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Pads approximants to the irreducible diagram expansions are proposed as a possible source
of convergent sequences of approximations to turbulence correlation functions. The approx-
imants are used to close off infinite-series integral equations, which then must be solved for
the correlation functions. Alternatively, they are applied to an explicit expansion about the
direct-interaction, or random-coupling, approximation. Good results are obtained for an
exactly soluble test problem, the random oscillator, which has served to exhibit inadequacies
of some previous approximation schemes for turbulence.

1. INTRODUCTION

The Navier-Stokes equation leads to an expan-
sion of the correlation functions of a turbulent
velocity field about the zeroth-order values which
represent linear, viscous decay. The effective
expansion parameter is a characteristic Reynolds
number. If the velocity field has an initial multi-
variate-Gaussian distribution, or is maintained
by Gaussian driving forces, the coefficients of each
power of Reynolds number are functionals of the
zeroth-order eovariance and response tensors of
the velocity field. The convergence properties of
the Reynolds number expansion are not established,
but the radius of convergence is probably zero. '
An important feature of the turbulence problem is
that lar'ge Reynolds numbers are common, and in-
finite Reynolds number is a physically interesting
limit.

The dynamical equations for correlation functions
of a turbulent velocity field are formally similar
to those of some nonlinear quantized fields, the
Reynolds number expansion corresponding to ex-
pansion in powers of the coupling constant. There
are analogous diagram representations, and the
power series in the turbulence problem can be
partially summed, to all orders, so that only irre-
ducible diagrams and the exact, rather than zeroth-
order, correlation and response functions appear
in the coefficients. 'i' The irreducible expansions
appear still to be divergent. '

The problem of obtaining sequences of system-
atically better approximation sequences for the
correlation functions is unsolved, and care is re-
quired even to obtain a first approximation, above
the linear level, which remains internally consis-
tent at large Reynolds numbers. Reference 2
deals with a set of closed integral equations, the
direct-interaction approximation, which involve
only the eovariance and mean-response tensors,
and retain only all iterated bubble diagrams. These
equations are exact to second order in Reynolds
number, and remain internally consistent at all
Reynolds numbers because they happen to describe
exactly a model dynamical system, called the
random-coupling model. The model represen-
tation assures energy conservation, realizability
of the covariance tensor, and other consistency
properties. The author has since tried unsuccess-
fully to construct an explicit sequence of higher
model systems, each expressible by closed inte-
gral equations, whose dynamics would systemati-
ically draw closer to the exact dynamics.

The present payer proposes Pade approximants
to the irreducible expansions as a possible road
to convergent approximation sequences for turbu-
lence correlations. Pade ayproximants have been
studied extensively and applied to a number of
problems of statistical physics. 4~' In physical
applications, the quantity of interest typically is
expanded in a power series in a perturbation pa-
rameter, and approximations to the power series
are selected from the associated Pade table. The
latter is an array of rational functions whose
power-series expansions reproduce the series of
interest, up to finite orders.

The straightforward extension to turbulence the-
ory is to construct Pade approximants to the
Reynolds number expansion. The analysis, to fol-
low, of an exactly soluble test problem suggests
that this fails at high Reynolds numbers. Instead,
the present paper introduces Pade approximants
to the irreducible diagram expansion and uses
them to form sequences of approximate integral
equations, which then must be solved for the cor-
relation and response functions. The low'est inte-
gral equation in the sequence is the direct-inter-
action ayproximation. This procedure is found to
work for the test problem, and thereby distin-
guishes itself from other systematic approximation
schemes that have been proposed for turbulence.
However, no theory of convergence properties is
attempted, and so far, only a little of what happens
with actual turbulence problems is known.

2. RANDOM OSCILLATOR

Let y(t) obey

(d/dt+ p)y(t) = —taXy(t), y(0) = 1,

where v is a non-negative damping parameter, a
is a constant which has a Gaussian distribution over
an ensemble, with (a') = 1, and X is an ordering
parameter, to be set equal to 1 after the manipu-
lations are finished. This random oscillator has
been studied extensively, and it serves to display
inadequacies of several schemes for obtaining
approximation sequences for turbulence. ' Equation
(1) leads to primitive and irreducible diagram
expansions homologous to those of turbulent con-
vection by a prescribed Gaussian velocity field, and
of quantum-mechanical scattering in a random poten-
tial field. ' Although (1) is linear in the dynamical
variable, like convection in a prescribed field, it
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is nonlinear in stochastic quantities, and this is
sufficient to bring out some essential difficulties
also present in the full, nonlinear turbulence
problem.

Consider the mean response function g(t) = g(t)}.
The exact solution is g(t) = exp(- vf —X'f'/2). The
perturbation or reducible expansion for g(t) in
yowers of X can be expressed in the form

(d/dt+ v)g(t) =h(f) -=—(iaXy(t)),

a(f)= Z (-1) R2 ~ q(*q)

(2)

(3)

where q(t) =exp(-vt) is the response function for
X = 0, ~ denotes convolution, and R2„=(a2 "}= 2n!/
n t2 is the number of diagrams with 2n vertices in
an associated graphical representation. Equation
(3) can be reformed as an irreducible expansion

I(f)= Z (-I)"~ "S,„g(*g)" (4)

where S2 is the number of diagrams without self-
energy parts. ' Equations (2) and (4) give an
infinite-series integral equation, from which (with-
outappealtodiagrams) S2n can be found by recur-
sion in terms of the S2m for m(n and the R2m for
m ~n. The first few S2n are 1, 1, 4, 27, 248,
2830, 382 32, and 593 859.

The Laplace transforms of (2)-(4) are

3. PADE APPROXIMANTS TO THE
PERTURBATION SERIES

The Pade approximants (x, s) to a power series

f= +0a (x')"
s

are4" f = + 5 X (
2m

xs m=0 m c, =l, 10

3X'y'! 4X'y'!
+

t

+
t

+ ~ ~ 0

where the b' s and c' s are chosen to reproduce the
series through terms in (X') . If f has a repre-2t+S
sentation of the type (9), a Pade approximant re-
places the continuous distribution of poles by a
finite set of discrete poles in such fashion that
suitably defined moments of the distribution are
correct up to some finite order. The conditions
under which the Pade ayyroximants converge to
f as ~ and s increase are known only in special
cases. 4~ '

There is an intimate relation between Pade
approximants and continued fractions. 4 If the
explicit values of the R2 are used, (8) has the
continued-fraction representation

G( ) y I X'y'! 2X'y'!
t1 +f 1 f 1

(p+ v)G(p) =1+H(p),

a(p)= p (-I)"~ "R2„[y(p)] ",

(5)

(6)

where y denotes y(p). The Pade approximants
(r, x) and (r+l, x), x=0, 1., 2, . . . , are, respectively,
the even and odd approximants of the continued
fraction

ff(p) = p ( I)"X "S [G(p)]
"

n=1

where y = (p+ v) . Both (6) and (7) are divergent
series for any values of X, y, and G, and hence
they give divergent infinite-series equations for
G(p) when used in (5). In particular, this is true
for the response time G(0) = J, g(f)df, which is
the simplest integral parameter of the system.
Nonconvergence of (6) follows immediately from
the formula for R2n. The ratios S2n/R2n are 1,
0.3333, 0.2667, 0.2571, 0.2624, 0. 2'723, 0. 2830,
0.2930, . . . . This suggests that S2n/R2n ap-
proaches a nonzero value & 1 as n-~, a conclu-
sion also indicated by the topology of the diagram
expansion. '

The divergence of (6) also can be inferred from
the integral representation

G(p) =r(p)+ Z (-I)"~ "R, [y(p)] "',
n=l

(7)

(8)

=J' [P(a)/(v+p+iW)J da, (9)

where P(a) = (2v) exp(-a /2) is the probability
-12 2

distribution of a. Equation (9) follows directly
from the Laplace transform of (1). For given v
and P, there is a continuous distribution of poles
along the line X =i(v+p)/a (-~ & a & ~) in the com-
plex X plane, and, consequently, zero radius of
convergence in X.

G. .=r, Gi, o=r/(I+&'r'),

G» = r/[I+ ~'r'/(I +»'r ')] = r(1+2~'r')i(1+ 3&'y')

G2, =y(1+5K y )/(I+6K y +3X4y4) ... (12)

Equation (11) is a special case of Gauss's con-
tinued fraction, whose convergence properties are
known. ' The Pade sequences (x, r) and (x+ 1,x)
converge to the exact G(P), as x- ~, for all Xy
except Xy pure imaginary. Suppose that the approx-
imants areusedto evaluate the spectral density
p(ap) = Re G( —i&a), v real. If v & 0, the approxi-
mants obtained by taking the real part of (12) conv-
erge for all ~. But, for fixed v, the convergence
becomes worse as & increases, and, for v = 0, there
is divergence at all ~. In the latter case, the ex-
act p(e) is (m/2)'~'X 'exp(-+'/2X') For ~ =0, we
have y= v ', a,nd, as v-0, all the even and odd
ayproximants tend to zero and ~, respectively.
Thus the Pade approximants to the perturbation
expansion fail to yield convergents to G(0) in the
limit v-0, which is analogous to the high-Reynolds-
number limit in turbulence dynamics.

Although the approximants do not converge at any
z, if v =0, manipulation of (12) shows that they con-
stitute approximations for p(&g) in the form of finite
sums of 6 functions, such that the moments J'- ~
&o2qp(&u)der are correct for q ~ x+s. Thus
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p, ,((o) = v6(cu), p. ..((o) = —,'a[6((o —X)+ 6((u+X)],

(13)
p, ,((o) =~ w6((u)+'-"n[6((u-Zv 3)+6((o+Xv 3 )], . . . .

6

These approximations to p(u&) are identical with the
cumulant-discard approximations (truneations of the
expansion in cumulants) discussed in Ref. 2.

4. PADE APPROXIMATIONS TO THE
IRREDUCIBLE EXPANSIONS

Equation (7) defines a functional dependence of
II on X and G which is invariant either to change in
the value of v or to replacement of v by a complex
function v(p). Since these changes do alter the
value of G, we argue that the functional relation
H=H[X, G] is a more fundamental characterization
of the stochastic dynamical coupling —iaAy(t) than
is the explicit expansion (6) of H in powers of X.
Therefore, we consider Pade approximations to
H[X, G], with G regarded temporarily as an inde-
pendent quantity rather than a function of X.

On this basis, (7) has the continued fraction
representation

H [X,G(P)] = —X'F[~, G(P)],
G'1 X'G'1 3X'G'1

11
11K'G'/3 1 16K'G'/33 I

( )'l 1 't
where the numerical values of the S~ have been
used. The approximants of the continued fraction
are the Pade approximants of (7):

Fo, = G', F, , = G'/(1+ X'G'),

F, , = G'(I +3K.'G')/(1+4K'G')

F = G'(3 + 20''G')/(3 + 23K'G'+ 11X4G4) ... . (1 5)

In order to offer promise in problems where the
answer is not known in advance, the Pade approxi-
mants must lead to convergents to G its~if. To
obtain approximants to G, we substitute the suc-
cessive functional forms (15) into (5) and solve the
resulting equations. The values found for G(0) at
X = 1, v = 0 are Go 0

= 1, G, o = ~, G, , = 1.124 17,
G, , = l. 53729, 0, , = l. 1/963, Gs, =1.36237,
and G» =1.20876. These numbers suggest that
there is convergence to the exact value G(0) =
1.253 31 and that the (r, r) and (r+ 1,r) sequences
bound the correct answer from below and above,
respectively.

The behavior for p t 0, v= 0, X = 1 is more corn-
plicated. The (0, 0) approximation yields PG(P)
= 1 —[G(P)], which is identical with the random-
coupling, or direct-interaction, equation. ' The
corresponding spectral density is p, ,(&o) =
= (1 —&g'/4)'~' (~' ~4), =0 (~')4). For r) 0, the
(r, r) sequence yields solutions Gr r(-i&g) with
finite sets of branch points along the real (d axis,
so that pr r(a&) consists of pass bands separated
by stop bands. The moments I ~2&p(&u)des are
given correctly for q &x+s. Figure 1 shows
pr r(+) for r = 0, 1, .and 3, together with the ex-
ac( p(w). The present Pade approximations differ
importantly from the perturbation- series approxi-
mations inthat the 6 functions of (13)are replacedby
pass bands of finite width and height. We conjecture
that, as x —~, the primary band spreads to include any
given ~ and that p r(&o) within that band converges
to p(&u). The (r+1, r) sequence has been studied
through (3, 2). It appears to be similar to the (r, r)
sequence except that the (1,0) approximant has an
integrable singularity p»(u) ~1&cr ) ' ' at &o =0.

The solutions Gr s(-i&u) were obtained by the
Newton-Raphson method, starting at ~ = 0 and using
the converged value at each (d step as the starting
value for the next step. The solutions were con-
tinued through the branch points by requiring
p(&u) ~0 and G(-i~) continuous. The solutions were
checked by verifying the integral relation f
p(h))d(d = 'tT

Again consider the case @=0, P =O, X =1, for which
Pade approximation to the perturbation expansion
failed. The exact G(0) is (w/2)'~', and, from (5),
H(Q) =1. If this value of G(0) is used in (15), the
successive approximants are E« = 1.57080,
F, O=0. 61102, F, , = l. 23202, P2, =0. 81576,
I', , = 1.11706, E, , = 0. 902 16, E, 3

= .0 5 0,
. .., which sugges/s that there is convergence to
the correct value F=1. To make clearer the con-
trast to the perturbation expansion, (6) can be
written as a continued fraction like (14):

EXACT

-2y t 3&y I 2Xy l

I
1+

t

5X'y '1 4X'y'1 (16)
1

The essential difference between (14) and (16) is
not in the numerical coefficients but rather that
y = ~ in (16) while G is finite in (14). for P =0,
v=0.

FIG. 1. Spectral density p(co) from internal Pade
approximations (0, 0), (1, 1), and (3, 3), compared with
exact p(~).
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The irreducible expansion (7) can be further con-
solidated by introducing a vertex operator. The
most compact exgression of the vertex expansion
ls

e(p) = —~'G(p}rg), (1V)

FV)=GV) Z (-")" ~2 [~Ã]"
n=2

(18)

where the vertex operator is I'(P)jGQ), and V2„,
which can be found by recursion from the 82+, is
the number of diagrams with 2n vertices and with-
out verte.:parts. The first three V2+ are 1,1, and
V. In analogy to what was done above with (7), we
have also constructed Pads approximants to (18),
regarding the latter as defining a functional rela-
tion between G(p) and I'Q). The first two members,
(0, 1) and (1,2), of the (r, x+1) sequence of such
approximants are

random-coupling equation Q+ v)G(p) =1 —[G(p}]'
rather than the unperturbed equation (p+ v)GQ) =1.

For this purpose, we consider

Q+v)G(f&) =I+X 'H[X G]

=1 —[G(p)]'+ Z (-Ip~ S [G(p)]
=2 2"

instead of (5) and (7). Here X is no longer inter-
pretable as the coupling-strength parameter in an
underlying amplitude equation (1) for individual
realizations. Instead, it is a formal ordering pa-
rameter, whichdefines a weighting of the diagrams
omitted in the random-coupling model. For X = 1,
(20) is identical with (5) and (7). Now we write

G(p)= » "G 9), (21)
n= 0

substitute into (20), collect like powers of ~, and
obtain

F=G-X'rs, r=G-X'r +X'r'/(I+VX I"'). (18)

Each corresponding approximation to G(p) is ob-
tained by eliminating P and I' from (5), (1V), and
the appropriate equation of (19). The (r, r+1)
approximations exhibit a band structure like that
in Fig. 1, but they yield much more accurate values
of p(~). The error 5z z(up) =pz z(~) —p(w) for
(0, 1) and (1,2) is shown in Fig. 2. The (0, 1)
approximation has been discussed before, in a dif-
ferent context. '

5. MODIFIED EXPLICIT 'A EXPANSION

In Sec. 4, Pade approximants were used within
the infinite-series equation formed by substituting
(7) into (5). In this procedure, which shall be
called the internal approximation scheme, the de-
pendence of G on X is ignored in constrrcting the
Pade approximants and appears only upon solving
the final ayproximation to (5). The irreducible
expansion can also be used to obtain a new, fully
explicit expansion of G in powers of an ordering
parameter X, where now X =0 corresponas to the

Q+ v)G, =1 —S,G,', (P+ v+2S,G,)G, =S4G,4,

(p+ v+ 2S,GO) G2+ S,Gp = 4S~G,SG, —SSGO', .".(22)

The random-coupling solution G, satisfies a non-
linear equation. Each higher Q satisfies an equa-
tion linear in Gz, and is found to be the ratio of
two polynomials in G,.

For v=0, (21) and (22) give for I = G(0) the
series

A/4+ 105/6 74» $8+169047/10
8 16 128 256

whose terms are finite, in contrast to the pertur-
bation series for I.

Pads apyroximants to (21) can be set up in analogy
to those for the perturbation expansion (8). For
~ =1, the (r, r) and (r, r+1) approximants to I are
Io o

= 1' I1 1 ——1~ 153 85, I2 2
= 1.205 86, ... , Io

= 1.5, I, ,= 1.33537, I, , = 1.28885, ... . These
two sequences appear to bound the exact value
I= 1.253 3 1 and to converge. If I is now written as

.02

.Ol

1=1, ,+(l, , -f, ,)+(I, , -f, ,)

= 1+0.5 —0.346 15+0.18152

—0. 129 51 + 0. 082 99 - ~ ~

-.OI

—.ea

FIG. 2. Error 6z z(co) = p~ z(co) —p(co) in the internal
I ~ ~Pade approximations formed irom the vertex expansion.

extrapolation of the latter series, by weighting
with powers of an ordering parameter and taking
the Pade (2, 3) approximation to the six terms shown,
gives I=1.255 55, which is less than 0. 290 in error.

The Pads approx~manta to (21), which shall be
called external Pade approximants, appear to give
faster convergence to I than the internal approxi-
mants of Sec. 4. However, the performance de-
teriorates for p e 0. The real parts of the present
approximants to G(-i&o) are continuous within the
range ~' & 4, where the random-coupling p(&o) is
nonzero. But for &2 & 4, there are poles on the
real ~ axis, as with the pads approximants to the
original perturbation series (8}.
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The external Pade approximants provide an
algorithm, with unknown domain of validity, for
constructing direct approximations to f, g (t)dt
for any function@(t) defined by a gower series in
t. The power series can be weighted by X and con-
verted to a convolution series like (2) and (4), with
the S2„determined by recursion from the given
coefficients. Then Pade approximants to I can be
constructed as above. In the present example,
g(t) is regular everywhere, but the algorithm
works also for some examples where g(t) has
an essential singularity at f, = 0.

6. FORMULATION FOR TURBULENCE AND
TURBULENT CONVECTION

Let the incompressible Navier-Stokes equation
be written as

(s/Bt+ v k) (Gkt t ) =H(ki t t )

G(k; t', t') =1,

H(k;t, t') = 2 y g (k;t, t'), (24)

(a/at+ vk')U(k;t, t') =S(k;t, t'),

S(k;t, t') = Z, & ~ (k;t, t'). (25)

Here k is the wave number, G and U are the
Fourier transforms of the defining scalars of the
Green's tensor and covariance tensor, respec-
tively, 8 is the Fourier transform of a triple
correlation, and 02„and ."2„are polynomial func-
tionals of G and U. Each term in f2„contains
2~ factors G and ~ factors U, with 2n —1 integra-
tions over intermediate wave vector space-times,
while each term in $2+ contains 2n- 1 factors G
and v+1 factors U. The quantities Il and S may
also be written as vertex expansions in (compli-
cated) analogy to (17) and (18). '

In a similar way, the equation

( / st-sv «)q2(x, t)=-xu(x, t) Oq(x, t) (25)

for the convection of a passive scalar field P (of
molecular diffusivity «) by a prescribed, isotropic,

(s/at —v'P)u (x, t) = —X[u (x, t) ~ fu (X, t) —&p,

V' u=0 (23)

where X, as before, is an ordering parameter,
with X = 1 at the end of the analysis. After elimin-
ation of the pressure by 0 u =0, u(x, t) can be ex-
panded in powers of I, , and a suitable nondimen-
sionalization shows that this is equivalent to ex-
pansion in powers of a characteristic Reynolds
number. ' The Reynolds number expansion can be
regrouped to yield irreducible infinite-series in-
tegral equations for the covariance tensor and for
the tensor that gives the ensemble-averaged re-
sponse of the velocity field to infinitesimal dis-
turbances. For .isotropic turbulence, the equa-
tions corresponding to (2) and (3) are'

multivariate- Gaussian, incompressible, velocity
field leads to the irreducible expansion

(a/st+«ka)G (k;t, t')=H (k;t, t'),

G~(k; t', t ') = 1,

H (k;t, t') = ZP "e (k;t, t'). (27)

Here G&(k;t, t') is the Fourier transform of the
average Green's function of the scalar field. '
For x=0, this Green's function gives the proba-
bility density, of turbulent dispersion of fluid par-
ticles from (x, t ) to (x, t). Each term in the
polynomial functional 82& contains 2n factors Gg
and n factors U, which i8 again the Fourier tranS-
form of the defining scalar of the velocity-field
covariance.

Both internal and external sequences of Pade
approximations to the irreducible expansions can
be formed by following the example of the random
oscillator, treating the series in A.

' on the right-
hand sides of (24), (25), and (27) in analogy to the
series in (7). There are problems of nonunique-
ness because the Pade approximants are obtained
by nonlinear operations on the expansions. These
problems are present already in the random oscil-
lator example, but in the turbulence case they are
linked with energy conservation and other consis-
tency properties and thereby become very impor-
tant.

The development of H and S into irreducible
expansions commutes with any linear change of
basis, such as the transformation from physical
space (x, t) to Fourier space (k, &o). This follows
immediately from the characterization of the irre-
ducible expansions in terms of collective coordin-
ates of a collection of systems. ' It follows that
(20), and the modified explicit expansion (21) are
invariant to such a change of basis. However, the
Pade approximants, whether on the primitive per-
turbation expansion, the irreducible expansion, or
the modified X expansion, are nonlinear transfor-
mations of the series. In general, a given order
of Pade approximant (x, s) gives different results
when carried out in different bases, even if the
sequence of approximants converges to the correct
result in each basis. If the Pads approximants
for the random oscillator are constructed from the
time-domain expansion (2) and (3) or (2) and (4),
the Laplace transforms of the results are not the
same as the Pade approximants found above by
working directly in the p domain. This raises the
question of to what extent convergence properties
in different representation are similar, and, as
a matter of practical computation, which repre-
senatations give the most satisfactory results in
the lowest orders.

Each order of the irreducible expansion (25)
identically satisfies conservation of kinetic energy
by the nonlinear interaction: j$2n(k, t, t)d'k =0.
This is a prime reason for giving the expansion
of the triple moment 8 a central role rather than
attempting to work directly with the expansion for
U. Also, each order is individually consistent
with the fluctuation-relaxation relation U(k, t, t')
=CG(k;t, t'), t&t', with C a constant of gropor-
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tionality, which characterizes the v =0 equiyar-
tition solution. ' If this relation is used in (24) and

(25), then $2u(k; t, t') = C/2u(k; t, t') identically.
The fluctuation-relaxation relation survives in

any of the Pade apyroximati:ons, and in any rep-
resentation, provided that (24) and (25) are treated
in yarallel. This follows from the fact that forming
a Pade approximant commutes with multiplication
of the infinite series by a constant. In order to
keep the energy conservation yroperty in the
internal Pade ayyroximations, the infinite-series
integral equations must be cast in a form such
that JS(k; t, t)d'k = 0 is an identity whatever the
values of the quantities that are approximated.
This can be done by writing S in the form

S(k; t, t') =(Z,/2~)

x 1m[k + (u;(p, t)u (q, t)u. (-k, t')&],
p+q =k

and expressing the triple moment Im(ut(p, t)u~
x (q, t)ut (-k, t')) in terms of its two defining sca-
lars, which have the form S&»(k, p, q; t, t') and
S+&(k, p, q; t, t'). '~7 Here L is the side of a large
box in which u(x, t) obeys cyclic boundary condi-
tions. Conservation of energy then follows identi-
cally from the symmetry properties of S&» and
S&» under interchange of k, P, and q. These
symmetry properties are exhibited in every order
of the irreducible expansions for S&» and S&», and
hence survive in the Pade approximations to these
scalars. In order to keep the fluctuation-relax-
ation relation, parallel manipulations must be
carried out on H(k; t, t'). A similar reduction to
defining scalars serves to keep energy conserva-
tion if (24) and (25) are transformed to the wave-
number-frequency domain.

Analogous recasting to make the external approx-
imations conservative seems more artificial, and
this is a reason for favoring the internal ones.

The irreducible expansion (27) for turbulent
dispersion is homologous with that for the random
oscillator. If the random velocity field is time
independent, GS and PS depend on (t, t') only in the
combination t —t . The Laplace transform of (27)
is then (S subscript dropped)

(p+~k )G(k, p) = I+a(k, p),

e(k, p)= g~ "82 (k, p). (28)

e~(k, p) =++ fdsqfdsq [k P(q) ~ (k-q')j

x[(k —q) P(q') k]

x G(Ik —ql, p)G(Ik —q —q f,p)

xG(Ik-q I,p)G(k, p), (29)

where Ptj(q) = 5tj —qt qj/q, Each higher 82'
consists of S2n terms, each involving integration

The first two 82 are
2n

82(k, p) = —z~ fdsq[k~P(q)'k]U(q)G(Ik —q I,p)G(k, p),

over n intermediate wave vector spaces. The
S2„are the same numbers as in (7). If v = 0, and

if k ))q for any q at which U(q) is appreciable, all
the G factors in 8 (k,P) may be replaced by G
(k, p). The wave number integrations can then be
performed, and (28) reduces to

If(k,p) = 2 X (- n,2k2)"S [G(k, p)] ", (30)

where v, is the root-mean-square turbulent veloc-
ity component in any direction [3v,' = f U(q)d'q].
Thus the high k limit of (28) is identical with (7),
in units where vok 1.

If v=0, [k'G(k, 0] is the steady-state eddy dif-
fusivity exerted on scalar-field inhomogeneities
of wave number k. In particular, the limit k -0
gives the eddy diffusivity acting on uniform scalar
concentration gradients. The author has started
an investigation of the random-coupling values and
the Pads approximations to [k'G(k, 0)] ' for two
shapes of the velocity spectrum: E(q) —= 2vq'U(q)
~ 5(q- q, ) and Z(q) ~ q'exp(- 2q'/q, '). The
results have been compared with exact values
obtained by a Monte Carlo calculation of particle
trajectories in computer realizations of the random
velocity field. The largest errors in the random-
coupling values are for E(q) ~ 5(q —q, ), and these
range approximately from + 25% for k"))q, to+ 8%
for k((q, . In the (I, l) internal Pads approxima-
tation to (28), the errors decrease roughly by a
half, without changing sign, exceyt for k ((Qo,
where the correction overshoots the exact value.
Until higher approximations are calculated, there
is too little evidence to elucidate the convergence
yroyerties of the Pade sequence. Monte Carlo
techniques were used to evaluate the multiple inte-
grals in (29).

7. DISCUSSION

There are major obstacles to an analytical the-
ory of the Pade approximations proposed here.
First, the analyticity properties which are needed
for convergence of Pade approximants to a function
are not known in general. The theory of conver-
gence is well developed for functions representable
by a Stieltjes integral, but counterexamples show
that this is not a necessary condition for conver-
gence. 4~' Baker, Jr. , has suggested, without
proof, that the (r, r) Pade approximants to a power
series converge at every point which is not a sin-
gularity of the function and which is connected to
the origin by a region of the complex plane that is
free of singularities. s It is likely that the primi-
tive perturbation expansion in powers of X, for
the correlation function of a velocity field that
obeys (23), does satisfy this condition. Variation
of X along the real axis is equivalent to scale
changes in the velocity field (together with a re-
flection if X is negative). Since the initial multi-
variate- Gaussian statistical ensemble includes
all scales with some statistical weight, it is hard
to see how a discontinuity or singularity of be-
havior can occur at a finite, real X value. There-
fore X =1 should be connected to the origin by a
singularity-free path. The same conclusion
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seems indicated if the turbulence is maintained
in a statistically steady state by random driving
forces added to the right-hand side of (23}. But
even if the analyticity properties of the Navier-
Stokes equation were fully known, this would not
give directly the functional relations among H,
8, G, U, and A. which are crucial to the Pade
approximants of the irreducible expansions.

Shanks' has stressed that the Pade approximants
represent well-defined nonlinear operations on an
infinite sequence without the need of representing
the sequence as partial sums of a power series.
Conceivably there are other approaches to a the-
ory of the final X = 1 approximations that do not
appeal at all to the power series in X or to analy-
ticity properties in the X plane. Shanks also pre-
sents other nonlinear transforms, distinct from
the Pade approximants, which yield convergents
to some examples of divergent series. Shank' s
"iterated e, transform" gives remarkably good
results on the random oscillator if it is used, in-
stead of the Pade approximants, to form approxi-
mate equations for G, like those of Sec. 4.

In the author' s opinion, the Pade approximants
deserve extensive further study, together with

other nonlinear approximations to the irreducible
expansions. Despite the absence of underlying
mathmatical theory, the performance on the test
problem of the random oscillator suggests that
these techniques are more powerful than most
systematic approximation schemes that have been
attempted for turbulence correlations. However,
there is a basic and troubling question: Does the
perturbation expansion, on which all later manip-
ulations are based, really contain all the infor-
mation needed to determine the correlation func-
tions unambiguously? If so, is it reasonable that
the information can be extracted by considering
this complicated functional power series (in un-
perturbed correlation and response functions} as
a simple one-dimensional sequence, the power
series in A. ?
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