) Fluctuating field along
the x axis, resonant Geld along the x axis. I, (co) is calculated
from Eqs. (28) and (20). (b) Same as (a), except I„(co) is shown.
(c) Fluctuating Geld along the s axis, parallel to the Gxed Geld.
I (&o) =I„(co) is shown.

quencies H+h, or for the parameters used here, at co= 1

and co=7. The limiting case of slow relaxation is quite
different when the Quctuating field is perpendicular to
the fixed field, as in Fig. (1a) and (1b). The peak in
I„{co), (1b), occurs at &o= (II'+h')'t'=5. A similar
peak occurs for I,(&o), but there is, in addition, a large
zero-frequency peak. This is a result of the component
of the field along the x axis. The transition between
the slow and fast relaxation regimes is shown for the
intermediate values of W.

The examples considered here have. been treated to
illustrate the utility of Eqs. (21) and (22) in construct-
ing models for relaxation and in evaluating line shapes.
In some future papers, a number of more complex
models will be treated using those techniques. In par-
ticular, a model applicable to Mossbauer line shapes
in thin films and to superparamagnetic particles, in
which magnetic fields jump from one axis to another,
will be considered.

Note added im proof. The time dependence of the
density matrix of a system with a andomly varying
Hamiltonian like those considered here has been treated
by C. S. Johnson, Jr. PJ. Chem. Physr 41, 3277 (1964))
and applied to spin systems exchang. ing between two
different environments LJ. Magnetic Resonance (to
be published)]. I am indebted to Dr. Johnson for a
prepublication copy of the latter paper.
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line-shape problem has been discussed in terms of it by
Fano."Ke collect here, for convenience, some of the
properties of this operator that are used in 6nding the
solutior» (21). Briefly stated, with each quantum-
mechanical operator A we may associate the Liouville
operator A~ which acts on other quantum-mechanical
operators 8, so that A+8 gives the commutator of A
with 8

A B=AB—BA=(A Bj (A1)

This appears to be no more than a notational device,
and we might use it as such to simplify the rnathemati-
cal problem, but there is also a physical significance to
this concept that is discussed in Refs. (9—11), and that
will be mentioned brieRy below. First, in developing
the mathematical properties of the Liouville operator. ,
we note that a Liouville operator has the same relation
to an ordinary linear operator as that ordinary operator
has to a state vector. The ordinary operator acting on
a state vector gives a different vector. Similarly, a
Liouville operator acting on an ordinary operator gives
a different operator. We may therefore write the matrix
elements of the operator A~A as a liner combination
of the matrix elements of 8:

» I
(AxB) I v) =g &» I

Ax
I » "v'&&»

I
8

I
«'» (A2)

p~ vI

where the coeKcients &» I
Ax

I p, 'v'& are labeled by
four indices just as the elements of 8 are labeled by
two. These coeS.cients can be expressed in terms of the
matrix elements of the operator A, since from (A1)
we And

(AxB)
= 2 & I

A
I » '&&»'

I
8

I &

—2 &» I
8

I
«'&&«'

I
A

I
«) (A3)

y/

Comparing (A3) and (A2) shows that

&» I
A

I »
'"&=~- &» I

A
I »

') ~- &

'
I

A
I
.).—(A4)

This relation thus defines the four-index "matrix ele-
ments" of the Liouville operator in terms of the matrix
elements of the ordinary operator with which it is
associated.

The principal property of the Liouville operator
which we use is the relation

e" 8 e ~ = exp (Ax) B. (A5)

To prove this we consider e~ 8 e ~=F (» )8, where

F(X) is a four-index I.iouville-type operator, and note
that

(d/dX)F(X)B=e~LA, Bfe ~"=F(X)AxB,

the formal solution of which is F(X)8=exp (&Ax)8.
This reduces to (A5) for X=1. We may obtain some
idea of the signi6cance of (A5) by considering the par-
ticular case A=i3Ct where 3C is the system Hamil-
"', Faoo, Phys. Rev. 131, 259 (1963),

tn=g —'-i-x, LX, ".I-x, Bj".gj.
n=o +. n commentators

(A7)

The eth commutator of the Harniltonian with 8 is, how-
ever, the nth time derivative of 8 at t=0. (A7) is thus
equivalent to

co tn dna
8(t) =Z —,

n=o &! d't" t=o

which is the Taylor-series expansion for 8(t) about
t=o. The Liouville-operator notation provides a com-
pact way of writing the commutators in (A7) . It should
be noted that (A6) also holds if the operators are suit-
ably time ordered. In particular we have

t t

8(t) = exp i X(t') dt' 8 exp+ i X—(t') dt'
Q Q

t

= exp i Xx(t') dt' 8, (A8)
Q

where the —and + subscripts on the exponential in-
dicate negative and positive time-ordering, respec-
tively. The proof is analogous to that for (A6).

The physical significance of the Liouville operator
for the Hamiltonian X& may be seen by asking for its
eigenvalues and eigenoperators. These are easily found
in terms of the eigenvalues and eigenfunctions of the
Hamiltonian itself. If we have X

I »») =E„ I »»), X
I

v) =
E„

I v), then the transition operators
I »»)(v I

are seen
to be the "eigenoperators" of X~:

x"
I » &( i=x

I » && I

—
I » && I

X

=(E.—E.) I » &&v I.

The eigenvalues of the Liouville operator 3C+ are there-
fore the dhgerences E„E„ofall of the energ—y levels of
the Hamiltonian. These are physically observable quan-
tities, unlike the energy levels E„ themselves, which
contain an arbitrary zero of energy. The differences
E„—E„represent the possible spectral lines emitted
by the system. Thus, it is not surprising that the opera-
tor Xx is found useful (even if it is treated, as in Sec. II,
simply as a convenient mathematical notation) in a
discussion of the shape of spectral lines.

In the text, we sometimes use the term "Liouville
operator" in a more general sense to refer to any four-
index operator that acts to transform an ordinary opera-
tor. Such operators are functions of Liouville operators
I such as exp(Ax) j, and their matrix elements are of
course not given by as simple a relation as (A4),

tonian. We find

exp (ixt) 8 exp (—iXt) = exp (ixxt) 8=8(t). (A6)

On expanding exp (ixxt) in a power series we have
CO

B(t) =g —(iXx)"8
S 0


