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S. Ichimaru, precedingpaper, Phys. Rev. 174, 289
(1968), referred to as Paper I.
2Equations in Ref. I are cited here by affixing I before

the equation numbers; for example, (I.4.23) means the
Eq. {4.23) in Paper I.

S. Ichimaru and T. Nakano, Phys. Letters 25A, 163
(1967); Phys. Rev. 165, 231 {1968).

L. D. Landau and E. M. Lifshitz, Statistical Physics
(Pergamon Press, Ltd. , London, 1958), Sec. 74. To
make the comparison clearer, we note that in thermody-
namic equilibrium one can write G(12) =F{1)E{2)+(r~ —r2),
where co has the same meaning as that defined by Eq.
(74.22) in the Landau-Lifshitz book. Equation (2.2) then
becomes

f3{123)=E(1)F(2)E{3)
x [1+u{r&—r2)] [1+(d{r&-r3)] [1+(d{r3—r~)].

This equation corresponds to that appearing at the top of
p. 235 in the above-mentioned book.

5This point will be further elucidated in Sec. V after a
self-consistent equation for h k is obtained.

The definition of gk in Eq. (4,8) is different from
that in (I.4.30) by a factor exp(2ykt).

~D.Pines and J. R. Schrieffer, Phys. Rev. 125, 804
(1962).

S. Ichimaru, in Fluctuation Phenomena in Solids,
edited by R. E. Burgess {Academic Press Inc. , New
York, 1965), p. 113.

For simplicity in presentation, we restrict the range
of our consideration in the remainder of this section to
a half k space such that (dk and &{k,ark) are positive; for
the other half, similar discussion also applies. See Sec.
VI for a general argument.

Reference 8; further references may also be foundio

here.
See also a discussion in the introduction of a review

paper by V. ¹ Tsytovich, Usp. Fiz. Nauk. 90, 435
(1966) [English transl. : Soviet Phys. —Usp. 9, 805
(1967)] .

The latter work of Ref. 3 contains a discussion and
further references on this superposition principle.

Reference 8, p. 120.
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Using the thermodynamic theory of relaxation processes, and incorporating the disorder
model of melting mechanism in the two-state theory, the ultrasonic attenuation in simple
liquid metals has been investigated. Agreement of the results with the experimental bulk
viscosity indicates that this might be a genuine approach to explain the excess absorption
of ultrasonic waves in Inonatomic fluids. The possibility of extending the theory to other
associated liquids with complex structures is also discussed.

1. INTRODUCTION

It is well established that the ultrasonic attenua-
tion' in liquid metals is greater than that expected
due to classical causes, '~' viz. , the shear viscosity
and the thermal conductivity. The excess attenu-
ation4 per cm can be conveniently described in
terms of a frequency-independent bulk viscosity
b given by

b/q = 4 (AexP Aol)/At-i —&2' /Att

where q is the shear viscosity, A.ex is the ob-
served attenuation of sound waves, A& is the ab-
sorption due to shear viscosity and Acl is the sum
of A~ and the absorption due to thermal con-
ductivity. A~ is usually referred to as the
attenuation due to classical causes.

In most of the fluids, Aexp exceeds Acl signifi-
cantly. In polyatomic fluids the energy is dis-
tributed between the translational (external) and
vibrational and rotational (internal) degrees of
freedom. The sound wave disturbs the equilib-
rium distribution of energy between the external

and internal degrees of freedom. The restoration
of equilibrium at a finite rate gives rise to the
extra absorption which is known to be due to the
thermal relaxation processes. In monatomic fluids
the temperature and pressure changes associated
with the sound wave will perturb the local spatial
arrangements of the molecules in equilibrium.
Since the equilibrium is restored at a finite rate,
one may expect the occurrence of a relaxation
process which is responsible for the excess
absorption. If such structural changes involve a
change in volume, both the temperature and
pressure fluctuations can induce the lack of
equilibrium.

There have been a few attempts on the liquids
having complex structures, but no theoretical
estimates of bulk viscosity b have yet been made
for simple monatomic liquids. Though the struc-
tural relaxation processes have already been
investigated in hydrogen-bonded'~' and other
associated liquids, '~4 a clearer understanding of--
the mechanisms in liquids with simpler and more
defined structure would indeed be of much im-
portance. The monatomic liquids are the only
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obvious choice as the associated liquids which are
easily distinguishable from the normal ones.

Recently, Eckstein' proposed the disorder model
for liquid metals, applicable only to those shrink-
ing on freezing. He obtained the values of several
thermodynamic properties (such as specific heat,
thermal-expansion coefficient, etc ).in fair agree-
ment with the experiments. The model assumes
that the changes in physical properties arise from
the spontaneous production of thermodynamic de-
fects (or vacancies) in the medium during transi-
tion at melting point, where the defect is charac-
terized by its activation energy and the activation
free volume rather than the discrete atomic ar-
rangement in the liquid state.

The object of this paper is to develop the theory
for excess attenuation of sound waves in liquid
metals assuming a model of the liquid having
different phases corresponding to the different
free energies, and then to apply the theory to
simple liquid metals. Finally, implications of
the theory for real systems is discussed and, in
a sense, compared with the Hall picture' of mo-
lecular compression in liquids.

=F/(1 +n,E) (2)

with n, the relative concentration of structure in
state 2 present in the liquid. " This expression
is independent of any volume but assumes that at
melting point the total volume of defects is a
constant fraction of that before the melting point.
The factor I" should in principle be different for
different liquids.

Mathematically, the Gibbs free energy of the
fluid can be written as

V =V, +X@V

where vV is the volume of one defect and N is the
total number of molecules on the lattice sites.
Because the discrete nature of defects seems to
lose its physical significance in the liquid state',
an approximate quasicontinuous distribution is
assumed.

(2) The volume of the defects produced in melts
is quite comparable to that V, of the solid having
no vacancies at all. This can be assumed to be a
constant fraction F such that VV =I'V, .
Then V'/V= (V, —V, )/V =»V/(V, n, + V,n, )

2. THEORY

A. Basic Concept of the Two-state Model

In order to describe the physical processes in
monatomic fluids, the simplest two-state model
is assumed. The states of the molecules in a
fluid in thermodynamic equilibrium can be char-
acterized by the considerations of difference in
the structural arrangements which might corre-
spond to different free energies. At a particular
temperature and pressure a certain fraction of
the number of molecules would be in state 1, and
the remaining fraction would be in another state.
When a sound wave passes through the medium,
the equilibrium distribution of the number of mole-
cules in two states is perturbed. The energy re-
quired by a molecule to jump from one state to
another is known as the activation energy E.
Equilibrium would be established at a finite rate
which would lead to an absorption of. sound waves.

B. Free Energy and Defect Concentration

Limiting ourselves to the liquids which shrink
on freezing, we make the following simplifying
assumptions:

(1) According to the two-state model of liquid
metals, each molecule would be assumed to stay
in state 1 characterized by smaller volume and-
contrary to the Hall's view- lower energy, or in
state 2 characterized by larger volume and higher
energy,

The smaller volume corresponds to the
structure of the solid state and the larger one is
assumed to correspond to one containing an equal
number of atoms and defects (vacancies), i. e. the
volume of structure in state 2 can be written as

G =G,(P, T)+nPE —kT lnW.

The function G,(P, T) is the energy of the solid in
the absence of defects as a function of pressure
and temperature; n, is the fraction of the number
of defects present in the liquid; F- is the activation
energy needed to create one defect, and the (.;"~ird

term represents the contribution of entropy. The
quantity 8' is the number of ways in which n de-
fects can be distributed over N lattice sites, which
equals N I/[(N-n) In I]. For equilibrium

(dG/dn) = 0 =E -0T ln[(N- n)/n] or
P, T

n, =n/N=(l+e )
E kT-i

The second derivative of G with respect to n can
be written as

(d2G/dn')
T

—k TN/n(N n)-
= R T(n, +n, )/n, n,

where n, =1 —n„and will be utilized later in this
section.

C. Excess Absorption of Ultrasonic Wave

Following the notation of Bhatia, 4 the excess ab-
sorption per cm at low frequencies can be written
as

&' = 2m~f 2 r~& P/Vo,

wheref and V, are the frequency and the velocity
of the sound wave respectively. The quantity
r& denotes the relaxation strength, which is
neither purely temperature-induced nor purely
pressure-induced, and is given by
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~S = (1/&S) (V/4) (cp/cf, ) (V'/V —H'p/c~)' (7)

with C = (d'G/dn')~ T
--RT (n,+n, )/n, n,

7

and 7
& &

—
(c& /c&) 7

& p =(c& /c&) n, (V/RT)q.

Under assumption (2) in the theory, the total
volume change at melting point is attributed to
the spontaneous production of vacancies, and n,
is calculated from

6V/ VS ——En2,

The quantity 4~ is the adiabatic compressibility,
c~ and e& are the static and instantaneous heat
capacities at constant pressure respectively, R
is the gas constant, and 7." is the temperature in
absolute units. The quantities ~g ~ and 7'~ ~ are
the relaxation times at constant entropy and'
pressure, and at constant temperature and pres-
sure respectively. In the above expressions, a
single ordering parameter, the characteristic of
the two-state model, has been used. However,
in reality several mechanisms of relaxation may
involve more than one ordering parameter. The
quantities V' and H'/T represent the change in
volume and entropy of the system for a unit
change in the ordering parameter at constant
temperature and pressure, i. e.

V' = (s V/sn) Z ~,H'/7= (»/sn)~ Z (6)

Taking the thermodynamic quantities at infinite
and zero frequency, one gets the relation between
frozen and equilibrium coefficients, as

u —u "= (V'/Ve)&,

p —p = V'H'/VT@,

and c& —c& = H"/TC.

From (10) and (11) we can write

H' p/c~ = (V'/V) [(1-cp /cp)/(1 p/p)], -

(12)

where P is the coefficient of thermal expansion.
Using these formulas, Eq. (6) can be written in
the form

A '/f ' = 2p2 (V /p) (M/RT)Q n n ~ (V'/ V)2

&&[1 —(1 —c~ /c~)/(I —p /p)]' (13)

where M is the molecular weight of the liquid.
The Eq. (13) can also be rearranged in the form

b/q =—'A/& = (MV 2/Rr)2 n n 2(V~/V)2
n

x[1-(1-c~ /c~)/(I p/p)]2-
with & = 4/3q (2m2f'/pV ')

7l

(14)

3. CALCULATION AND RESULTS

For calculating the excess attenuation of ultra-
sonic waves from Eq. (13), it is obvious that there
are four unknowns, viz. n„V', the c~, and P

where &V is the change in volume and Vg is the
volume of the crystalline state at melting point.
Then Eq. (4) can be written as

E = kT ln(1/n, —1). (16)

The constant-volume fraction &, corresponding
to vacancies produced at melting temperature, is
mentioned by Hirai and Eyring to be between
0. 16 and 0. 20, from which Eq. (2) gives V' .

Once n, is known, the temperature- and
pressure-induced part of the relaxation processes
given by

can be calculated from the experimental values of
b/q. Since the exact values of cp and p are
not known, we compare the total dilational relaxa-
tion contribution with the theoretical value of this
term by approximating the instantaneous values
as given by those in the solid state at melting
point. Comparison has also been made with
Furth's" theory in which the actual volume of the
vacancy as a function of temperature and surface
tension was derived from the statistical treatment.
These results for both values of the constant I" are
presented in Table I. The agreement is found to
be very good within the limits of experimental
data available and of the assumptions made in this
paper.

4. CRITIQUE

In liquid metals the important contribution to
the ultrasonic attenuation comes from the thermal-
conductivity part which is very sensitive to the
presence of impurities and is approximately 75%%uo

of the total absorption. This contribution masks
the effect of shear viscosity in A& which is only

15/o. Because of discrepancies in the data used
to calculate the thermal-conductivity term, we
should expect some disagreement between the
theoretical and experimental values of b/q given
by Eq. (14). Furthermore, except for a few cases,
detailed and reliable measurements on the attenu-
ation of sound waves in'liquid metals are lacking.
The case of sodium is very strange in this re-
spect, and because of this the value calculated
here lies between those given by Lechter and
Beyer'2 and by Jarzynski and Litovitz".

It is to be noticed that the change in instanta-
neous values of C or P even by 3 to 4'%%uo may affect
(V'/V —H' p/C~ by as much as 30 to 40%%uo. There-
fore the validity of Cp and P taken from those
in the solid state at melting point can be ques- '

tioned but is not arbitrary. For they must satisfy
strictly the condition
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(y'/v- a'p/c~)
Exper- Present Furth's
imental Theory Theory

TABLE I. Comparison of results. &V/VS is the fractional change in volume at melting point, Vo is the velocity of
ultrasonic wave, p is the mass density of liquid at melting point, b/p is the ratio of bulk to shear viscosity from experi-
ments (nearer the melting temperature), A' is the observed excess attenuation per cm proportional to the frequencyf
of the ultrasonic wave, E is the ratio between volumes of a vacancy and of the molecule corresponding to V&, and n2 is
the concentration of the structure corresponding to V2. Finally, (V'/V-H' P/c~) represents the two terms correspond-
ing to pressure -and temperature-induced relaxation processes respectively.

Vp

(10' '/f '
Metal &V/VS cm/sec) (g/cc) g poise) x 10 ~7 p Reference

0. 025 0. 926 2. 60

0. 830 1.90

0. 042

Cd 0. 047

2.790

2. 221

6. 92

8. 02

l. 10

pb 0. 036 l.790 10.88 0.30

Sn. 0. 026 2. 27 6. 97 l. 50

From Eq. (15).

P. 0255 l.820

0. 73 2. 37

0. 55 0. 81

3. 027 0.42

l. 48 l.37

2. 70 0.30

2. 22 1.48

0.16 0. 156
0. 20 0. 125
0. 16 0. 159
0. 20 0.127
0. 16 0.262
0. 2p 0.210
0. 16 0.293
0. 2p 0.235
0. 16 0.225
0. 20 0. 18
0. 16 0. 162
0. 20 0.130

0. 2293
0. 2815
0. 0886
0. 1087
0 0523
0. 0632
0. 0742
0. 0891
0. 0226
0. 0274
0. 0756
0. 0927

0. 1093
0. 1366
0. 0544
0. 0680
0. 1064
0. 133
0. 1311
0. 1639
0. 0125
0. 0156
0. 1268
0. 1584

0. 071

0. 042

0. 0579

0. 0513

0. 0055

0. 0792

(1 —cp /cp)/(1 —P /P) ((1 (1V)

if the relaxation processes are primarily pressure-
induced. Otherwise the temperature fluctuations wil1
also induce the relaxation significantly. Recently
the bulk and shear modulus at infinite frequency
have been calculated for liquid argon using the
molecular theory by Zwanzig and Mountain. '4

If such calculations are extended to get the in-
stantaneous values of c& and P, etc. for mona-
tomic fluids, it mould be a convenient and easier
task to compare the theory with experiments.

In general, thermodynamically, the liquid in
comparison with the solid state can be viewed as
a substance with higher entropy and higher in-
ternal energy. But the change in volume and in
coordination number in particular would have
to be decided by the resultant effect of different
mechanisms causing transition. The total entropy
mould be additive. To understand the distribution
of energies in different phases of the liquid, the
higher energy must be attributed to the larger
volume. Here it can be noted that the theory de-
veloped in this paper is more suited to monatomic
liquids having closest packing in the solid state
for which the Hall' s theory gives an incorrect
perspective.

Though the presence of multistructure"&" in
liquids does not necessarily imply the failure of
Hall' s picture of molecular compression in liquids
this picture, as the only relaxational process,

appears to be somewhat unphysical on the grounds
mentioned above. Mathematically, from Etl. (13)
or (14) it is very apparent that either the negative
or the positive value of V', because of its square,
would contribute identically to the excess attenua-
tion. The decisive role of the mechanisms would
come naturally from the pressure dependence of

Taking a similar viem, Carnevale and
I.itovitz" contradicted Hall' s picture of the
change in volume from one structure to another,
on the basis of their experiments on pressure
dependence of &'. Therefore the agreement ob-
tained by Hall seems to be fortuitous.

In order to generalize the approach to other
associated liquids, one must take into account
the quasidiscontinuous increase of vacancies
and the contraction of spatial molecular structure
depending upon the openness of the configuration in
the crystalline state during transition. There-
fore all the monatomic fluids should be treated on
the same footing. But at the moment, because of
the complexity in structure, molten Hg, Bi, Ga,
etc. are excluded until the accuracy of the data
used in the analysis for simple metals is achieved
with confidence.
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Measurement of the Coherent Neutron Scattering Amplitude of
Deuterium, Mercury, and Fluorine by Mirror Reflection*
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The bound coherent neutron-scattering amplitudes of deuterium, mercury, and fluorine
have been measured by the mirror-reflection method. The measured values are aD=+6.21
*0.04 F, aH =+12.67+0.13 F, and aF=+5. 83+0.17 F. The mercury and fluorine values
are in agreement with presently accepted values. The deuterium value departs seriously from
most previously reported measurements. This value implies+6. 13+0.04 F for the quartet
scattering amplitude, + 0. 13+ 0.05 F for the doublet scattering amplitude, and 3.15+ 0.04 b
for the free-atom scattering cross section of deuterium.

INTRODUCTION

This paper describes measurements of the co-
herent neutron scattering amplitude of deuterium,
fluorine, and mercury done by the mirror-reflection
method of the I ivermore Pool- Type Reactor. The
theory of measurement of coherent neutron scatter-
ing amplitudes by reflection from mirror surfaces,
as well as the experimental arrangement used in
these measurements, has been described in the
literature '

METHOD OF MEASUREMENT

Our experimental procedure consists of finding
the angles at which the reflected neutron intensi-
ties from a standard liquid and from a liquid con-
taining the unknown element are the same. Since
equal reflected intensities imply equal reflection
coefficients, we have the relation

(y,')-'Z. X.a. = (y,2)-~Z. X.a. , (1)
1 g i

which does not depend explicitly on the spectral dis-
tribution of the incident neutron beam. The sub-
scripts i and j in Eq. .(1) refer to the constituents of
mirrors I and 2 respectively; N and a stand for the
number of scattering centers per unit volume and
their coherent neutron scattering amplitudes; and
the anglesg, and P, are those yielding equal intensi-
ties from the corresponding mirrors. That is, in
order to carry out the measurement, the angles of
equal intensity, the chemical composition of both
mirrors, and the coherent neutron scattering ampli-
tude of all constituents but the one to be measured
must be known.

Equation (1) is not valid, however, unless the re-
flected intensities are corrected for incoherence
and absorption. Some knowledge of the incident
neutron spectrum is required before these correc-
tions can be made. The corrections applied to the
experimentally determined intensities account for:
(1) gain drifts in the detectors and amplifiers, (2)
changes in the mirror density with temperature,
(3) fast- and thermal-neutron backgrounds, (4)
scattering of both incident and reflected beams in
the vapor above the liquid surface, (5) variation of
the incident beam intensity with angle, (6) finite
angular divergence of the beam, and (7) incoherent
scattering and absorption in the mirror. These
corrections are described in detail in Ref. 3, pp.
535-538. Corrections (1) through (5) are simple
and straightforward. Once they have been made,
the reflected intensity is given by

I ($0) =
Jg ~@[ A(QAyk)

4o+ ~4 Be

x 4(k) T (P)dk] dP (2)
where

g is the reflection coefficient of the surface,
A =Zj&ja for the j constituents of the mirror,

r =~ OiV'o'(kH incoherent'+~~tAo( )~ absorption)&
@(k) is the incident flux distribution (beryllium-
filtered spectrum),

T(P) is the triangular transmission function of the
collimator,

b,(P) is the angular divergence of the beam, and
kBe is the beryllium cutoff wave number.


