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This paper reports a method for studying correlation functions for simple classical liquids.
One atom of the liquid is considered to be an external agent acting on the others, and
Liouville' s equation is formally solved to obtain their response. From this solution an

equation for the velocity autocorrelation function is derived. The method is also applied to
the distinct-particIe part of the density-density correlation function, G~(x, t). The moment
relations for Gd(x, t) are in this way made to depend on a hierarchy of equations relating the
static correlation functions. When the basic equations derived by this method are approxi-
mated further, previously given approximations for G~(x, t) are obtained.

I. INTRODUCTION

In a recent paper' Singwi and Sjolander have given
an approximate theory of the velocity autocorrela-
tion function of a classical liquid. The philosophy
of their method is to consider one atom of the liquid
as an external driving agent on the other atoms and
to find the response of the others to this one. In I
this response was calculated from a simplified ki-
netic equation for the one particle distribution func-
tion of the other atoms.

This paper extends the method of I and has two
purposes. First, we show that within the philoso-
phy of I a formal exact solution for the response
can be found from the full Liouville equation of the
system. To apply this solution to the velocity auto-
correlation function, it is necessary to find the
change in the density caused by the passage of the
particle considered as the external agent. We find,
in analogy with linear response theory, but more
generally, that this density change is given by a

generalized density-density correlation function.
This function can be split into self- and distinct-
particle parts, just as for the equilibrium function.
The approximate solution of I is obtained if we drop
the distinct-particle part. Therefore we find that
in I any contribution of collective motions to the
velocity autocorrelation function was neglected.

The second purpose is to apply this philosophy to
the equilibrium density-density correlation function
G(x, t). This function is of central importance in
the theory of radiation scattering by condensed sys-
tems 'G(x, t) .can be written as the sum of a self-
part Gs(x, t) and a distinct-atom part Gd(x, t). Since
the method of this paper is to treat the response of
the other particles to the motion of one, it is natur-
ally suited to calculating the distinct-atom part
Gd(x, t). We can thus assume that Gs(x, t) is known
(along with all static correlation functions) and use
it in the theory for Gd(x, t).

We use the method of the paper to discuss thefirst
four moment relations for Gd(x, t), and to show how
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II. DEFINITIONS

We consider a system of N+1 atoms, labelled
0, 1, . . . , N, inaboxof volume g. Atom 0 will be
called the "blue" atom; it will be treated different-
ly from the others. Atoms 1, . . . , N will be called
the "other" atoms. The position and velocity of
the ith atom at time f are denoted xf(t) and vf(f ),
respectively.

The microscopic density of other atoms is

N
p (x, t) = Z p

'
(x, f),i=1 (2. I)

where p(~)(x, f) is the density of the ith atom:

p
'

(x, t)=5(x-x.(f)), i=0, 1, . . . , N. (2. 2)

Similarly, the microscopic current of the other
atoms is

(2.3)

where

i=0, 1, . . . , N (2.4)

is the current of the ith atom.
There are two quantities of interest in this paper.

One is the velocity autocorrelation function, de-
fined by

C(f) =( v,(t) ~ v, (0))/( v,'), (2. 5)

where (.. .) denotes an average over an ordinary
equilibrium ensemble.

two approximations for Gd(x, t), previously given in
the literature, can be derived. The method empha-
sizes the importance of conservation laws in deter-
mining the properties of Gd(x, t).

This method seems most suitable for studying the
behavior of Gd(x, t) for small times, and our dis-
cussion is mostly confined to this limit. We have
not yet been able to demonstrate whether the hydro-
dynamic limit' for Gd(x, f) can be obtained by this
method or not.

The outline of this paper is as follows. Section
II contains definitions of the quantities of interest.
Section III gives the solution for the response of
the other atoms. Section IV discusses the result-
ing modifications in I. Section V applies the method
to calculating the moments of Gd(x, t). Section VI
derives two previously given approximations for
Gd(x, t) by the present formalism. Section VII
summarizes the results.

To obtain an equation of motion for the velocity
autocorrelation function, we first write Newton's
second law for the blue atom

Mdv, (t)/dt = —v fdx V(x,(t) —x)p (x, t);
xo

(2. 6)

and we then "correlate" this with vo(0), so that

M(d/dt)(v, (t) v, (0))

= —fdx( V V(x,(t) —x)p (x, f) .vo(0)) . (2. 7)
0

Here M is the mass of an atom, and V(x) is the
interparticle potential.

The second quantity of interest in this paper is
the distinct-particle part of the density-density
correlation function. This can be written as

Gd(x, t) =%)(p (x, t)p«»(0, 0)) . (2. 8)

The point of view we take in calculating these
correlation functions is as follows. We consider
that the trajectory of the "blue" atom is known.
The motion of the "blue" atom provides a time-
dependent external force which drives the N-parti-
cle system of the other particles. We calculate
the response of the other particles from a time-
dependent Liouville equation. From the solution
of the Liouville equation we can calculate the aver-
age density p(x, t) and current f(x, t). (The absence
of superscripts distinguishes these quantities from
the microscopic quantities defined earlier. ) These
functions p(x, f) and J(x, f) still depend on the mi-
croscopic coordinates of the blue atom.

To calculate the correlation functions we replace
pN(x, f) in Eqs. (2. I) and (2. 8) by p(x, t) and com-
plete the remaining average on the coordinates of
the blue atom.

The approximation involved in this procedure
comes in the last step. The trajectory of the blue
particle, described by x, (f) and v, (t), depends on
the initial coordinates and momenta of all N+ 1
particles. So when we integrate over the phase
space of N particles to get p(x, f) and f(x, f), x,(f)
and'v, (t) must be involved in the integration. That
means, for example, that when we replace pN(x, f)
in Eq. (2. I) with p(x, f), we should also replace
x,(t) by an averaged path whose initial position and
velocity are specified (because we integrate only
over phase space for the other particles). Our
approximation then is to continue to treat xo(t) in
Eq. (2. 7) and in later equations as a deterministic
variable. The average path of the blue particle
should then be determined in a self-consistent way
along the l,ines given in I.

This point will be discussed again when it arises
in our derivations.
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III. THE RESPONSE OF THE OTHER PARTICLES

174

In this section we calculate the response of the other particles from Liouville's equation, considering &he

blue particle to be a time-dependent external disturbance.
Liouville s equation for the N-particle distribution function (d. f. ) is

z(8/8t) fN(X, P, t) —L(t)fN(X, P, t) = 0. (3. 1)

Here X=(x„.. . , xNJ, P = fp„.. .pN ) is a shorthand notation for the phase-space variables, the positions
and momenta of the other particles. These variables will often be omitted for brevity. I.(t) is a time-
dependent Liouville operator, given by

I.(t) =L+ L'(t)
N

with L = —i Z (p /M).
m=1

V — Z V V(x —x ) ~

m g —] m m 8 gp
yl gm

(3.2)

(3.3)

L'(t) = —t Z V V(x —x,(t)) ~

m=1 ™m 0
cpm

(3.4)

If the blue particle were stationary at point R, then Eq. (3. 1) would have a solution corresponding to the
N-particle system being at equilibrium in the external field produced by the blue particle. That solution is

q(X, P)= e
PHN N

exp —P Z V(x —0)
m=1

—PHN N
1 e exp —P Z V(x —R)N m=1

(3. 5)

Here p is the inverse temperature in energy units, HN is the unperturbed Hamiltonian of the N-particle
system, and the integral is over the phase space for N particles.

When the blue particle moves it produces a time-dependent external potential on the other particles. We
define a time-dependent function fN eq)(R, P lx, (t)) by replacing R in Eq. (3. 5) with x,(t).

f 'q(X, Pl&,(t)) = e
PHN N

exp —p Z V(x —xo(t)) d I'N e
m 1 m

x exp —p Z V(x —x,(t))
m 1 m

Note that the denominator of Eq. (3. 6) is actually independent of time.

By definition fN(eq)(37, P lx,(t)) has the property

L(t)f 'q (X, Pl&,(t))=0,

. (3.6)

(3. 7)

but it does not satisfy the full Liouville equation Eq. (3. 1).
We write the solution of Eq. (3. 1) as the sum of two terms4:

fN(37, P, t) =fN (X, P l x,(t)) +fN(X, P, t) .

Using Eq. (3.7), fN(R, P, t) is found to satisfy the equation

i(8/8t) fN —L(t)gN = —i(8/8t) fN( q)(R, P lx, (t)) .

The solution of Eq. (3.9) which has the initial condition

f (0)=O

(3. 6)

(3. 9)

(3.10)

is fN(t) = —f dt'V(t, Op-'(t' 0)(8/8t') fN
q (37, P lx,(t')), (3. 11)

where U(t, 0) is the evolution operator for the Liouville operator L(t). The sum of Eqs, (3.6) and (3. 11)
gives the response of the other particles.

The average density p(x, t) is calculated from the d. f. and can be written as the sum of two terms.
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p(x, f) = p
q (x, f) +p (x, f),

where p( q)(x, t)= dr Z 6(x-x )f ('q)(X, Pix, (f)),
N

and p(x, f) = dr& + 5(x —x )fN(X, P, &).N n ] n N

We show in the Appendix that fAT(eq)(X, P Ix,(t)) can be written

f~ q (X, Plx, (t))=~ fdp, dxoe 6(x —xo(t))/fdr~ ie
-P"~+ i

(s. 13)

(s. is)

(s. i4)

(s. is)

(s. i6)

In Eq. (3. 15) x, and p, are general phase-space variables of the blue particle, whereas x,(t) represents the
actual path of the blue atom.

Note that the Hamiltonian in Eq. (3. 15) is for a system of N+1 particles. This looks formally different
from the previous expression for f~ eq)(X, P!x,(t)), Eq. (3. 6), which contained no factors containing the
kinetic energy of the blue particle. Actually there is no difference, because in Eq. (3. 15) we have just
inserted the kinetic-energy terms into both numerator and denominator. The reason that this is possible
is, of course, that in classical statistical mechanics the momentum and configuration dependent parts of
the equilibrium d. f. are completely factored from each other.

Using Eq. (3. 15) we can write

P~N+ 1 +N+ 1
p

q (x, f) = [.I&/(K+1)j [(K+1)NfdI 15(x—x, ) 5(x —x,(t)) e " fdr 1
e '

] .

where g(x) is the pair correlation function normalized to unity at large I x I, and no is the average density
(X+ I)/~.

We now calculate p(x, t). From Eq. (3.6) we have
N

f (X, I,( '))=Pf '
(&, "I .( ')) ' ~ ( '- ) ( '- .( ')) .( ')

~~t' (3. 18)

The second factor in Eq. (3. 16) is precisely the definition of the equilibrium static two-particle correlation
function n, (x, x,(f)) for an N+ I particle system. ' Therefore

p
q (x, t) =n, 'n, (x, x,(t)) =n,g(x —x,(f)), (3. 17)

Inserting Eq. (3. 18) into Eq. (3. 11) and using Eq. (3. 14) gives
V N

II(x, f)=- p 'df dx [ dr, Z 5(x-x )v(f, o)v '(f', o) -Z &(x'-I )f~ (X, PIx.(f'))]
O N m N

x fp(x' —x,(t')) v, (t') . (3.19)

It is in Eq. (3. 19) that we have made the approximation discussed at the end of Sec. II. The xo(t ) and
v, (t'), which appear in the last two factors of Eq. (3. 19), depend on the initial coordinates and momenta
of all the particles, and they should therefore be included in the integral fdr~ ~ ~ . Our justification for
this separation is that since we still have to perform an average on the coordinates of the blue particle to
get the correlation functions, these latter factors will become essentially functions describing the self-
motion of a single atom, and these should be reasonably insensitive to the detailed features of the initial
conditions of the other atoms.

We can now identify the correlation function appearing in Eq. (3. 19). If the blue pa.rticle were not present,
and the N particle system were in equilibrium, then

V(f, O)U- (f', O)-e ' ' '
and f 'q(X, PIx,(f))-f & &(X, P)=e ~ &/fdr

The correlation function in Eq. (3. 19) would then be

fdr& Zi 5(x —x ) e Z 5(x' —x )fN"&(X, P) =noG(x-x', f —f'),Nn=l n m

where G(x - x', f f') is the equilibriu-m density-density correlation function. In analogy with the equilibrium
case, we define

N N
G(»f' x f Ixo)=[nodx'-x. (f')))-' dr~ + 6(x-x )U(f, O)U-'(f', O) + 5(x'-x )f 'q{X,pIx, (f~)). (3. 31)Nn=1 m —1 m N
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This depends on the history of the motion of the blue atom between times t and t'.
The denominator is put into Eq. (3.21) for normalization purposes.
The physical interpretation of G(x, t; x', t'Ix, ) is that it gives the probability that if one of the other parti-

cles is known to be at x' at time t', then any of the other particles will be at x at time t, taking into account
the motion of the blue particle. It is thus a generalization of the equilibrium density-density correlation
function to a specific nonequilibrium situation.

Putting Eq. (3.21) into Eq. (3. 19) and combining with Eq. (3. 17) gives our final result for the density of
other particles.

p(x, t}=n,g(x- x,(t)) —n, p J, dt' fdx'G(x, t; x,, 't' I x,) g(x' —x,(t'))VV(x' —x,(t')) ~ v, (t') . (3.22)

IV. EQUATION OF MOTION FORC)(t)

Newton's second law for the blue atom is obtained by putting Eq. (3.22) into Eq. (2. 7). Symmetry argu-
ments show that p(eq}(x, t} makes no contribution, so that

Mdv, (t)/dt= —n, p 1 dt' fdxdx' V V(x,(t) —x')G(x, t; x', t'!x,)g(x' —x,(t'))VV(x' —x,(t')) v, (t') .
0

(4. 1)

Comparing this equation with Eq. (13) of I shows two changes:
(1) Instead of a generalization of the full density-density correlation function, the result of I had a gen-

eralization of the self-part only.
(2) Instead of the combination of functions —pg(x' —x,(t'))VV(x' —x,(t')), the result of I had Vg{x' —x,(t')).
The result of I was obtained by solving a simplified equation for the single-particle distribution function,

in which the term describing the interaction between the particles was replaced by a single relaxation-time
approximation. By making this approximation the effects of collective motions were lost. This loss shows
up in the equations by the replacement of G(x, t; x', t'Ix, ) by its self-part. Also in I the approach towards
thermal equilibrium was for simplicity assumed to be exponential in time.

The second difference can be understood in the same way. Ignoring collective effects, the single relaxa-
tion-time approximation may be considered most valid for a dilute gas. But the static pair correlation
function of a dilute gas is given by exp(- pV(x)) so that Vg(x) and —pg(x )VV(x) are equal. Even in a liquid
Vg(x) and —Pg(x)VV(x) are qualitatively similar so that the general features of the results of I are not ex-
pected to be significantly altered by this change.

A discussion of the effects of collective motions on the velocity autocorrelation function is more difficult.
The purpose of I was to derive an approximate result for the memory function I"(t) of 4 (t) in the equation

(4. 2)

and to see if the main features of I'(t) could be explained in terms of the interparticle potential and static
pair correlation function. It was shown there that the hard core of the interparticle potential is very im-
portant in producing the initial sharp decrease in I"(t). This feature is not expected to be changed by in-
cluding collective effects.

V. THE DENSITY-DENSITY CORRELATION FUNCTION

Our equation for Gd(x, t) is obtained by putting Eq. (3. 22) into Eq. (2. 8). The result is

Gd(x, t) = Gd
q (x, t) + Gd(x, t),

where G q (x, t) =no'U(g(x —x, (t)) p"&(0, 0) )

and G (x, t) = —n, P'0 f dt' Jdx'(G(x, t; x', t'Ixo)g(x' —x,(t'))VV(x' —xo(t')} ' v~(t')p~o&(0, 0) ) .

(5. 2)

(5. 3)

Important quantities associated with Gd(x, t) are the values of its time derivatives at t = 0. These are
closely related to the frequency moments of the Fourier transform of Gd(x, t); hence they are often called
moment relations. Classically, Gd(x, t) is an even function of time, so all the odd moments vanish. The
second moment of Gd(x, t) also vanishes, and the fourth' and sixth' moments are known exactly.

The low-order moment relations are closely related to the microscopic conservation laws of the system. '
The microscopic derivation of the moment relations can be summarized as follows. The microscopic parti-
cle conservation equations for the other particles and for the blue particle are

(8/S t )p (x, t) + V ~ J (x, t) = 0,

(S/&&t)p"&(x t)+ V I «&(x, t) =O.

(5.4)
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Using the stationarity property of equilibrium correlation functions, i.e. ,

(A(t)B(0)) = —(A(t)B(0) ),
the translational invariance of the liquid, and these conservation laws, we get from Eq. (2. 8)

Gd(x, t) =UV V (J (x, t)j &(0, 0)),

(5. 6)

(5.7)

for the second time derivative, and

Gd (x, t) ='UV V (J (x, t)j "&(0,0))ay n ' ~y (5. 8)

(5. 1o)

Using Eq. (3. 15), we find that the equal time value is

for the fourth time derivative. In Eqs. (5.7) and (5. 8) the Greek subscripts indicate Cartesian components
of the vectors, and rePeated subscriPts are to be summed over the three comPonents; also V =S/Sxo, .

In particular Cd(x, 0) vanishes because the velocities of different particles are uncorrelateZat equal
times. Gd(iv}(x; 0) is found from the equations of motion for the particles.

We shall show how the moment relations come out when p&(x, t) and Jt& (x, t) are replaced by p(x, t) and
J(x, t) calculated from the d. f. of Eq. (3.8).

First we introduce some new notations. %e define

(p (, t)p ( ', t')], = dr Z 5( — ) U(t, o)U- (t', o) Z 5( '- )f 'q(x, Pl, (t')). (5. 8)
n=1 n m=1 m

Then p(x, t) =n, g(x x,(t)—) —P f dt' fdx'(p (x, t)p (x', t') ),VV(x' —xo(t')) vo(t').

lp (x, t)p (x', t)], =5(x —x')n, g(X' —xo(t))+n, 'n~(x, x', x,(t)), (5. 11)

(5. 12)

where n, (x, x', x")is the equilibrium static three-particle correlation function.
In calculating J(x, t) from our solution of Liouville's equation, we find that f~( q)(X, P lx, (t)) makes no

contribution to the current, so that

J(x, t) =- P f 'dt' fdic'(J (x, t)p (x', t')],V V(x'- x,(t')) v, (t'),

where (J (x, t)p (x', t')], =) dI"~ 2 v 5(x —x ) U(t, o)U '(t', 0) Z-6(x'-x )f~
q (X, Plx, (t')). (5. 13)+n=l " n ' m=1

This has the properties

lJ (x, t)p (x', t)],=0,

and (8/St)/p (x, t)p (x', t') I+V (J (x, t)p (x', t')], =0.

(5. 14)

(5. 15)

When we calculate (s/st)p(x, t) from Eq. (5. 10), we get three terms; the first comes from p(eq)(x, t), the
second and third come from the fact that the time variable appears both in the upper limit and in the inte-
grand of the integral defining p(x, t). The third contribution is related to V ~ J(x, t) through Eq. (5. 15). The
second contribution can be evaluated using Eq. (5. 11). The result is

(S/et)p(x, t) + V - J(x, t) = —n, [Vg(x —x,(t)) + pg(x- x,(t))VV(x-x,(t))

+ Pn, -' fdx'n, (x, x', x,(t))VV(x'- x,(t))] v, (t) . (5. 16)

There is a hierarchy of equations, derived by Green, "relating the equilibrium static s and s+ 1 particle
correlation functions. The first equation of the hierarchy, relating n, (x, x') and n, (x, x', x"), is

Vg(x- x')+ Pg(x- x')VV(x —x')+ Pn, ' fdx" n, (x, x', x")VV(x —x")=0. (5. 17)

This is precisely the quantity in the square brackets on the right-hand side of Eq. (5. 16) [identify x as x,(t),x' as x, and x" as x']. So we get the conservation law

(S/St) p(x t)+V J(x t) =O (5. 18)

properly, and Gd(x, t) calculated by this method has the correct second moment. The fact that the second
moment and Eq. (5. 17) are related was first stated by Schofield. ' In the method used here, the second
moment depends directly on Eq. (5. 17).
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(5. 19)

To calculate Gd(iv)(x, 0) we need J (x, 0). This is a more tedious calculation, so we shall only outline the
steps. Using Eq. (5. 14), we find from Eq. (5. 12) that

0

J(x, t) =- p f dt' fdx'(8/st)t J (x, t)p (x', t')),VV(x'-x, (t')) v, (t'),

and also

(5. 20)

Vn, (x, x', x"}+pn, (x, x', x")VV(x —x')+ pn, (x, x', x")VV(x- x")

J(x, o) = —P fdx'[(s/St)&J (x, t)p (x', t')], ], 0
VV(x' —x,(0)) v, (0).

Using the equations of motion for the particles, the quantity [(9/St)(J (x, t)p (x', t')), ]tl t 0 can be ex-
pressed in terms of the equilibrium static correlation functions for two, three, and four particles. By
using Eq. (5. 17), which relates the two- and three-particle correlation functions, and the second equation
of the hierarchy

+ P fdx"' n4(x, x', x",x"')VV(x- x"') = 0, (5. 21)

which relates the three- and four-particle correlation functions, one obtains

(5. 22)

Equation (5. 20) then becomes
~ 0

J(x, 0) = (n, /M) g(x —x,(0))V[VV'(x —x,(0)) v, (0)] . (5. 23)

From this we get

a&i (x, O)q «&(O, O)}=(n,/pm)~&g(x-x, (0))[V V V(x-x,(0))]5(x,(0))}

=(n, /pm') fdx'g(x-x')V V V(x-x')v&5(x'- x,(0})5(x,(0))) . (5. 24)

But '0&5(x' —x,(0))6(x,(0))) = 5(x'),

so %3&1 (x, o)j &0&(0, 0)}=(n /P3f ) g(x)V V V(x).

This gives Gd
~v (x, o) =(n, /PM')V V [g(x)V V U(x}],

(5. 25)

(5. 26)

(5. 27)

which is the correct fourth moment.
In analogy to the derivation of the second moment, the fourth moment depends on the first two members

of the hierarchy of Green's equations.

VI. DERIVATION OF OTHER APPROXIMATIONS FOR Gg(k, t)

(6. 1)

The definition of the Van Hove self-correlation function is

In this section we shall show how some previously given approximations for Gd(x, t) can be derived from
the present method.

From Eq. (5. 2) we can write

Gd
q (x, t) =n, fdx'g(x x'}'U &p&—'&(x', t)t&&'&(0, 0) ) .

G (x, t}=i&&p"&(x, t)p"&(0, 0)),

so that Gd eq (x, t) =n, fdx'g(x —x')G (x', t) .
(6. 2)

(6. 3)

Equation (6.3) was proposed as an approximation for Gd(x, t) by Vineyard and is known as the convolution
approximation. " It has often been discussed in the literature. We note+ere that this approximation re-
sults from keeping only the fA&(eq)(X, P lx, (t)) part of our solution for f+X, P, t). The work of Sec. V shows
that approximating fA& in this way gives large time variation in the density of other particles in the vicinity
of the blue particle, but that there is no current, i.e. , - this approximation violates particle conservation.

Another approximation for G(x, t) has recently been given by Nelkin and Ranganathan" by solving the
linearized Vlasov equation. We can derive their result in the following way: We imagine that in calculat-
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ing the response of the other particles to the motion of the blue particle, the initial perturbation is treated
exactly but that the subsequent propagation is reyted only to linear order in the coupling between the other
particles and the blue particle. In that case p q&(x t) remains exactly as we have found it in Eq. (3. 17).
Since t&(x, t) is explicitly proportional to V(x' —x,(t')I, we neglect the influence from the blue particle else-
where and make the replacement

(p (x, t}p (x', t')], -n, G(x —x', t —t') . (6.4)

However, linear response theory is not appropriate for potentials with hard cores. To treat such
potentials, an effective potential must be found which can then be used in formulas derived from linear
response theory. It has been shown by Percus" that a first approximation to such an effective potential
is

V f (x) = —p 'c(x), (6. 5)

where c(x) is the Ornstein-Zernike direct correlation function.
The replacement of V(x) by —p- c(x) is also indicated by another consideration. If we apply the philoso-

phy of Eq. (6.4) to calculating the current, we must make the replacement

fZ (x, t)t& (x', t')], -&J (x, t)t& (x', t')), (6. 6)

where the quantity on the right-hand side of Eq. (6. 6} is the equilibrium current-density correlation func-
tion. If we now attempt to verify particle conservation, we find, because G(x —x', t- t') has the property

G(x- x', 0) =6(x- x')+n, g(x- x'), (6.7)
!

i&}stqad of the property in Eq. (5. 10), that particle conservation has been violated. The contribution of
p&eq~&(x, t) to (8/St)p(x, t) is no longer cancelled by the contribution coming from differentiating the time
dependence in the upper limit of the integral defining p(x, t). However, if V(x) is replaced by —P- c(x), we
see by using the equation relating g(x) and c(x),

g(x) —1 = c(x) + n, fdx' c(x- x')[g(x') —1)], (6. 6)

that this cancellation again occurs. The conclusion is that V(x) must be replaced by —P 'c(x) to maintain
particle conservation.

NR also replace the potential by the direct correlation function in the linearized Vlasov equation. Their
argument for doing so is based on getting the second moment correctly. Since the second moment is equiv-
alent to particle conservation, our argument and theirs must have essentially the same content.

If we make the replacements of Eqs. (6.4) and (6. 5) in Eq. (5. 3), we get the following equation for
Gd(x, t).

Gd(x, t) =n, fdx'g(x —x')G (x', t) —n, f dt' fdx'dx" G(x —x', t t')c(x' —x")(8-/St')G (x", t'). (6. 9)

To get the last term we have introduced j "&(x, t) using Eq. (2. 4); done an integration by parts; and used
the conservation law for the blue particle, Eq. (5.5), and the definition of Gz(x, t}, Eq. (6. 2).

Since we consider that we know Gs(x, t), we separate G(x, t) in the integral in Eq. (6. 9) into its self and
distinct parts. We then find the following integral equation for Gd(x, t):

Gd(x, t)+n, f dt' fdx' dx" Gd(x —x', t t')c(x' —x")(s/s-t')G (x", t')

=n, fdx'g(x x'}G (x—', t) —n, f dt' fdx'dx" G (x-x', t t')c(x' —x")(&&/B-t')G (x",t').

Equation (6. 10) can be solved by Fourier transforming with respect to the spatial variables and Laplace
transforming with respect to time. We define Es(k, t), Ed(k, t), E(k, t), c(k), y(k) to be the spatial Fourier
transforms of Gs(x, t), Gd(x, t), G(x, t), c(x), n, (g(x) —1), respectively, and Es(k, P), Ed(k, P), F(k, P) to be
the Laplace transforms with respect to time of Es(k, t), Ed(k, t), E(k, t), respectively.

The solution of Eq. (6. 10) is then

Fd(k, P) =((2)»' ,n(6)k-P' y+(k)E (k, P) —n,c(k)E (k, P)[PE (k, P)-1]]/(I+n, c(k)[PE (k, P) —1]] . (6. 11)

Now adding Es(k, P) gives

E(k, p) = (2»)sn, 5(k)/p+ [1+y(k)]F (k, p)/(1+n, c(k)[pE (k, p) —1]] .
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[The term proportional to 5(k) comes from the t- ~ limit of G(x, t). It can be separated from the other
term by using Pe(0, P) =P-, which follows from the normalization of Ge(x, t). ] If in this equation we re
place Es(k, P) by its limit for free particles, then we have the result obtained by NR by solving the linear-
ized Vlasov equation [also with the replacement of Eq. (6. 5)].

The moment relations satisfied by this approximation (expressed now in Fourier space instead of real
space) are found from the coefficients of the expansion of E(k, p) in powers of p-', using the known asymp-
totic expansion of Pe(k, P) and the relation between Z(k) and c(k). The second moment is exact, and the
fourth moment is

F (k, 0) = 3k'/(PM)'+ (n,k'/3PM') fdx g(x)V'V(x) —n,c(k)k'/(PM)' (6. 13)

The first two terms of Eq. (6. 13) are the exact fourth moment of Fe(f, t). The fourth moment in the
approximation of NR. does not contain the second term of Eq. (6. 13) because their result has the free-
particle limit of the self-function instead of the exact self-function. The last term of Eq. (6. 13) is the
fourth r,ro~ent of the distinct particle function in this approximation; it bears little resemblance to the
Fourier transform of the exact result in Eq. (5. 24).

The result of NR has been stated" to give poor quantitative agreement with the machine calculations of
Rahman. " Because of this and because the result of Eq. (6. 12) gives such a poor representation of the
fourth moment, we have not done a quantitative evaluation of it.

Our procedure treats one aspect of the problem better than the linearized Vlasov equation does. NR
state that their solution treats properly the initial disturbance of the other particles by the blue particle,
but does not treat properly its subsequent propagation. We see from our procedure that in fact this sub-
sequent propagation is treated as if the particle were free. We remedy this defect by assuming that the
self-correlation function is known; on that basis we construct an approximation for the distinct-particle
.function. The inadequacies of Eq. (6. 12) then result from these approximations and not on inadequate
approximation for the self- motion.

Our result in Eqs. (5. 2) and (5. 3) is amenable to other approximations. Further work is in progress
on this problem.

Note added in Proof. The use of the direct correlation function as the effective potential has also been
suggested by R. Zwanzig [Phys. Rev. 144, 170 (1966)].

VII. SUMMARY

The main results of this report can be summarized as follows:
(1) Within the philosophy of approach used, an exact derivation has been given of an equation for the

velocity autocorrelation function of a liquid. The new equation shows that a similar equation derived
earlier neglected the effects of collective modes.

(2) The approach has been extended to discuss the density-density correlation function. A previously
discussed relation between the second moment of this function and the hierarchy of equations relating the
static s and s+ 1 particle correlation functions has been extended to the fourth moment.

(3) Previously known approximations for Gd(x, t) have been shown to be derivable from this approach.
In doing this, it has been shown that the replacement of the interparticle potential by an effective poten-
tial proportional to the direct correlation function serves the purpose of maintaining particle conserva-
tion in a linear response context. It has also been suggested that it may be better to consider the self
and distinct parts of G(x, t) separately, and assume the former is known when making an approximate
theory of the latter.

ACKNOWLEDGMENTS

The author wishes to gratefully acknowledge many helpful conversations with Professor A. Sjolander on
the subject of this paper. Thanks are also due to the Institute for Theoretical Physics of Chalmers Tekniska
Hogskola for giving the author a post-doctoral position for a year. This research has also received partial
financial support from the Swedish Committee for Solid State Physics.

The definition of fN( q)(X, Pl x,(t)) is

APPENDIX

fN
q (X, P I x,(t)) = e

A factor

—PH N PH N 11
exp —P ~ V(x. —x,(t)) dI' e exp —P + V(x. —x,(t))i=1 N i=1 i o

p, exp(- Pp, '/2M) is put into both numerator and denominator. Also write

(A. 1)

N
exp —P + V(x. —x,(t))i=1

N
x, exp —P & V(x.-x,) 6(x, —x,(t)) .

1=1 (A. 2)
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Then f& (X, Pl xo(t)) = fdp, dx, 5(x, —xo(t)) e + / fdi'N 1&
+ &(xo- xo(t)) ~ (A. 3)

The density of a uniform system of N+ 1 particles is
—PH

(N~ I)/g = (N+ 1) fdI'& e 5(x, —x,(t))/ fdI'&
1

e (A. 4)

Using Eci. (A. 4) the denominator of Eq. (A. 3) can be replaced by

K K~
fdI'~ le

+ 5(x, -x,(t))=g-' fdl'N Ie (A. 5)

Therefore
—PH —PH~

f~ ~ (X, Plx, (t))=u fdp, dx, e + 5(x,-x,(t})/fdl'~ Ie (A. 6)
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