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collisions are shielded by both electrons and ions.
However, in electron-electron collisions, (Ef'-Ef)/q
is of the order of the typical electron velocity; since this
is much greater than the mean ion velocity, ions are
completely ineffective in shielding ee collisions.

S. Chapman and T. G. Cowling, The Mathematical
Theory of Non-Uniform Gases (Cambridge University
Press, Cambridge, England, 1961).

These definitions follow those of Chaplnan-Cowling,
Chap. 8. The subsequent calculation is also closely
analogous to that of Chapman-Cowling in the nondegen-
erate case. Transport coefficients are often defined
in the following alternative way:

~ =eS «teE+»(I /~ j,+eS fp'T/T,

Q=- Spf teE+ TV'(p/T)]-S22 7'T/T.

The S" are related to the S" ' by S&i
——Sii', S~t = Sit'

+iBSu', S»-—Sn'+(10/3)8»'+(58/3)'S, t.
In Ref. 3, the degenerate plasma is studied in detail

for all values of D /&. It is shown that, in a deep sense,
the real transition from nondegenerate to highly degen-
erate behavior occurs not in the region e-1, but rather

for n» 1, De/~-1. This is true because, in our weakly
coupled system, the ratio of momentum transfer in a
typical collision to thermal width of the Fermi surface
is &/De, rather than e as in system with strong
interactions. The transition studied in the present paper,
for-1-z - j., is relatively superficial (which is why the
mathematics can be done so simply). A plasma obeys
the Fermi liquid theory of Abrikosov and Khalatnikov,
Rept. Progr. Phys. 22, 329 (1959), only if De/~&&1.

This simple procedure gives the coefficient of the
logarithm exactly, but gives the argument of the loga-
rithm correct to within a factor of order unity. Thus the
ee collision contribution to the transport coefficients is
accurate to within order 1/ln (De/X), and the ei contri-
bution (discussed later) to within order 1/ln (D/A, ') .
There is little point in calculating the argument of the
logarithm more accurately, since the effects of dynamic
shielding, which have been neglected, also are of this
order. In Refs. 2 and 3, dynamic shielding is included

for the cases of nondegenerate and highly degenerate
electrons, respectively, and the corrections of order
1/ln (De/~) and 1/»(D/~') are found.

W. B. Hubbard, Astrophys. J. 146, 856 (1966).
f3W. B. Hubbard and M. Lampe, to be published.
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The asymptotic behavior of the pair distribution function of a classical electron gas is
determined. The result is in disagreement with the form conjectured by Lie and Ichikawa.

1. INTRODUCTION

During recent years the pair distribution function (PDF) of the classical electron gas has been extensive-
ly investigated by many authors using either the Mayer cluster-expansion method or the Bogoliubov-Born-
Green-Kirkwood-Yvon (BBGKY) hierarchy equations. The PDF has been evaluated by diagram techniques
by Bowers and Salyeter, ' De Witt, ' and others to order s', where s = (4vP'pe')'I' is the dimensionless plas-
ma parameter, while Lie and Ichikawa4 have reviewed the work of many authors who approached the prob-
lem via the kinetic equations. The result for the radial distribution function given by Bowers and Salpeter
(BS) is

g (r) =exy(- sx 'e x)+ lp', (x),BS

where W, (x) = —~8s'x '[~a(e —e 2 )+(3 —x)[ln3 —E,(x)je x+(3+x)E,(3x)ex],

with x=r/A&, A&=(4vPpe') '~', E,(x) = f (e y/y)dy.

In Eq. (1.1), g(r) is defined by the relation

p'g(r) =n, (r„r2)=n, (lr, —r, I ) =n, (r),

where n, (r) is the PDF. At large distances, Eq. (l. 1) has the asymptotic form

g(r)-1 —sx 'e +~as'In3e +O(e ).

(l. 3)

(l. 4)
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De Witt' observed that the second term of Eq. (1.5) dominates the Debye-Huckel term as x- ~, and re-
lated this to a similar phenomenon which occurs in the study of the dynamic behavior of a plasma. Such a
conclusion is physically unreasonable, and Lie and Ichikawa have shown that the expansion Eq. (1.5) in
powers of z breaks down at very large distances x)8/zln3. These authors conjectured further that the
correct behavior of g(r) is

g (r) -1—~x ' exp[- x - 4(x)]

where p (x) -&e ln3 exp[- ~3zx ln3]

(1.6)

is a function which tends to zero as x- ~.
%e shall show, by the Mayer cluster-expansion method, that this conjecture is incorrect, and that the

correct asymptotic form of g(r) is

g(r)-1 —(A/x) e

where

A = z+ (33-In3+~)&2+ 0(z'Inc), 8 = I+~e ln3+~» e21ne+0. 066m'+O(e'In@) .

(1.8)

2. CLUSTER-INTEGRAL EXPANSION

2.1 Montroll-Mayer Expansion

To avoid any confusion with respect to terminology, we first summarize briefly the formulation of the
problem as given by Montroll and Mayer. ' In standard notation the classical PDF in the grand canonical
ensemble is defined as

(2. 1)

where n, (r„r,)=[(N—2) t Z ] '(2iifi) f d p fd'r, d'rNexp[ pEN(-p, r)](N), 3N 3-N
(2. 2)

is the PDF for an N-particle system, z is the fugacity, ZN is the partition function, and ZG the grand
partition function. The energy for an N-particle system is

(2. 3)

where P(r) is the two-body potential. After carrying out the momentum integrations, Eq. (2. 1) can be
written in the form

n, (r„r,) =& ~ z, 2 i
d'r, d'rN II (1+f..),1 (2.4)

where z, = [z/(23'Fi)'] (2iim/p)'12

and f.. =exp[- pp(r2 —r.)] —1.
v

(2. 5)

(2. 6)

If we expand the product in Eq. (2. 4), we obtain an expression for n,(r„r,) as an infinite sum of terms
which can be put into a one to one correspondence with a set of labeled diagrams. These diagrams con-
tain two or more vertices (labeled 1, 2, 3, . . . ) with at most one line (f bond) between each pair of vertices.
Each bond corresponds to a factor f~& in the corresponding term. For example, the term

(z:/2. &O) fd'r3d r4fl3f 4f34f23f24 (2. 7)

is represented by the diagram Fig. 1(a) Diagrams may be connected or disconnected. A diagram is dis-
connected if it contains two groups such that no vertex of one group is connected by an f bond to any ver-.
tex of another group. Thus Fig. 1(b)is disconnected, whereas Fig. l(a)is connected.

We shall call the factor Jd'r, d'rN(product of fj's) the integral associated with the diagram, and the
remaining factor the weight factor for the diagram. By a lengthy but straightforward argument it can be
shown (see, e. g. , Salpeter, ' and, for the quantum-mechanical case, Montroll') that

n2(r„r2)= p2+ Z b&(r„r2)z,
k=2
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FIG. 1. (a) Connected and (b) disconnected diagrams. (b)

FIG. 2, (a) Reducible and (b) irreducible diagrams.

+ &W + ~+ ~ ~ ~

FIG. 3. (a) p bonds and (b) screened (I) bonds.

where

b (r„r,) = [(k —2).] (sum of integrals associated with all connected labeled diagrams containing k
vertices including (1) and (2)). (2. ~)

The expression Eq. (2. 8) is inconvenient insofar as it contains the fugacity. A further simplification
can be effected if the remaining diagrams are classified into two classes, reducible and irreducible. A
diagram is reducible if after joining (1) and (2) by an extra bond and erasing one vertex it becomes dis-
connected. Examples of reducible and irreducible diagrams are given in Figs. 2(a) and 2(b). By a lengthy
combinatorial argument it can then be shown (see, e. g. , Salpeter') that

n, (r„r,) =p'+ Z Pk(r„r,)p
k=2

(2. 1O)

where

p (r„r,) = [(k —2)!]- (sum of integrals corresponding to all connected, labeled irreducible diagrams
containing k vertices including (1) and (2)). (2. 11)

This result was first derived by Mayer and Montroll. '
In the thermodynamic limit n, (r„r,) is a function of y = !r,—r, I only, and the radial distribution func-

tion g(x) in terms of diagrams becomes

g(r) =1+ Z pk(r„r,)p
k=2

(2. 12)

2.2 Q Bonds.

(2. iS)

To overcome divergence difficulties, it is usually convenient when dealing with the Coulomb gas to ex-
pand each factor f~& which appears in a diagram as a power series in Q. From Eq. (2. 6), we have

V' m=1

In terms of diagrams a single f bond can be represented as a sum of Q bonds as in Fig. 3(a). We can then
express g(r) —1 in a slightly different form as the sum of connected labeled irreducible diagrams with P
bonds. These new diagrams may have any number of bonds between each pair of vertices. The contribu-
tion of a diagram with k vertices and l P-bonds is

[(k —2)! g (m. .)!] 'p (-P) JcPr ~ dsx (product of P. .'s one P . corresponding, k —2 l
v

'
k '1' Ui&j to each Q bond). (2. i4)
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It is clear that diagrams which can be derived from each other by permutation of vertices (not including
(1) or (2) which are special) give equal contributions to g(x). Therefore it is customary to introduce the
notion of an unlabeled diagram. An unlabeled diagram (in which only the vertices (1) and (2) are labeled)
is equal to the sum of the corresponding labeled diagrams which differ from each other only in a permu-
tation of the vertices. An unlabeled diagram then carries an additional weighting factor equal to the number
of labeled diagrams it contains.

Divergence difficulties associated with the long-range nature of the Coulomb interaction can now be re-
moved if we perform a partial sum over chains of Q bonds. The new (screened) interaction which we rep-
resent by a wavy line, is represented diagrammatically in Fig.3(b). Just as a single Q bond represents
@r), a wavy line represents a screened potential Ps(x) given by the equations

P (r)= fd'(oe v ((o), (2. 15)

v ((u) = v((u)/[I + Sm'p v((u)], (2. 16)

v(&u) = (2m)-' f e P(r)d'r. (2. i7)

For the electron gas we have

P(r) =e'/r P (x) =(e'/r)e ' v (ur) =e'/2v'(&u'+g )

where v, = (4~Ppe')'I' is the inverse of the Debye screening length A

(2. ie)

3. THE ELECTRON GAS

3.1 Known Results

The diagrams of Fig 4 were evaluated by Bowers and Salpeter ' De %itt ' and other authors Diagrams
Fig.4(a), 1, 2, 3. . . give contributions oi

—ex 'e (2! ) '(- ex 'e )' (3 t )-'(- ex-'e ) (3. i)

whose sum is simply

g (r) =exp(- ex-'e ) —1.a
(3.2)

The diagrams of Fig.4(b) give a contribution g&(r), where

g&(r) =(-2)(p'p/2! ) fd'x, Q '(x )p (x ) = ——'e'x '[e ln3 —e E,(x)+e E,(3x)] .

Finally, the diagram Fig.3(c) gives

(3.3)

g (r) = (P4p'/2!) fd'r, d'r, P (r»)P '(r )P (x4, ) =~Be'x '[(1+x)e ln3 —f(e —e ) —(1+x)e E,(x)

+(i -x)E,(3x)] . (3.4)

Summing Eqs. (3.2), (3.3), and (3.4), we obtain the Bowers-Salpeter expression for the radial distribu-
tion function already quoted above in Eqs. (1.1) and (1.2). All diagrams which remain are of higher or-
der in e. Using the well-known relation between the correlation energy per particle E and g(x), viz. ,

E = .p fd'~P(x)—[g(~) 1]—
we can obtain from Eqs. (1.1) and (1.2) the Abe' result for the correlation energy, which is

E/k T= —2e —&e21ne —2(y —&~+ 21n3)e

(3. 5)

(3.6)

where y is Euler's constant. For large distances (x)) 1), as already noted, the Bowers-Salpeter expres-
sion for the radial distribution function has the asymptotic form

g(r)- I —ex 'e —e'(~6+ —', ln3)x 'e +~8&' ln3e +O(e ). (3. 7)

The term ~8&' lnse x dominates the Debye-Huckel term —&x 'e x for sufficiently large distances, an un-
acceptable result. However, this difficulty can be overcome by summing a wider class of diagrams.
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FIG. 4. I.ow-order diagrams. FIG. 5. Chains and mixed chains.

3.2 Mixed Chains

The evaluation of diagrams which may be regarded as chains linked together by single vertices, e. g. ,
the diagram of Fig. 5(a), may be simplified through the following observation. Consider n diagrams linked
together in a chain in such a way that each adjacent pair of diagrams shares only one vertex. Let the con-
tributions of the individual component diagrams be D,(r, —r, ), D,(r, —r, ), . . . , Dz(r, —r, ). Then the con-
tribution of the whole chain is clearly

I=p" fd't ~ ~ d r D (r —r )D (r —r ) ~ .D (r —r ) .3 n+1 ' ' 3 2 3 4 n n+1 (3. 8)

D (~) = (2~) ' fd'~ e

In terms of Fourier transforms defined by

D~(~); D~(r) = fd'(u e' D~((u), (3. 9)

Eq. (3. 8) becomes

fd', d3x fd'~ d'~ e ' ' ' ' ' ' .e ( +I ')[D(~,) ~ D, (~ )]n+

= [(2m)~p] f d3&u D, (&o) ~ D (&u)e (3. 10)

Consider the mixed chain shown in Fig. 5(b). The component diagrams are shown in Fig. 5(c). The first
of these components gives a contribution

D (~) = —ex-'e ", D,(v) = —(e/2m'v 3)(Q +1) '

while for the second we have

D (x) =-'(- ex 'e ), D((u) =(e'/4w'a, ') Q 'tan '(Q/2).

In Eqs. (3. 11) and (3. 12) we have written tu = z,Q for notational convenience. I et n+ 1 and z be the number
of times the components 1 and 2 occur in the mixed chain. Its contribution is then, by Eq. (3. 10),

[(2z)'p/a, '] fd'Q [- e/2m'(Q'+ 1)]"+ [(e'/4m'Q) tan '(Q/2)]" e' = —(e/2m')(- e/2)" fd'Q e'

x [tan (Q/2)] "/Q" (Q'+ 1)"+ = —(e/mix)(- e/2) f & [tan (Q/2)] /Q (Q'+1) + dQ. (3. 13)

The dominant term in the integral of Eq. (3. 13) for large x is 2' times the residue at the pole at A =i
This is a polynomial in x of degree n times e ~/x. The sum of these mixed chains therefore gives a
power series in x multiplied by e ~/x. The expression Eq. (3. 7) includes only the first two terms of
this power series. The Bowers-Salpeter result for g(r) is then a useful expression for computational
purposes only in the intermediate distance region x(8/eln3.

Summing Eq. (3.13) over n, n = 0, 1,2, . . . , we have for the sum of all mixed chains the expression

g (v) = —(e/vix) f Qe dQ/[Q'+1+ (e/2Q) tan '(Q/2)] . (3. 14)

It is easily shown that Eq. (3. 14) has a simple pole at Q =iB, where B is real and 1&B(3/2, and B=1.
The asymptotic form of Eq. (3. 14) is then
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, -Bx
g (r) - -Ax-'e (3. iS)

where A = e, B=1. This result was apparently known to Hirt. '

4. ELIMINATION OF CHAINS

4.1 General Formulas

A partial sum of diagrams which includes the mixed chains then shows explicitly that the Bowers-
Salpeter and Lie and Ichikawa expressions are the leading terms of a power series in e useful for compu-
tation only for distances x(8/e ln3. However, to establish the correct form of the PDF at large distances
it is necessary to effect a further simplification. We consider all unlabeled connected irreducible dia-
grams with (unscreened) Q bonds. These diagrams may be divided into two classes: chains which consist
of diagrams linked together as in Sec. 3.2 above, and the remaining diagrams which we call simple dia-
grams. Let g (x) be the sum of all simple diagrams. Then Eq. (3. 10) which expresses a chain in terms
of the simple diagrams from which it is formed, gives

00 iQ x
g(x) =I+z,' Z [(2v)'p]" J d'Q[g*(n)] e = 1+v,' d'Q (4. 1)

[1—(»)'pZ'(Q)] '

where g*(n) = (2m, ) ' 1 e g*(r)d'x . (4. 2)

The expression Eq. (4. 1) can be recast into a more convenient form as follows. Let g, (r) be the sum of
all simple diagrams except the simplest, viz. , 1=

g,(n) =g+(n) —(e/2v'~, ')n ', (4. 3)

so that Eq. (4. 1) becomes

g(r) = 1+fd'Qe [x 'g (Q) —(e/2w'n')] (I —[(2m)'p/v, ] [e 'g (Q) —(e/2v'Q')]]i5 %

d, n
i5'x 1 —8v'pn'g„(n) 1 e ~

d inx 1 —8m'pn'g„(n)
2m2 Q2+1 8~~png (Q) mix Q +1 —8w pngo(n) ' (4. 4)

where we have carried out the angular integration and used the identity

2m'z, '/e = 8m'p . (4. 6)

It can be shown that this result Eq. (4. 4) holds also if the P bonds are screened. We therefore consider
simple diagrams to be constructed with screened Q bonds.

4.2 Explicit Evaluation of go (Q)

In order to determine the explicit asymptotic form of g(r) we now consider the diagrams which contribute
to g, (n). Some of the low-order diagrams which contribute to g, (n) are shown in Fig. 6, and Figs. 6(a)-(f)
exhaust all relevant diagrams up to and including order e'.

The lowest-order diagram Fig.6(a) has a Fourier transform

g,(n)[6a] = (e'/4v'~, 'Q) tan-'(n/2) . (4. 6)

This function has branch points at Q = +2i, but is analytic in the plane shown in Fig. V. All remaining
simple diagrams are O(e Inc). Hence if we approximate go(n) by Eq. (4. 6), substitute this result into
Eq. (4. 4), and close the contour as indicated in Fig. 7, we obtain

g(r)-I —Ax-'e +O(e ),
where A= e+O(e'), 8=1+~8eln3+

(4. 7)

(4. 8)

and (vg) ' is a modified Debye screening length. Comparison with the asymptotic form suggested by Lie
and Ichikawa, Eqs. (1.6) and (1.7), then shows that we cannot yet disprove this conjecture, which implies
that for large distances, the Debye screening length is identically A& =(a,) '. (Up to terins of order e',
the two results agree )It is the. refore necessary to consider higher-order diagrams.

Note that in position space, the diagram Fig, 6(a) has a contribution

g, (r)[6aj = —,'e'x 'e = O(e ) .
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(c) -P-LA N 6

(e)

2g

FIG. S. Simp1e diagrams which contribute togp(&). F1G. 7. Contour for evaluation of g(p") .

lt seems likely, as we shall. see below, that all diagrams which contribute to g, (r) are O(e ). A corol-
lary of this assumption, which we shall use, is that

g, (Q) = (2map) ' fd'xe g, (x) = (2v'Ip, 'Q) ' f x sinQxg, (x)dx (4. 10)

is analytic in the strip jImQj(2.
The next diagram of the set which contributes to g, (Q) is shown in Fig.6(b). Its contribution is

gp(r)[6b]=(3! ) '(- ex 'e ) (4. 11)

The Fourier transform of this expression diverges. However, the sum of all ladders, of which Figs. 6(b)
and 6(c) are typical is

g (z)[L]=exp(—ex 'e ) —1+ex 'e —(2!) '(ex 'e ) (4. 12)

with Fourier transform

g, (Q)[L] = ', e
' Q, (- ex 'e ) d'x.

27/Kp
1%i, =3

After carrying out the angular integration, this expression may be written as

( m2'g '
p)Qg, ( )Q[ ]L= f xsinQx g t

(—ex 'e ) dx=2 . f xsinQxdx f +. (p —1)!e x e dp
Pl =3

1

. f dp (p —.1)!(P+1)!e (Q'+P') ' (sin[(P+2) tan 'Q/P]}, (4. 14)

where the contour for the Mellin inversion integral satisfies —3 (c(—2. Equation (4. 14) can be expanded
in an ascending series in e by translating the contour to the left. The leading term in this series gives

gp(Q)[L] = [e /(2v'vc )3!] [inc +2y —~+ a ln(Q +9)+3(Q) 'tan '(Q/3)] . (4. 15)

This function has branch points at Q=+3i and is of order c'lnq. Higher-order terms in the expansion of
Eq. (4. 14) have branch points still further removed from the real axis of the Q plane.

We next consider the diagrams of Figs. 6(d) and6(e), whose evaluation is straightforward. Their contri-
butions are listed below:

g, (p )[6d] = —,'e'x-' [ ln3(e )+E,(3x) —e E,(x)],

g, (Q)[6d] = (e'/4s'Ipp'Q) (ln3 tan-'(Q/2) +f (sinQx/x)[E, (3x) —e E,(x)]dx,

(4. 16)

(4. i 7)
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g0(r)[6e] = -~8@'x '{(x+1)e ln3 +f(e —e ) +E,(3x) —e E,(x) —x[e E,(x)+E,(3x)j), (4. 18)

g0(Q)[6e] = (- e /16m'z 'Q){ln3[Q/(Q +4) +tan '(Q/2)] +&~[tan '(Q/3) —tan '(Q/2)]

+ J (sinQx/x)[E, (3x) —e E,(x)]dx —[Q/(Q'+4)] [—,
' ln(Q + 9) —(2/Q) tan '(Q/3)]

—(1/Q)[-,' ln(Q'+9) —ln3]] . (4. 19)

Again, both diagrams are O(e 2x) as x- ~, and the Fourier transforms are therefore analytic in the strip
II nI&2.

There remains the diagram Fig. 6(f), whose contribution in configuration space is

g, (r)[6f] = —,'(- p)5p' Jd'rsdsv~p (r~ —r, )&f& (r4 —r, )Q (r, —r~)P (r, —r, )P (r, —r4) . (4. 20)

In the appendix it is shown that the Fourier transform of this expression can be reduced to the form
1 [1+x(1-x)Q'] '"[1+y(1-y)Q'] '~'

4''K - Q'(x —y)'+{I+[1+x(l -x)Q']'"+ [1+y(l —y)Q'] '")' (4. 21)

(4. 22)

This integral can be expressed in terms of known transcendental functions, but its analytic properties
are clear. In the strip IImQI&2, since Ix(1 —x) I&~4 for 0&x &1 the integrand is a continuous function of
Q, x, andy, and is analytic in Q. Hence g,(Q)[6f]is also analytic in IImQI&2 .

We have shown that up to and including terms of O(e'), g, (Q) is analytic in the strip IImQI&2. The in-
tegrand of Eq. (4. 4) is therefore analytic in this region except for poles. It has one pole at Q =iB, where
B is real and B= 1, which can be found by iteration. The dominant term in g(x) —1 will then be given by
2mi times the residue of the integrand of Eq. (4.4) at the pole Q=iB. The terms neglected because of the
integral along the branch cut are O(e 2x). Finally we have

g(r)-1 —Ax 'e +O(e ),
where the constants A and B are evaluated below. From Eq. (4.4), B will be given by the solution of the
equation

B' +I+ 2' ' e 'B'g (iB) =0 (4. 23)

with g, (Q) given by the sum of Eqs. (4. 6), (4. 15), (4. 17), (4. 19), and (4. 21). If we retain only the lead-
ing term of g, (Q) given by Eq. (4. 6) we have

B' = 1 —(e/4B) ln[(2 —B)/(2 +B)] . (4. 24)

Successive iteration yields

B' = I+&e ln3 +~Be' ln3( —,
' ——,

' ln3) +O(e') . (4. 25)

The remaining diagrams also contribute to O(e') and the complete result is

B = I +~Be ln3+ (e2/12) Inc+ (e'/48) 8y —~3+ 5 ln3 +~8 (ln3)'+ 61n2 + 9 f (sinhx/x)[E, (3x) —e E,(x)]dx

—12
JD

pl ~l [1+x(x—1)] ' '[1+y(y —1)]
tfxcfp +O(e'inc) .

{1+[1+x(x —1)j "'+[I+y(y —1)]"']'—(x —y)'
(4. 26)

Evaluating the integrals numerically, we have

B = 1+~8m ln3 + (e'/12) Inc + 0. 066 e',

while from Eq. (4.4), we have

A = [le+8 pv'Bg(iB)] [/—I 8v'pg, (iB)—4v'piBg, '(iB)j = e+ —,'e' In3 ++~6'(P Inc) .

(4. 27)

(4. 28)

5. CONCLUSION

We remark that if our asymptotic expression for the radial distribution function [Eqs. (4. 22), (4. 27),
and (4. 28)] is expanded for distances x&8/eln3, we recover the asymptotic form of the Bowers-Salpeter
result together with higher-order corrections. Our expression gives the radial distribution function over
at least the range 1&x&~, i.e. , at all distances beyond the radius of the Debye sphere. At smaller dis-
tances, direct expansion of Eq. (4.4) yields the Bowers-Salpeter result identically. Our result implies
that the Debye screening distance is not identically
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A = (4~Pp e')-'~ 2,

but rather A&', where

A '=A /[1+~8eln3+(e'/12) inc+0(e')]
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APPENDIX

We require the Fourier transform ot the integral Eq. (4. 20) which is

g,(x)[6f]= —,
' (- P)'p' fJ d'r, d'x, P (r, —r, )P (r4 —r, )P (r, —r, )P (r, —r, )p (r, —r-, ) .

Using the relation [Eq. (2. 16) (2. 16)]

&f& (x) =(e'/2m') fd u&[e /(&d +K )]S

Equation (A. 1) becomes

g (y)[6f] = —'(- P)'(2z)'p'(e'/2v')' Jffd'~ d'~ d'~ e

X +& + +& +&0 (d~+(d3 +Ko M2 —3 +Ko

(A. 1)

(A. 2)

(A. 3)

The Fourier transform of this expression is then

g.(Q)[6f] = k( P)'(2~-)'p'(e'/2~')'

ffd ~yd &g(((Og +KO )[((0 —(dg) +Ko ][(d~ +Ko ][((d~+(ds) +Ko][((d —(d~ —4J~) +Ko] j' (A. 4)

If we introduc e dim ens ionles s variables

Qi = QPi/Ko, Q2 = (d2/Ko, Q = (d/Ko

and make the transformations

Q=- Q, —Q„P= —Q, ,

Eq (A. 4) b.ecomes

go(Q)[6f] = k(- P)'(»/~, )'(~.e'/»')'(1/x. ')

ffday d qOS +1)[(P+Q)'+1][(Q p)'+1](-q'+1)[(Q+Q)' +1]f '

(A. 6)

(A. 6)

(A. 7)

The identities
1

f dx/[ax + b(1 —x)]' = 1/ab

fday/(q2 ~ o 2)[(q»+ Q)2 ~P2]2 —(2g2/P)[Q2+ (u ~ P)2]-I

then enable us to write

f&q/(q'+ ')o[(0+ Q)'+0'][(0+ p)'+y'j —f dx fd'q/[(@ p)'++ y][(Q x+5p+ 6']'

1=»' f dx/6[(P-xq)' +(y+ 5)'],

wher«' = [x(1—x)Q'+xp'+ (1 —x)o ']

Successive application of Eq, (A. 10) in Eq. (A. 7) yields Eq. (4. 21).

(A. 6)

(A. 9)

(A. 10)

(A. 11)
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Kinet:ic Equations for Turbulent F'lasmas.

I. Quasilinear Theory
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The Vlasov equation is not applicable for those turbulent plasmas in which certain higher-
order correlation functions may play just as important a part as the single-particle distri-
bution function. We construct the many-particle distribution functions by summing certain
selected products of the single-particle distribution functions and the pair correlation
functions, and show that, in the Rostoker-Rosenbluth fluid limit, those distribution functions
satisfy the Bogoliubov-Born-Green-Kirkwood- Yvon {BBGKY) hierarchy and enable us to
truncate it at the second equation. The resulting equations contain an asymmetric feature in
that the single-particle distribution function develops in time with inclusion of the correlation
effects in the collision term, while the time evolution of the pair correlation function is
governed by a solution of the linearized Vlasov equation. It is shown explicitly that those
kinetic equations become identical to the quasilinear equations without mode coupling if the
contribution of the growing plasma oscillation is singled out in the pair correlation function.

I. INTRODUCTION

We consider a system containing N identical par-
ticles in a box of volume Q. Each particle is char-
acterized by the electric charge e and the mass m;
we assume a smeared-out background of the oppo-
site charges so that the average space-charge field
of the system may be canceled. For an ensemble
of similar plasmas, the density in the 6N-dimen-
sional phase space satisfies the Liouville equation;
by taking moments of this equation, and by going
to the limit N-~ and 0 ~such thatN/&=n, the
average number density of the particles, one ar-
rives at the Bogoliubov- Born- Green-Kirkwood-
Yvon (BBGKY) hierarchy equations for the plasma. 'P
In order to secure a systematic means to treat the
hierarchy equations, it is useful to introduce an

expansion scheme with respect to the small plasma
parameter, g = 1/nADS, where XD is the Debye
length. Truncation of the hierarchy is achieved
within this scheme by assuming that the single-
particle distribution function may be expanded
starting from a term of order g; the pair corre-
lation function, from a g' term; the ternary cor-
relation function, from a g' term; and so on. To
the lowest order ing, it then follows that a many-
particle distribution function is expressed as a
simple product of single-particle distribution func-
tions; with the aid of this ansatz, which is equiv-
alent to the Hartree factorization, one can show
that the Vlasov equation is a precise description
of the plasma in the limitg-0. 'y'

What happens to the above scheme in case there
is a reason to suppose that the pair correlation


