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We have estimated the effect on the long-wavelength spin-wave spectrum of the large spin
fluctuations in anearly ferromagnetic Fermi liquid, in order to investigate the possibility of
observing spin waves in liquid He . The study is based on a general formula, which we de-
rive from the spin conservation law, for the long-wavelength spin-wave dispersion curve
and the paramagnon model. With the parameters of the model. fixed by the He susceptibility
and the spin-diffusion coefficient data, the width of the spin-wave line and its shift from the
Larmor frequency are estimated as functions of the temperature, the pressure, and the
wavelength of the spin wave. The spin diffusion coefficient is obtained from the large damping
limit of the dispersion formula.

I. INTRODUCTION

The rapid advances of experimental low-
temperature physics leads us to expect that the
spin wave, as well as many other phenomena, in
liquid He' will be observable in the not too dis-
tant future. Some theoretical estimate on the
spin-wave spectrum of liquid He' would therefore
be of interest, and it is the purpose of this paper
to make such an estimate.

Theoretical investigations of the spin waves in
liquid He' and in some paramagnetic metals have
been largely based on the kinetic equations in the
Landau theory. ' Recently it has been shown that,
for Hes, some of the features of which the Landau
theory does not easily give an adequate descrip-
tion can be qualitatively understood, in terms of
the paramagnon model, ' as the consequences of
the large spin fluctuations implied by the fact that
the Hes is nearly ferromagnetic. One thus expects
that the large spin fluctuations would have impor-
tant effects on the spin-wave spectrum, and the
paramagnon model should provide a reasonable
qualitative description. %e are aware of the fact

that, unlike the Landau theory, which is a self-
consistent phenomenological theory within its
domain of application, the paramagnon model is
very crude and almost certainly not rigorously
self-consistent in its present form. ' However,
because of its simplicity and qualitative success
so far, we shall base our investigation on the
paramagnon model in spite of its crudeness and
ambiguities, which will be disc~issed in some
detail.

Much of our discussion will center around the
width of the spin-wave line, to which the previous
investigations' paid little attention. The physical
picture is clarified and the mathematical compli-
cation reduced considerably by exploiting the fact
that the interaction in the model conserves the
total spin and is of very short range. A qualitative
discussion of the physical processes involved will
precede the analysis of diagrams leading to our results.

An important feature of the spin-wave spectrum
is that it must be an infinitely sharp line at the
Larmor frequency, i.e. , the precessing frequency
of a free spin, for k-0, where k is the wave num-
ber of the spin wave, if the interaction conserves
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II. FORMULATION

The Hamiltonian of a Fermi system in a static
dc magnetic field is

H-HO+H' t ' (2. 1)

where we have separated the noninteracting (H, )
and the interacting (Hint) parts of H. The Hamil-
tonian &jnt will not be made explicit for the mo-
ment.

1H = ~[a a (e + —,(u )+a a
p y y p p

&& (~-- k ~L)],
p

E'» =P /2m —tt .
p

(2. 2)

p, is the chemical potential and &I is the Larmor
frequency (5=1). Let the spin density and the spin

. current operators be defined as

S —= ~~ a& a&

—k k

the spin. This is so because the total spin of the
system (k = 0 implies integrating over the volume
of the whole system) must not depend on an inter-
action which does not change the total spin. This
point is discussed in Sec. II. There the spin con-
servation law together with the assumytion that
the interaction has a very short range enables one
to derive a very useful formula for the long-
wavelength spin-wave spectrum.

Section III includes a discussion of the basic
features, the limitation, and the ambiguities of the
yaramagnon model. The spin-wave spectrum in
the random phase approximation (RPA) is examined.
To describe the decay of the spin wave, one must
go beyond the RPA. A qualitative analysis is
given of the decay processes involving one or
many paramagnons. The order of magnitude of
the syin-wave linewidth is estimated.

Section IV is devoted to an analysis of the sim-
plest diagrams describing the effect of the para-
magnons on the spin-wave spectrum. With the
help of an extrapolation procedure, we derive
the formula (5. 1) for the spin-wave dispersion
curve. The spin diffusion coefficient is found
from a limiting case of the dispersion formula.
No kinetic theory is used.

The result of Sec. IV is applied to He' in Sec.
V. The parameters are determined by using the
He' data given by Wheatley4 on the static suscep-
tibility and the spin diffusion coefficient. Numeri-
cal estimates show that, while it seems difficult
to observe the spin wave in He' at present, it will
not be in the near future when a temperature of
lower than 1 mdeg and a periodic driving field of
a wavelength shorter than - 0. 3 cm can be easily
achieved.

J' =(1/m)2. Q +k /2)a) a~pk p g p 4p 0p+k '

(2. 8)

[Sk,H]=[S„-,H ] =kj2 k=+(o Sk (2. 4)

Here 23k denotes the component of Jk along k.
Then an rf field perpendicular to the dc field is
applied to the system. The response will be de-
scribed by the spin-density response function y
defined by

z(k, &)=tfdt e' ([sk (t), s „-'])e(t). (2. 5)

As we shall see, there is a sharp singularity, in-
terpreted as the spin wave, of y near &=&I for
small k. We also define y3 and y» as

)t2(k, (o)=zfdt e ([Sk (t), (J8 k )~])8(t),

=sf dt e'" ([J2 k (t), s k']) e(t),
)

lt88(k, (o)=t fdt e

x([J& ~ (t), (J8 k ) ])&(t). (2. 6)

Equations (2. 5) and (2. 6) are defined for Im&u ) 0
only. For Im& & 0, we simply replace the re-
tarded commutators by the corresponding advanced
ones.

The fact that the interaction term H;+. commutes
with + enables us to write the continuii;y equation
or the spin conservation law. By (2.4),

(2. 7)i,(8/Bt )Sk» =kJ2 k +(oisg

By Eqs. (2. 5), (2. 6), and (2. 7), one easily veri-
fies that

(&-&I )X =k
X8

(~-~ ))t =k(y -n/2m),

where n is the total density, and

tm=-([S„-, S „-']&=n -n

(2. 8)

(2. 9)

(2. 10)

Combining (2. 8) and (2. 9), we have

y = [k'/((u-(oi)'] ()t 22-n/2m)

(2. 11)-[bn/((o-(oi)] .
Thus, in the limit k-0, the spin-wave spectrum
is an infinitely shary line at & = &~. For small
k, we expect a small correction to this spectrum
of O(k').

Greek subscripts denote the components of 3-vec-
tors. We shall restrict ourselves to the case
where the interaction conserves the total spin
and is velocity-independent, so that the spin
density operators commute with H t. We then have
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More useful identities can be derived if the inter-
action is of so short range that it can be approxi-
mated by a point interaction of the type

=I Z a& a&, a&, a& . (2. 12)p+ kp — kp fp '
p, p, q

of near &z. The spin-wave spectrum can now
be deduced from the zero of e near &u =&@I where
X' is expected to be well behaved. Substituting
(2. 17) in (2. 13), one finds, setting e = 0,

u-&u + [Ik2/(a) &o -IM-)]L L

In this approximation, it is useful to introduce the
"dielectric" function e(k, ~) as

x[- X '(k, ~)+n/2m] =0 . (2. 18)

e =-1-Iy',

so that X =X/e,

(2. 13)

(2. 14)

Xs Xs /6i

X3s —Xsg -IXS /e (2. 15)

Using (2. 13), (2. 14), and (2. 15), one derives'
from (2. 8) and (2. 9)

where X' is the "irreducible" spin response func-
tion which includes the diagrams that cannot be
separated into two pieces, each containing one
external vertex, by cutting the two fermion lines
at the ends of one interaction line. Figures 1(a)
and (b) show the simplest irreducible diagrams.
We emphasize that the above construction for e
and y' makes sense only because an interaction
line can be regarded as a point in space and in
time. Corresponding to g, and y», we define the
irreducible X,

' and y3,
' in the same fashion. We

then have

In the limit of small k, the zero of e near &L is
given by

&u = +&+(k'/M)[(n/2m)- X33'(0, &o&)] . (2. 19)

The ~I in X33'(0, &uL } is understood to have an
infinitesimal positive imaginary part. We have
thus replaced the calculation of X(k, &u) at small
k near v =vL by the easier calculation of a single
number X z'(0, &uI, ). Equation (2. 19) is applicable
whenever )Fie interaction conserves the total spin
and has a very short range. Equation (2. 19) is
applied to the paramagnon model in the following
sections.

III. QUALITATIVE FEATURES

1. Basic Features of the Paramagnon Model

The paramagnon modeP is a rather crude model
which allows one to estimate the various impli-
cations of the observed very large enhancement
of the static susceptibility. A point interaction
of the form (2. 12) is assumed

((o-(u Im)X'=-kX'L 3

((o-(o~-IM) X3' ——k(X33'-n/2m),

and X'=k'(X '-n/2m)/(a&-v -IM)'
33 I

—nn/((u-(o -Im) .L

(2. 18)

(2. 17)

II, t=I Z a&~ ~ a&~, a&,a&, (3 1)
p, p', q

where I is a phenomenological parameter. The
static susceptibility is proportional to the static
uniform limit of the spin response function y.
[See (2. 5), ignoring the dc field in this case. ]
In the so-called RPA, X' is [see (2. 13) and (2. 14)]
approximated by X„given by Fig. 1(a),

Thus, for small k, the singularities of X', and
hence those of e, are near ~ = arL+IM instead

X,(q, v) = Z~(f -f )/(v -s~+-s ),
p p p+g p+g p

N(0)(1-s'+ ~ vis + q'/12), (3.2)

(a) (b)

FIG. 1. (a) The free electron-hole pair bubble diagram.
(b) The second-order correction to (a). The self-energy
correction is counted in the string sum and the ladder
sum of Fig. 4(a). Similarly the ""exchange" diagram on
the right is counted twice in summing Fig. 4(c). See Ap-
pendix.

for small q and small s —= v/qvF. The quantity
N(0}-=mkF/2v' is the density of one-particle
states at the Fermi surface. The quantities m,
kg are respectively the mass of a fermion and
the Fermi momentum v&

———kgm. By (2. 13) and
(2. 14),

XRpA(q, v) = X, (e, v)/[1-IX, (C, v)] . (3.3)

In the limit s-o, q-o, we have the static suscep-
tibility in RPA:

XRpA- N(0)/Ko

K ~—= 1-I =- 1-IN(0). (3.4)

If I is very close to 1, the susceptibility becomes
very large. The large enhancement of the suscep-
tibility is thus described by the large factor Kp
which is identified with the observed enhancement
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factor; and the contact between the model and
experimental data is thus established. For small
q and small s, Eqs. (3.2) and (3.3) show that

yRPA is large, and thus implies that there are
large spin fluctuations of long wavelength, low
energy, and small speed of propagation (i. e. ,
small s), which are referred to as the "paramag-
nons" in the literature. , The density of pair states
in RPA is proportional to Imp R&A(q, v), which

has a peak near v=qv+0', as can be seen easily
from (3.2) and (3.3).

The interaction is not weak in this model.
Whether it is consistent to identify the RPA result
E, ' with the observed enhancement factor, in
calculating various quantities by including a small
subset of diagrams, is still a question. The self-
consistency observed in the Landau theory is
clearly too much to be expected from this model
where there is only one parameter I. However,
it seems that this model is not grossly inconsis-
tent, since the correction to the zero temperature
susceptibility' from the simplest paramagnon
effect turns out not to diverge as K,'-0, ' There
are infinite numbers of diagrams which would
give O(1) corrections to I, and, almost certainly,
to any O(1) quantity one calculates. Thus, when
one goes beyond RPA in calculating a certain
quantity, it becomes unclear how one could absorb
the infinite subsets of diagrams in various parame-
ters in the most nearly consistent way. Here we
shall not consider this difficult problem. Instead,
we shall observe the following rules:

(A) One must discard all the terms which are
of the same order of magnitude as that given by
RPA, and keep only those which are infinitely
larger as E,'-0.

(B) One must make sure that these retained
terms would not lead to any gross inconsistency
such as generating more divergent terms. For
example, a divergent correction to I would.

These seem to be the simplest rules which a
sensible calculation in this crude model should
satisfy, although they are not claimed to be con-
sistent or complete. It is also clear that rn,
the mass which appears in the RPA formulas,
may not be interpreted as the bare mass or the
effective mass. It must be absorbed into other
quantities when comparison with experiment is
made. This point will become clearer later. The
calculation of the spin-wave spectrum will be
carried out with the limitation of the model and the
above rules in mind.

2. Range of the Parameters and Units

Besides K,', the other parameters are the tem-
perature T and the Larmor frequency &o in the
dc field. Because the large spin fluctua ion is
mainly of low energy, the model must be restricted
to 7" which is small compared to the paramagnon
characteristic temperature - K0'T&(T& = Fermi
temperature). We are mainly interested in apply-
ing the results to He', where &&/K0' is much
smaller than the Fermi energy. In the following,
for simplicity, we shall always measure momenta
in units of ky, energies and temperatures in units
of kF'/m. In this system of units, kB = Boltzmann's

constant = 1,

3. Spin-Wave Spectrum in the RPA

In RPA, one ignores the interaction in calcu-
lating y„', i. e. , only the intermediate states of
one electron-hole pair is included. The corre-
sponding diagram is given in Fig. 1(a). Substi-
tuting this approximation y, in (2. 19), one ob-
tains the spin-wave dispersion curve in RPA.
Explicitly, we have

'(k, (o) = -T+ (p3+-, k)'G (p, e) G(p+k, e+(o)
p~ E

= -~-(P3+ 2k)'(f)--f)- k)p 3 ky 0p+k

X 1/((d- E' «+ e «), (3. 7)0p+k kp '

where G~ )(p, e) -=(e-e~
~

) (3 6)

with e «= e«7 2 ((d +I') .
k, 0p p

The G's are the unperturbed Green's function in
the enhanced dc field. The functions f& &

are
given by

(3.9)

f& =(expo&
&

/T+1)-'.
0, 0y 0, kp

(3. 10)

Lb& is directly proportional to the static suscepti-
bility:

An = (v&/K0')N(0)[1+ 0(P'/K04)] . (3.11)

The temperature-dependent term' in (3. 11) can
be ignored here, since we shall find a much
stronger T-dependent term in g, '(k, e). e and &u

are respectively half-odd-integral and integral
multiples of 2'/T. Equation (3. 7) is then con-
tinued analytically to real ~ (in the upper half
plane) and ra is set to equal to w . We find, since
a&I « 1 [see (3.6)],

g33'(0, (o~) = 3 X(0)((a~+Inn)/Im. (3. 12)

kF = 1, vF =k-F/m = 1, m = 1,

&(0) = 1/2v' n =1/3n' I=I/N(0) =2m'I . (3. 5)

For the clarity of discussion, we shall occasionally
write out these parameters explicitly. The re-
strictions we impose on the parameters are then

K0'« 1, T/K0'&( 1, (o~/K0'(& 1. (3. 6)

The function y, (q, v) given by (3.2) appears often
in the intermediate stages of calculations. q and
v usually turn out to be the momentum and the
energy of a paramagnon. Since the yaramagnons
are mainly of long wavelength, one may use the
limiting form of g, (q, v) for very small q. Further-
more, since the yaramagnon spectrum peaks near
v/q- K,', one may use the form of )t,(q, v) for
small v/q. The algebra is then simplified con-
siderably. An uyper cut off P, for the momentum
of the paramagnons served as an adjustable
parameter in some of the early works, ' we shall
also adopt it here for the same purpose.
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Substituting (3. 11) and (3. 12) in (2. 19), one finds temperatures are increased. We thus expect the
spin-wave line given by (3. 13) to acquire a shift
and a width which are enhanced by the formation
of the paramagnons and are strongly temperature-
dependent. Before proceeding to detail calcula-
tions, let us try to give a crude estimate of the
decay rate of the spin wave using Fermi's
"golden rule. "

Consider first the final state of one paramagnon
and one free pair [See Fig. 3(a)]. Here we re-
gard a pair or a paramagnon as an individual parti-
cle. The density of states of a free pair with the
momentum q' at the energy v' is given by Im

g, (q', v')- v'/q'. Similarly, the densityof states,
for one yaramagnon, is obtained from ImyRpA (q, v)- v/qK0 [See (3.2) and (3.3)], for smail
q and v. Since the momentum of the initial state
is very small, q = -q', the density of final states
at the initial energy &I is then, roughly,

(3. 13)

To have some idea about the degree of ambiguity
of the yaramagnon model, let us compare (3. 13)
with the corresponding results derived from the
Landau theory, ' which gives at T =0 (ignoring z,),

(d = Q)L+ Sk (1 +z0) k /ldLz0PE+ (3. 14)

where m ~ is the effective mass of the quasi-
particles and z, is defined according to the con-
vention of the last of Ref 1. With m and k& re-
stored, Eq. (3. 13) reads,

(3.15)(o =(oL+ 3k'K04kF'/(oL(-I )m2.

q d~d~ ~~ -~-~ ~~+0-4 q

-(uL'K0 'ji. (3. 17)

The zero-temperature susceptibility measurement
determines m/K, ' in the paramagnon model and
m~/(I+zo) in the Landau theory. Thus we see
that (3. 15) would agree with (3. 14) only if z, = I. -
Since

-zo =I -K 2[(m*/m)- I] = I-Ko'm*/m

and m*/m-I - lnK, ' (see Ref. 2), we see that (3.14)
and (3. 15) would agree in the limit of K,'- 0, i. e. ,
when -z, = I = 1.

For He' at 0. 28 atm, -zo- 0, 6, which is far
away from 1. Since only the leading term in K,
makes sense in the paramagnon theory, the above
instance shows the ambiguity one should expect
in fitting experimental data. Since & is purely
real in (3. 13), the spin wave, which is a col-
lective excitation, has an infinite lifetime in RPA.
There is also a continuum of excited states given
by the singularities of (3.7). Each of these states
is a single pair. The excited levels in RPA are
shown in Fig. 2.

4. Corrections to the RPA Spin-Wave Spectrum

It is clear from (2. 13) and Fig. 2 that the spin
wave described in the RPA cannot decay. This is
strictly a feature of the RPA, which only counts
for single-pair states. The states of two or more
pairs fill the whole (u&, k) plane of Fig. 2, and the
spin wave can decay into these continuum states.
Among the pairs, one or more paramagnons may
form, and as a result the density of low-lying
states and the population in these states at finite

ldL—

0

FIG. 2. The excited-state energy levels in BPA.

We have ignored the complications in the density
of states due to the presence of the dc field. Since
q and v are integrated over, these complications
will contribute terms of higher order in I~I.

Since the intermediate state is a free pair which
has an energy &uL/K ', we have a matrix element

-(&u -(u /K ') '-K '/(u (3. 18)

ignoring all the constants of O(1) such as I .
Thus, the decay rate is, by Fermi's "golden

rule, "

6 I ~1 I 0 Lpl'
At finite temperatures, one has to count for stimu-
lated emissions and absorptions. Equation (3.17)
must be supplemented by terms like

j Jdvdv'5((u -v-v')vv'K (e -1)
1 L 0

v' 7'
x [(e -1) +1], -(oLpIT /K0 (3.20)

The T' dependence is valid for T&)(dl or T&(~I.
The width of the spin wave, according to the above
estimate, wouM be

(3. 19)

P,[O((oL) + O(T'/+L)] . (3.21)

The process shown in Fig. 3(b) has a more compli-
cated matrix element. It can be shown that it will
also lead to a decay rate like (3.21). The result
(3.21) is incorrect, however, since we know that,
according to (2, 19), the width must be propor-
tional to the small quantity k'/An. This is be-
cause we have overlooked the fact that Figs. 3(a)
and (b) cannot be considered separately since a
paramagnon, which is an interacting pair, and a
free pair cannot be considered as different parti-
cles. There is a complete cancellation of the
amplitudes as k -0 when the structure of the
paramagnons is properly taken into account, as
will be demonstrated later.

It turns out, as one might expect, that (3.21)
is a correct estimate for the contribution of Figs.
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3(a) and (b) to Imp 33'(0, ~L ), i. e. , to the decay
rate if the spin wave were coupled to the electron
hole pair via a longitudinal spin-current coupling
(instead of a spin density coupling), where no
strong cancellation between diagrams is expected.
Since (3.21) is not small compared to ~&, we see
that the sharp spin-wave spectrum given by the
RPA would disappear into the continuum were it
not for the factor k~/bn, forced on by the spin
conservation law.

Next, we consider processes involving many
paramagnons. A sensible estimate of Imy33'
(0, vl ) due to multiparamagnon processes would
be too involved to be included here. We shall
only estimate the w& and T dependence of the
upper limit of such a decay rate in the limit of
small wL. Consider the process shown in Fig.
3(c), which describes the decay of the spin wave
into many paramagnons. The self energy and
vertex correction to these processes can be shown
to have no effect on the order of magnitude of the
amplitude. Suppose there are n & 1 paramagnons
in the final state. The energy denominator of the
intermediate states will depend on the momenta
of the paramagnons and will have the form

[&o -~i/K '+ O(P, q) + O(q')] ' =- 1/d . (3.22)

Since the momenta q will be integrated over, the
contribution of (3.22) should be much less than
it would if the q-dependent terms are dropped,

i. e. , we may write

I/d « K02/a&i . (3.23)

2 2 2
tfcjg lg' ' g GQ' dplv 'Gp

1 n n 1 n

x5((o —.v-v ~ ~ v )(v/q)[v /(q K )]
4

L 1 n 1 1 0

x [v /(q K )]6(j+j +q )

2 4 n- 2n-1
&I (&I /K0 ) P1

Again, using Fermi's "golden rule, "we find the
upper limit for 1my33'(0, ~L ) due to this process

l(K0 /(ui) I (oi(a&i /K0 ) Pl

(3.24)

The extension to finite T may be estimated as
before. We find

-p1 [cui+O(T /vi)], for T« a&i,

(3.26)

Similar to (3.17), the density of final states is of
the order'

q', V'

(c)

FIG. 3. The wavy lines represent paramagnons, i.e.,
either a sum of ladder diagrams or a sum of string dia-
grams. The heavy dot in each diagram represents the
point where the spin wave decays. (a) The electron-hole
pair in the final state has the total energy, momentum
(v', q'). The "square" of this diagram obtained by join-
ing this diagram to the reversal of itself gives Fig. 4(a)
and (b). (b) The free pair in (a) is joined to form another
paramagnon. The "square" of this diagram gives Fig.
4(c).

as the upper limit for Imy33 (0, +I ). Comparing
(3.26) to (3.24), we conclude that, for T « vi,
it is sufficient to consider the simplest processes,
since p,' is supposed to be small and since P, is
already an adjustable parameter, but, for T)) &L,
the multiparamagnon processes must be taken into
account.

Besides the width, one also expects the spin-wave
frequency to be shifted from that given by the RPA
formula (3. 13). This is obtained through the real
part of the correction to y33'(0, ~L,). One finds,
after the more detailed study in the next section,
that the correction to Rey33'(0, &uf ) turns out to be
O(1) for small a&L. In view of the rules discussed
previously, all such O(1) terms must be absorbed
into the RPA value of y»', which is of O(1) [see
(3. 12)]. One might argue that the correction to
Imp&3'(0, &ui) estimated above should also be dis-
carded since it does not diverge as Eo 0 In
spite of this fact, however, the correction is
nevertheless infinitely larger than the RPA value,
which is identically zero and cannot be phenomeno-
logically correct. Furthermore, in the above
rough estimate, there seems to be no ambiguity
about the leading powers of K,'. Except the un-
certainty absorbed in P„ the qualitative conclu-
sions about the imaginary part of y33 (O, arL)
seem to be definite, and must not be discarded.

In the next section, we carry out a more de-
tailed study of the simplest processes in order
to verify the conclusions of this section and, by
an extrapolation procedure, to obtain a formula
for the width valid also for coL(( T.
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IV. CORRECTION TO THE RPA SPECTRUM X33~'+X33|,
' = 3(X '+X5'), (4. 2)

&X =—
Xg +Xy +X~ =0~ (4. 1)

as required by the identity (2. 17), since the lowest
approximation given by Fig. 1(a) already exhausts
the right-hand side of (2. 17). We emphasize that,
in order to be consistent with the spin conserva-
tion law, all the diagrams in Fig. 4 must be kept.
Since the momenta carried by the paramagnons are
small, the momenta of the fermion lines on either
side of the paramagnon line of Fig. 4(b) are about
the same. Since all the fermions are close to the
Fermi surface, their momenta all have a magnitude- 1. [Remember our unit system, see (3.5). ]
Thus, we have

q

Led by the qualitative discussion in the previous
section, we examine the diagrams given in Fig. 4.
The strings of bubbles, as well as the ladders, may
be regarded as paramagnons. They describe the
spin fluctuations parallel to the dc field, whereas
the ladders describe those perpendicular to the
dc field.

Let the subscripts a, 5, and c denote, respective-
ly, the contributions of the diagrams shown in Fig.
4(a), (b), and (c).

It is verified explicitly in the Appendix that for
0 = 0, the correction to X

' calculated from Fig.
4(a), (b), and (c) vanishes, i. e. ,

X33 X 33a X33b X33e

X33p 3 X (4. 3)

For the clarity and the continuity of discussion,
we leave the detailed calculation of 5X33' in the
Appendix, part 2. Here we shall only outline the
steps where approximations are made. The ex-
pression for 5X33'(0, &o) is

5x 33'(0, u)) = g((u (u-~ f~-) ~-A((u), (4. 4)

where A(~) is given by Eq. (A. 29). A(~) depends
on coL explicitly and also through the dc field
dependence of X, + [see (A. 2)]. Under the condi-
tion &of,/Kpa ((1 [see (3.6)], we may expand A(&o)
in powers of &L

A((0) = Ap(Q))+(0/AI((d)+(dg'A2(|d)+ ~ ~ ~ . (4. 5)

So far, w is a discrete imaginary energy variable.
After performing the sum (A29) over v, + may
be continued analytically to the real axis and set
equal to &L above the real axis. Only then is one
allowed to expand Ap(&uL), AI(&aI ). . . in powers
of &uL. Substituting the expanded Ap(eg), AI(&of, )
. . . in (4. 5), one obtains the expansion in ~ for
A(uL, ). The expansion in T can be made and the
leading K,' dependence extracted. We find the
dominant terms [see (A46)],

since p, can be replaced by its average 3 Com-
bining 4. 1) and (4. 2), we have

P+q

ImA(&o) = -urwP, T2/6K 4+9tuv2$(3)Ts/2K e

{a) (b)

&osb/4m~K-02,

(4. 6)

P+ Re A(&o) = O(era/Ko4) . (4. 7)

Q
qq

The relevant algebra is included in the Appendix
[see (A29)-(A46)]. By (4.4), we have

Im5X33'(0, (o ) = apl P'/9(o~-wt; (3)T'/2K0'(o

p+ P Pl

(c)

+ &o&b/6v'Kp',

Re6X33'(0, (u ) = O(1) . (4. 8)

FIG. 4. The corrections to 1(a). (a) Self-energy cor-
rections. There are two other such diagrams with the
self-energy parts on the right side. (b) Vertex correc-
tions. There must be an even number of bubbles on the
string. (c) Vertex corrections. There are two other
such diagrams with the position of the ladder and that of
the string interchanged.

We have used (3. 11) for M and kept only the lead-
ing T dependence in (4. 8). In view of the rules of
disposing O(1) terms, the real part of 6X33'(0, &of )
must be absorbed in the RPA value for ReX33'(0, &of ).
Since the RPA does not give a sensible prediction
for ImX33'(0, &o& ), the imaginary part of 5X33 (0, (of, )
must be kept. 'these points have been discussed
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in the previous section. Combining (4. 8) with the
RPA expression for y33' (0, el ), we find, using
(2. 19),

—(k2/3& )K (1+iQT /(d +i&(d+),

~=2v~[P -9g(3)T/2K 2]/3K '.
0 0 '

where a, and k are given in (4. 9) and (4. 6), re-
spectively. This extrapolation is the simplest
Pade approximation" for (4. 9). The asymptotic
condition of this approximation for large T'/e&
is provided by the observed fact that

iDk' -(DT') '-const. [1+0(T)J, (4. 11)

where D is the spin diffusion coefficient. Since
(4. 10) reduces to (4. 9) for T(( e& and has the
right T-dependence for T'J) uJ, it should be a
reasonably good approximation between these two
limits. The diffusion coefficient implied by (4. 10)
is given by

D = ,'Ko /aT—
or (DT') ' = 3a/K, 4

(4. 12)

Equation (4. 9) will not be valid for T )~& since,
as was shown in the previous section, the processes
involving a large number of paramagnons will
dominate. Instead of attempting to sum the series
of multiparamagnon diagrams, we shall simply
extrapolate (4. 9) by writing

/3~I )K0 (1-iaT'/~1 —ib(dl ),(4. 10)

= -k (2k T~R' /5)2/3kB I 0 I'

x[~ -iplv'(k T)'/(3k~T+0'5)] '. (5. 1)

kF ( =p0/5 in Wheatley' s notation) can be calcu-
lated from the particle density and E0'T y is re-
lated to the temperature T* defined by Wheatley
from the susceptibility measurement by

K0'T = 3T*/2. (5. 2)

Therefore, except for p„all constants in (5. 1)
are known. To fix P„we fit the spin diffusion
coefficient data to (4. 13), which, with all con-
stants restored, reads

(DT') ' = vsp pkF'/4k~(K0'TF)3

—9vsf(3)hkF2T/16k (K 2T ) . (5. 3)

At temperatures low enough, the second term of
(5.3) can be ignored. Notice that the parameter
m has been absorbed in Kz'T =3T*/2 as in the
case of the static susceptibility. ' Compared to
T*', k~' varies only slightly between the pres-
sures 0. 28 and 2V atm. (see Ref. 4, Table 6).
If fjl is taken to be a constant, (5. 3) gives a T*'
dependence. for DT'. Figure 5 shows the observed
DT' as a function of T* on a log-log scale and the
T*' dependence is evident. " (See Ref. 4, Tables
2 and 3. ) Taking the intermediate value 8. 4 x 107
cm ' for kF and Pl=0. 3

&
Eq. (5. 3) gives the

straight line in Fig. 5. This good fit of the dif-

= 2v'P, /K, ' 9vs& (3)T/K, '-. (4. 13)
15-

In the next section, we shall fix the parameters
Ko' and P, from the observed susceptibility and
spin diffusion coefficient. The formula. (4. 10) is
then used to draw some qualitative conclusions
about the long-wavelength spin wave in He'.

V. APPLICATION TO He

In this section, using the experimental data ob-
tained by Wheatley et a/. ,

4 for liquid He' at very
low temperatures, the parameters in (4. 10) will
be fixed and the condition for observing the spin
wave estimated.

We are only interested in the temperature range
where the shift of the spin-wave frequency from
+L is comparable to or greater than the width. This
temperature range turns out to be around I mdeg
or less. The I armor frequency is in the mega-
cycle range. Since the temperatures much less
than 1 mdeg are not easily accessible at present,
we have k T)) 5+& (since klan/5 -10"sec ')
We therefore ignore the T-dependence of a and
the O(gal ) term in the denominator of (4. 10).
Restoring all parameters, (4. 10) gives

I i

0.5 OA 0.5
I

O.I 0.2
T (.K)

FIG. 5. The quantity DT2 versus T* on a log-log scale.
D is the spin diffusion coefficient. The experimental
points are taken from Ref. 4, Tables 2 and 3.
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fusion coefficient data indicates that reliable esti-
mates can be expected from (5. 1).

The second term of (5.3) contains no adjustable
parameter. It agrees with the result obtained by
Pethick from the transport theory in the small
K 2 limit &3

At 0.28 atm, (5. 1) gives, with pl=0. 3, kF= 8.4
x10~ cm ' and K 'T =0 54'K

b, v = v- &u = -106kI/(&g&-i10'~T ) sec ', (5.4)

with &y in sec ', T in K and k in cm '. &L is
related to the dc field H through

experimentally hard to obtain at present, it is
not unfeasible.

In summary, we have estimated the spin-wave
spectrum of He' based on the spin density conser-
vation law and the paramagnon model. The spin
nonconserving forces, which would give a finite
width for the spin wave at k =0 (i. e. , the nuclear
magnetic resonance line), are probably negligible
since no such width has been observed in He. '

We have devoted much of the discussion to the
qualitative features and the ambiguities of the
paramagnon model. It seems that we have got
around the important ambiguities and our con-
clusions seem to be reasonable.

=2vx3. 2x10' sec 'xII(in kG). (5. 5) ACKNOWLEDGMENT

The large coefficient of the T' term must be com-
pensated by a very low temperature in order to
observe h~. Under the condition that T&10 "K,
and k )20 cm ' and &oI -106 sec ' (which means
II- 50 G) one could see a shift from &uI of -200
sec ' with a frequency resolution better than 1
part in 104. Although this set of conditions is

We are very grateful to Professor J. C. Wheat-
ley for many stimulating discussions and for show-
ing us up-to-date preprints. We would also like
to thank Professor J. M. Goodkind and Dr. P.
Monod for their helpful comments. One of us
(M. T. B.-M. ) wishes to thank Professor W.
Kohn for his hosyitality at the University of Cali-
fornia at San Diego.

APPENDIX

1. Contribution of Fig. 4(a), (b), and (c) to X
'

According to (2. 17), at k =0, one has exactly

X' = —bn/((o-(o Inn) . -
I,

The lowest-order approximation to x is given by Fig. 1(a), i. e. ,

(Al)

(A2)

where e& &, f& &
are given by (3.9) and (3. 10). For k=0,

X0 +(0, (o) = -An/((u-(u~-Im) = X' (0, (o) + 5'/((u (o~ Inn), --
where hn0= Z(f. f& ), -5M=—hn--dm0.0 p ip 0p

(A4)

From Fig. 4(a), (b), and (c), one can write down the corrections to Fig 1(a). Le. t ', Xk', and Xc'
be, respectively, the contribution to X from Fig. 4(a), (b), and (c). Consider Fig. 4 ) first, since it
is the simplest.

X~'(0, ~) = T' ~ g(q)G~(p)G~(p+or)G~(p+q)G~(p+q+ur),
p&q ~

(A5)

where q stands for (g, v), P for (p, e), and a& = (0, u) .
&(q) =I(l.l-px. '(q)x. (q)] (A8)

X0 (q)= TZ G& &Q)G& &(p+q) =-Z(f&
&

-f&
&

~)/(v-e -+e )= X0(q) for small q, &u&. (A7)P, e' p 0, kp 0, kp+g p+q p 0

is given by (A2) with zero magnetic field. Since, with the help of (3.9),
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G)(p)G~(p+co) =[G)(p)-G)(p+(u)]/(~-(o~-I&n),

(A5) becomes

'= -(~-&g In-n) TZ 'g(q)[)c0'(q) + )c0 (q)-)c'0 '(q+ ~)-X0' (q-~)] = -2(&-&I -I n)

x TZ r)(q)[10(q)- X0 (q+ ~)] (A9)

~h~~~ )c0 '(q)=x0' (-q)

is given by (A2) with (cT, v) replacing (k, &u). For Fig. 4(a), we have

z '(0, &) = TZ -[G&'(p)z&(p)G&(p+~)+G&'(p)z&(p)G&(P-~)]
)

(Alo)

The second term comes from the self-energy correction of the other fermion line. The self-energies
are given by

TZ~ [r)'(q)G ~(p q) ~ (p)G ~(p

where q'= I'y, (1--I' )t') ' q += -I'~ +(1-I)C, +)-'.

(All�)

(A12), (A13)

Z~(p) is obtained by interchanging+and —,0 and 0 in (All). Substituting (All) in (A10) and going through
the same algebra as before, we have

)c
'(0 co) =2(cd-cu -Inn) ' TZ [)c +(q)-)c (q-co)7 [v) +(q)-r)'(q-cu)]-64n/(cu-cu Inn), -

a ' I, fl v 0 0 I.

where 6&n-=TZ~ [G)'(p)z (p)-G)'(p)z4(p)] (A15)

is a contribution to n~-n~ due to the paramagnons. This point needs more clarification. The down-spin
density n& may be expressed through the full Green s function, which is a geometric series in the self-
energy; as

n, = TZ [G,(p)+G, (p)z, (p)+G, '(p)z, (p)'+" ] (A16)

=2.~f ~+TZ G (p)z (p)+".
p) 6

and a similar expression for n~. It is then clear that the 4n, in (A4) and (A15) are the first two terms of
In calculating y, we can simply include all the terms in (A16) by changing the hn, in (A3) to hn, i. e. ,

dropping Mn. We shall thus drop the last term of (A14). The modified (A3) then satisfies (Al). Com-
bining (A14) and (A9), we find

)c', '+g5'=2(cd-cdI-Ian) 'TZ~ [)f0 +(q)-X0(q-(o)][r)(q-cd)-f)'(q-(u)+'q +(q)] .

By (A6), (A12), and (A13), one verifies that

n(q-~)-n'(q-~)+n '(q) =-I'[X, '(q)-X.(q-~)]/(1-I)c'. )(1-IX. ')

)f '(0, ~) is slightly more complicated;

Xc (0 &) = T'p e yl el g v[G)(p)Gi(p+&)Gy(p+q) r) (q &)'0 (q)G)(p)G4(p +&)G)(p +q)

(A18)

(A19)

+ G4(p)G )(p+(u)G )(p+ q) g' +(q)g'(q-(u)G)(p')G )(p'+ (o)G 4(p'+ q) + G )(p)G)(p+ (o)G )(p + q)

x n'+ (q ~)r) "(q)G&(p'-~)G&(p')G&(p'-q)+ G&(p)G&(p cd)G&(p+ q)r)' +(q)r)"(q-cd)G&(p'-cd)

x G ~(p')G&(p'-q)],

where n'-+(q) =-I/[1-IX, +(q)] =n'+ ( q), r)"(q) =I/[I--I'X. '(q)] (A21)
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Again, using (A8), we get after actually very little algebra,

X '(0, (o) =2((a-(o -Mn) 'TZ~ [X (q—&u)-X +(q)]'[q'(q-~)-q"(q —~)] I)' +(q).c ' L q, v 0 0

By (A12) and (A21), we have

[n'(q-~)-n "(q-~)]n' '(q) =I'/[I-IX.(q-~)] [I-Ix, '(q)] .

Comparing (A18) and (A22), and taking (A19) and (A23) into account, we see that

x '+x~'+x ' =o.

(A22)

(A23)

One minor point: The second-order diagrams which are shown in Fig. 1(b) have been counted twice in
(A18) and (A23). This is because they occur in both the ladder sum and the sum over the string of
bubbles. Equation (A24) is not affected since it holds for every order of I. Our later results are not
affected since we are only interested in the leading divergent term for K,'-0.

2. Calculation of 5X»

The expression for X33
' is obtained by multiplying (A20) by —,

'
p ~ p'. Since q is the only preferred

direction when one sums over p and p', p ~ p' may be replaced by p ~
O p' O. One ends up with an

expression like (A22), with [X,(q-ur)-x, +(q)]' replaced by [X„(q-ur)-X„(q) ' and the whole expression
divided by 3, where

X (q)=-~-q p(f- f- -)/(-v-e- -+e-),30 p p p+q p+q p ' (A25)

X30 'q) =-~-q p(f-~-f~-, -)/'-'~-,
q "iy'

Thus we have

X33,'-3X, '=f(~-~~-IAn) 'T2
q „{[X30(q-~)-X30 '(q)]'-[X0(q-~)-X0 '(q)]')

(A26)

x I /[I-IX0(q-~)][I-IX0 '(q)]. (A27)

may be expressed in terms of X„X, , with the aid of (2. 16) [with zero dc field, since the
field plays no role in (A25)],

go(q) = xo(q) v/q

and from (2. 16) with the field, we have

X '(q) = X +(q)(v-~ -IAn)/q+ An/q.

Substituting (A28) in (A27), after some algebra, one finds

~x =X —
X = (&-~ -I™)A(&)33 33c c 3 I.

A((o)= TZ (I[X +(q)-X (q-(o)] {[(v-(u -IAn)'/q'-l][l-IX (q-(o)] '-[(v-(o )'/q'-1]

(A28)

x [1-IX (q)] 'j + (IAn)'/q') . (A29)

In (A29), we have set &o =&@I for those + which can be factored outside the (q, v) sum. A(&o) depends on
+L explicitly and also through X

+ [see (A2)] . Since mI is small [see (3.16)], we expand A(v) in powers
Of GAL,

A((o)=A ((o)+(o A ((o)+(o 'A (u))+ ~ ~ ~ ~ (A30)

The explicit expression for A (&o) is, setting &o =0 in (A29),
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A (!o)= T Z I[li0(q)-y (q-!o)](9/q'-I) {[I-Ilt (q-!o)] '-[I-Ilf0(q)]

=2TZ~ I[& (q-!o)-Z (q)] (v'/q'-I-vz/q)[I-I)i (q)]q, v 0 0 0

VYe shall not write out the expressions for A, and A, here since they are lengthy and will not contribute to
the leading terms in which we are interested.

Ao(!o) is a symmetric function of!o. After summing over v and continuing!o analytically to immediately
above the real axis, we must have

ReAo(!o+i0+) =ReA (-!o+i0+), ImAO(!o+i0+) = -ImA, (-!o+i0+). (A32)

%'e shall give the relevant details after listing the results on the order of magnitudes. For smal. l ~, one
finds

hnA, (!o)= O(T'~P, /K, &) + O(T s~/K, e)+ O(!oaT/K, 8) + O(!o'P,/K, ')

Re A, (!o)= 0(!o')+ 0(!o'T'/K, ') .

Similarly, ReA, (!o) is odd and ImA, (!o) is even. Also, ReA, (!o) is even and ImA, (!i~) is odd.

Vfe found

ImA, (!o)=O(!o'T')+0(!o')) ReA (!o)=0(!o/K')+0(!~T'),

lmA, (w) =O(~T')+O(~~), ReA, (~) =-O(I/K~)+O(T2).

(A33)

(A34)

We have not determined the K,' dependence of the T' terms in (A34) since these terms are negligible
compared to the leading T' term in ImA, (!o) in (A33).

Substituting (A33) and (A34) in (A30), the leading terms are

ImA(co&) = O(T2!o&p 1/K04) + O(T3!o&/K06) + 0(!o&~T/K06) + 0(!o&sp1/K0~), ReA(!o&) = 0(!o&~/K0~) . (A35)

Substituting (A35) in (A29), the leading terms are

Im5y33'(0, !o~)= O(T'p I/!o~) +O(T'/!o~K0') + (O~!o/TK0)+O(!)~pl),

Re8l! 3'(0, !o )=O(l),

since {!o-G) -Ikn) - K /!o for !o=!oI
To determine the coefficients in (A36), we only have to consider A, (!o). Let

Z(v) -=-2I(l + vs/q- v'/q') fl-I)!,(q)] ', K(v) = X,(q) .
Then (A31) becomes

A, (!o)= T Z J(v)[K(v-to)-K(v)7 =Z J (dv jvr)(e -1) (Imt(v)[K(v-co-i0+)-K(v-i0+)]

(A38)

+ImK{v)[Z(v+!o)-Z(v)]] . (A39)

An additional io is implied for aB the real frequency variables unless -io is written out explicitly.
Now write

+ . + 8K(v-i0 ) !o2 8-" . + !o' 8' . +K(v-to-i0 )-K(v-i0 ) =-&o-- —+— K(v-i0 )-— K(v-i0 )+
BP 2 eP 6 BP

(A40)

and a similar expression for J'(v+!o)-d(v). Thus (A39) is expanded in powers of!o. Consider the 0(!o}
term of ImAO(!o}. Since ImK'(v —i0+) =--ImE(v), we have

ImAO(!o) =2 f (dv/w)[IIQeI(v)(8/8v) IQlK( )+ IvmK(v)(8/8P) Imel(v)] (8 —1) + 0(!o ) (A41)
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=2(oZ I (dv/m)(e —1) {6/Sv)[1m'(v)1m'(v)] =2(o(2m) 2I J~~'4mq dq j(dx/m) (e -1)
q 0

x {d/dx) -,'m N(0)s [(K0 +s ) +-,m s ] + O((o ),1 2 2 2 2 2 y 22 1 3
(A42)

where we have used the approximation

)t (q) = N(0) (I-s'+!vis), s =- v/q
-=Tx/q. (A43)

The leading term is of O(T'), obtained by setting T= 0 in the denominator of (A42). The next term
would be an O(T') term were it not for the linear divergence of the q integral, which forces the T-depen-
dence to O(T'). The algebra is easy. One has, neglecting o(T') terms,

ImA, (v) =-&ow' T'$,- 9$( 3) T/2Ã, ') /6K, '+O((o'),

where g(3) = —,
'

J0 x dx/(e -1)= 1.202.

(A44)

For the O(sP) term of ImA, (&o), we shall only consider the T=O case. It turns out that the v&o/q term in
Z(v) [see (A38)] does not contribute to this order. By (A40) and (A39), we have

r.P—Z ' [ImJ(v) + InM(v)+1m'(v), Imd'(v)]
—00

(d ~ 8 8
6 'll' q 8P

—Z ImK(v) Imd(v) = -(o'p /24mE 4.
Bv v=-0 1 0 ' (A45)

For finite T, the leading correction is of O(T). Combining (A41) and (A45), we have

ImA (&o) =-&uzi T /6KO~+9&u~2$(3)Ts/2K 8 uPb/4m2Koa 5 =mP, /6%02+0(T/K (A46)

The detailed analysis of (A34) and the O(T) term of (A46) will not be given here since we are not interested
in the coefficients of these terms.
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