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N. Mihara and R. D. Puff
University of 8'ashiqgton, Seattle, 8'ashington

{Received 8 March 1968)

A nonlinear integral equation for the liquid structure factor of ground-state He, con-
structed from various frequency moments of the density-density correlation function, is
proposed. This equation is solved for a particularly simple choice of two-body potential,
and the results for the self-consistently-determined particle dense are compared with
experiment. The energy per particle and the sound velocity are also determined at the
calculated density. The density, energy, and sound velocity, as well as the structure-
factor curve as a function of k, all agree quite closely with experimental values. There
are no free parameters once the choice of two-body potential has been made.

I. INTRODUCTION

where p(r, t) = g (r, t)g(r, t) is the number density
operator in the Heisenberg representation and
p =(p(r, t)). The averaging process is taken to be
theusualgrandcanonicalone, g) =- Tr exp[- P(H
—pN) ]A /Tr exp[- p(H- ttN)], and we will be interested
ultimately inthe zero temperature (P- ~) or ground-
state limit. Since the Hamiltonian 0 will have
translational and rotational invariance, the func-
tions S(r) and S(R) will depend only on the magni-
tudes Irl and ill, respectively.

We will obtain a nonlinear integral equation for
the ground-state structure factor Sp(k) as a func-
tion of the number density p and wave number k.
Having obtained a suitable S&(k), we may then cal-
culate the energy per particle E(p)/N at a given
density and determine the equilibrium density by
the condition (d/dp)E(p)/N=O. To do this, we need
two familiar expressions. The first relates the
total energy to the radial distribution function. We
have

E/N=(KE)/N+ & p fd'r V(r)S(x) . (1.2)

The second familiar result we need is the virial
theorem

P/p = &(KE)/N ' pfd'r S(r-)[r ~ q-V(z)] . (l. 3)

In these equations, (KE)/N is the average kinetic
energy per particle (1/2mp)([VP t(r, t)] [V((r, t)]),
and V(r) is the local two-body potential appearing
in the Hamiltonian. By eliminating the unknown
kinetic energy, we obtain

Pj p = 2 E/N 'p fdan S (x)[z r—' V V(r) + V(s) ] .
(1.4)

Equation (1.4) is, of course, a valid relation at
any temperature and density. If we restrict our
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In this paper we construct a simple theory for
the liquid structure factor of He4 in its ground state.
This liquid structure factor S (k) and the radial
distribution function S(r ) are in general defined by

p [S(r ) —1]= p
' [(g &(r, t)p(O, t)g(r, t)) —p']

=-(2v) 'fdske' '[S(k) —1], (1.1)

attention to the zero-temperature limit, we obtain
the form necessary for subsequent analysis. Since
P = p'(d/dp)E(p)/N at zero temperature, we find

p(d/dp)E(p)/N =' E(p)/N- sp fd'r S (~)
3 P

x[-r V V(~)+V(x)] . (1.5)

Our aim is then to calculate a suitable Sp(r) [or
Sp(k)], solve the differential equation (1.5) for
E(p)/N and Sp(k) for this density, we may then
state density at zero pressure by calculating the
value of p at the E(p)/N minimum. Having obtained
E(p)/N and S (k) for this density, we may then
find the kinePic energy per particle from Eq. (1.2).
Experimental values of E/N, p, and the function
Sp(k) for low-temperature liquid He4 can, of course,
be compared with the theoretical results.

The integral equation we obtain for Sp(k) in Sec.
II, as well as the energy and density to be calcu-
lated from Eq. (1.5), will depend on a choice for
the two-body potential V(r) Howev. er, it should
be emphasized first that we are not concerned
here with the "best" choice of potential. We wish
instead to investigate a simple theory which pro-
duces familiar results in the weak coupling limit
for the boson system, and which is capable of ex-
tension to interactions and densities appropriate
to the He' system. Consequently, for numerical
purposes, we will use only a sum of Yukawa po-
tentials for which a reasonable fit to the tradition-
al 12-6 potential can be made and for which the
algebraic manipulations are simple. We should
also emphasize that our goal is not a variational
theory. Having chosen a potential, there will be
no free parameters. (It should be noted that some
of the most successful calculations for real He4

parameters have been made with variational the-
ories. ')

Because our potential will be simple and will
have a Fourier transform, we choose to rewrite
Eq. (1.5) in the form

p(djdp)E(p)/N=, ' E(p)IN+' p V-(q = o)

+ —,'(2m) 'f d'q[ —,
'

V& (q V(q))
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where V(q)= fd'r e 'q'V(r) .

Equation (I.6) follows from Eq. (l. 5) if the Fourier
transform V(q) is finite at q= 0. This condition
will be satisfied for the simple potential we use.
We might also note that if liquid helium is to be
described by a Fourier transformable potential,
V(q =0) must be positive. This fact follows from
a simple variational argument, and V(q = 0) ) 0
obviously does not imply a purely repulsive poten-
tial in coordinate space.

The theory for S(k) discussed in Sec. II can be
used for potentials containing a hard core [i.e. ,
the form AO(a —r)+ V(r) where V(r) contains no
hard-core part and X-~ at the end of the calcu-
lation]. The self-consistent solution is somewhat
more difficult to obtain numerically, of course.
Furthermore, the freedom of choice for the core
diameter a is an unnecessary refinement. Even
our very rough potential choice gives remarkable
agreement with the experimental S(k) in liquid He'.
Of course, the fact that the Yukawa form is prob-
ably a bit too soft at small x suggests that we
should expect our system to bind at slightly higher
density and binding energy than the experimental
values. This expectation is verified by the cal-
culations in Sec. III. We emphasize again that
our choice of potential is dictated by simplicity
in both formulation and numerical analysis, and
by the obvious connection with the familiar weak
coupling theory for the ground-state boson gas.

II. TIME-DEPENDENT CORRELATIONS AND
THE APPROXIMATION SCHEME

The basic correlation function we wish to dis-
cuss is the time-dependent density-density com-
mutator and its Fourier transform. This latter
spectral function is given by

y, (k, co)= fd'rf dt e

x ([p(r, t), p(o, 0]),

where the average ( ) is that discussed previously.
It is this function which is directly proportional to
the differential cross section for inelastic neutron
scattering from He4 with energy and momentum
transfer (&u, k). Thus the resonance in this func-
tion occurs at the observed excitation energy +ex(k).
The latter has the familiar Landau-like form.

The quantity y, (k, ~) satisfies, as a consequence
of its definition together with rotational and trans-
lational invariance of the Hamiltonian, the follow-
ing relations:

be needed. ' The first is the well-known f sum
rule

(2m) 'fo d(o (oy, (k, (d) =pk'/2m =p(o,(k), (2.4)

with

[~, (k)]' = ~,'(k) +4((ftE)/X)~, (k)+ 2p~, (k) V(k)

+(2v) 'm 'f d'q[ V(R+ q) Ik ~ (I+@)]'
—V(q)(k q )'][S(q)—I]. (2. 6)

The expression (2. 6) is valid only for a potential
with a Fourier transform such that limq 0q'V(q)
= 0. In general, the terms on the right-hand side
of (2. 6) involving the potential should be replaced
by (/pm)f drsS( r)[ I- cos(kr)]g V[($ VV(r)]).
In this form, one can include a hard core.

Equations (2. 3) and (2. 5) together give

f d(d R~f (k, G))

OO 2/3f de) Coth p(df (k (d)

where f(k, &u) -=It,(k, .~~/2vp&o, (k). Since f is a
real positive definite function on the positive (d

axis, a simple extension3 of the Schwartz inequal-
ity gives

m( )]2 S(k)
cu, (k)

- f d+((d'f )'~'(f coth ', pz)'~'—
0

d&@f (k, &u) u& = I,
0

(2. 7)

where the last equality follows from Eq. (2. 4).
Thus we have

[~"(k)]' - [~,(k)/S(k)]2 (2. 8)

All the relations (2. 2)-(2. 8) are generally true
for any system at any temperature. They depend
only on our using a Hamiltonian of the form

a= (I/2m) f[iq t(r)] ~ [vy(r)]d'r

and the second is the ~'-moment sum rule

(27() 'f, d(u(say, (k, ar) =p~, (k)[~I (k)]2, (2. 5)

z, (k, )=X„*(l(, )=x.(lkl, )= —g.(k, — ),
+ —,

' f V(l r, —r, I )Pt(r, )p(r, )g(r, )d'r, d'r, . (2. 9)
with coy, (k, (d))0 . (2. 2)

S(k) =(2') f, d(d y, (k, ar) coth2P(d. (2. 3)

Two other exact relations satisfied by g0 will

Furthermore, y0 is related to the structure factor
by the familiar equation

Ir, fact, the relations (2. 2)—(2. 8) are independent
of statistics; i. e. , the field operators P and pt
may satisfy either commutation or anticommutation
relations. In order to make such general relations
useful, we need information specific to the con-
densed Bose system.

The first element of useful information which
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8 'g(k)=k[k2+4mpV(k)] ' ', (2. 10)

should be incorporated in any theory for 8(k) is
the result of lowest-order perturbation theory. The
unusual features of perturbation theory for the con-
densed Bose gas arise from the macroscopic oc-
cupation of the zero-momentum mode, and the
early discussion of these features appears in the
work of Bogoliubov. ~ The lowest-order result
for 8(k) at 7= 0, using the two-body potential V(k),
ls

trial excited state Z~f (ri)40, where 4, is the ground
state, produced the minimum excitation energy
a&ex(k) above the ground state if

f(r.) = exp( —ik ~ r.) .

Thus the trial excited state is the density fluctua-
tion operator pk (Fourier transform of the density
operator) acting on the ground state, and in this
case the excitation energy becomes

(o „(k)=(o,(k)/8(k). (2. 12)

~,„' (k)=[Id,'(k)+2pId. (k)&(k)]'" (2. 11)

which in the original work of Bogoliubov referred
to the single-particle spectrum, is also the sysc-
trum of g, in a lowest-order Hartree-like calcu-
lation for the condensed Bose gas. The point we
wish to emphasize here is that the quantities S(k)
and ~ez(k), as well as the thermodynamic parame-
ter p„are each determined in a complete dynami-
cal theory.

A less complete theory, but one directed more
toward the real He~ problem, was proposed by
Feynman. ' Feynman showed that the variational

an expression which can be valid only for low den-
sities and weak potential. .. In obtaining the per-
turbation theory result (2. 10), depletion of the zero-
momentum mode caused by the interaction is not
taken into account. p„ the number density in the
zero-momentum mode, is equal to p to this order.
The depletion effect becomes important in higher
orders and has been investigated by Belaiev' and
by Hugenholtz and Pines. ' In such higher-order
calculations, p, can, in principle, be determined
as a function of p, and S (k) can be expressed as
a function of p and k alo e. These calculations
are frequently carried out for the hard-core gas,
in which case the quantity (pa'), where a is the
core diameter, becomes the relevant expansion
parameter.

One special feature of Eq. (2. 10) should be ob-
served. That is, in the limit of zero interaction,
8(k) goes to the efassicaI free-particle value S(k)
= 1 rather than to the zero-temperature limit char-
acteristic of the free Bose gas. This reflects the
fact that the limits T-0 and X (the coupling con-
stant) -0 are not interchangeable. The zero-
interaction limit of (2. 10) represents the order
limj Olim7 0, while the free Bose gas result
represents %he order limp, O lim O. %"e ex-
pect, therefore, that any proposel theory for
S(k) at T =0 should (a) approach the classical free
gas limit for zero interaction, and (b) give Eq.
(2. 10) as a lowest first-order correction for weak
potentials. The free classical gas is not entirely
irrelevant.

The detailed perturbation- theory calculations
mentioned above are all capable of obtaining the
excitation spectrum of the weakly coupled Bose
system. By this, we mean particularly the spec-
trum of y, and not the single-particle spectrum
usually emphasized in such theories. ' The Bog-
oliubov spectrum

Since this is a variational theory, co (k) is known
to be greater than or equal to the exact &@ex(k). The
fact that S(k) is not determined in the variational
approach reflects our ignorance of the ground state.
Ill the 861186 'tlla't we oil'talll Ileltllel' 8(k) 1101' po, 'tile
variational theory is less complete than the dynami-
cal theories referred to above (but it is more rele-
vant to real He~ since the variational approach is
not limited to low densities or weak potentials).
As is well known, the use of the experimental 8(k)
in Eq. (2. 12) produces an excitation energy which
agrees with the observed spectrum at low k, but
which is too large by about a factor of 2 in the ro-
ton I'egloI1 (k 2 A ). ConsldeI'aMe IInpl oven1611t
in the variational calculation is made possible by a
more complicated choice of trial state. ' In any
case, the variational statement of the original
Feynman theory allows us to write, with (2. 8), the
zero-temyerature inequality

[roI (k)]' ~ [(o,(k)/8(k)] ' ~ ro '(k) . (2. 13)

together with the general relations (2.4) and (2. 3)
at T=O, one finds immediately that

E(k) = 2IIP(o (k)/(oex(k) and (oex(k) = (u,(k)/8(k) .
The fact that a single-resonance ansatz produces
the Feynman theory has been discussed by Pines. '
The fact that such an ansatz also uniquely deter-
mines 8(k) was observed by one of the authors. "
That is, the additional sum rule (2. 5), together
with the single-resonance form associated with the
Feynman theory, gives the result [(of (k)]2 = [(uo(k)/
8(k)]'. The inequalities in (2. 18) become equali-
ties. Since +I (k) is known as a function of 8(k)
[see Eq. (2. 6}],it is clear that 8(k) is determined
as a function of (KE) /X and p if the potential V(k)
is given. The integral equation [~I (k)]2=[&@0(k)/
8(k)]' carries the Feynman theory to a more com-
plete stage, .in that 8(k) is predicted.

In spite of the known inadequacies of the original
Feynman theory for real He~, it is of some interest
to ask what the general relations (2. 2)-(2. 8} for y,
tell us if we assume that the Feynman trial state is
an exact excited state. It is clear that if such is
the case, the functiori y, will have only a single
6-function singularity on the positive ~ axis at the
excitation energy &ez(k). This follows directly
from the definition of y, . Taking the form

g (k, (o) = E(k)(6[(g - (fez(k)] —6[Id +(sex(k)]],
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However, even without the experimental evidence
which contradicts the Feynman relation between
the excitation energy and S(k), we know that this
integral equation is incorrect. First of all, there
are the early observations of Feynman and Cohen'
concerning the nature of the state pkC, . (Such ob-
servations led to more suitable variational choices. )
Also, even without these observations, we may look
at the integral equation [(di (k)]' = [(d,(k)/S(k)]' it-
self to see that there can be no system for which it
ls strictly valid. At high k, this eqQRtlon produces
an 5(k) —1 [ which falls off as 1/k'. The resultant
S(x) then is negatively divergent as x-0. Such
difficulties at small z are not uncommon in calcu-
lations for S(r). (For example, the pseudopoten-
tial results of Lee, Huang, and Yang" for the hard-
core Bose gas exhibit this small-r divergence. ) We
can make an ad hoe modification by using a cutoff
at smaU ~, but the integral equation is clearly in-
consistent without some changes at large k.

The difficulty has its origin in the term 4((KE) /N)
x (d, (k) in Eq. (2. 6). The general inequality (2. 8) can
be rewritten

[(di (k)]' -f (k) = [(d.(k)/S(k)]'

(2. 5) then gives

'(k) —[6/y(k)] =(d '(k) -;4[(KE)/N](d, (k)

[=[(di (k))' «r free particles}, (2. 16)

while the relation (2. 8) yields

g(4) ~.(4) (, )(4) j'"
(dex(k ) 7('

xp( —[y(k)/4] [ — „(k)]'}
i~ QQ P(d —1

x ll exp[P y(k)(d (k)]} . (2 17)

Because of the additional freedom in the "model"
(2. 15), we now need the independent equation

(k)]' —4((KE) /N)(d, (k) = [(d,(k)/S(k)]

or (d,'(k) =[(d,(k)/S(k)]' to tell us that S(k) = 1. Know-
ing that S(k) =1, we see that (2. 16) and (2. 17) yield

(k) = (d,(k), y(k) = p/(d, (k) with f (KE)/N= 1/p.
where f(k) ~ 0 for all k. (2. 14)

Although this approach may seem like an unneces-
sarily complicated one for the classical free gas,
it is the calculation most analogous to the sum-rule
manipulations used to generate the Feynman theory.

We may now conclude that (2. 15) is a possible
model for some system (i. e. , the free gas), where-
as the 5-function or sharp-resonance model can-
not be a consistent possibility for any system. This
follows from the fact that the sharp-resonance
model forces the f (k) in Eq. (2. 14) to be zero for
all k, whereas f (k j must behave like 4((KE)/N)(d, (k)
at high k.

We can try to improve the model yp so as to
achieve consistency with (2. 14) and a groper f at
high k. However, it is evident from our discus-
sion of the free-particle gas that we must specify
f (k) indePendently in order to obtain a complete
theory for both S(k) and (dex(k) whenever the model
contains more than two parameters. A specifica-
tion of f (k) alone will give S (k), but a model for
y, will give a unique (dex(k) only if that model con-
tains few enough parameters. Instead of attempt-
ing to generate a theory complete enough to include
a model form for y„we may first ask how the
independent choice of f should be made.

Observe that if we take f (k) =4((KE)/N)(d, (k) for
all A in the interacting case, the first-order expan-
sion in the potential V(k) gives

If we seek to use an expression like this as an in-
tegral equation for S(k), the quantity f(k) must
have, as its leading term at large k, the value
4((KE)/N)(d, (k) The kin.etic-energy term is then
eliminated from the equation at high k, and a solu-
tion for which S(y) is convergent at the origin is
possible. We furthermore see that the choice f = 0
will not give a correct result for the noninteracting
case, whereas the choice f = 4((KE)/N)(d, (k) for all
k gives the correct result S(k) =-1 when the potential
ls zero.

We have observed that the integral equation

[(dl (k)]' —4(qCE)/N)(d, (k) = [(d,(k)/S(k)]'

gives S(k) =1 for the zero-potential case. However,
if this were al/ we knew about the free gas, we
would still not have an excitation energy. Again,
just as in the Feynman theory for He~, we need a
model form for y, in order to obtain both the exci-
tation energy and the quantity S(k). To illustrate
this point, let us use a "model" form for the free-
partiele classical gas

(k(d)= F(k)(exp(-[y(k)/4] [(d —(o (k)]2}

—exp{'- [y(k)/4] [(d + (dex(k)]' }).

This is a more complicated model than the 5 func-
tion associated with the Feynman theory, since it
contains a width (it also happens to be the exact form
for this trivial classical free particle prob-lem).
Having chosen (2. 15) as a model, we see that

Z(k) = p[(d, (k)/(d e„(k)][my(k)]'"

results from the sum rule (2. 4). The sum rule

(d,'(k) +2p(d, (k) V(k) = [(o,(k)/S(k)]'

[lowest order in V(k)]. (2. 18)

This result follows from the fact that S((l) =1 to
zeroth order in the last term of (2. 6). The solu-
tion of (2. 18) is S(k) =SB g(k). Since the Bogoliubov
result is known to be correct to first order, we may
write

(~) (4)l'-4 p~ ~.(4)+g, (4)= ("t4 j, (4. (4)
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where g, (k) must be higher than first order in the
potential and less than order k' for large k. Fur-
thermore, in order to obtain the zero-temperature
sound velocity c from the limit S(k) -k/2mc as
k -0 from Eq. (2. 19), we must have

limk 0g, (k)/k' = c2 —
[c& ]2+2(K@/mX,

where [c& ]2 =-limk 0[~& (k)]'/k'.

15Ko-

IOKo

HELIUM POTENTIALS

-—V(r )

LENNARD- JONES

( IP-Q) POT EfuTIAL

Therefore g, (k) & O(k') as k - 0.
On the grounds that the choice g, (k) =0 for all k

is the simplest possible modification, consistent
with the weak-coupling limit, of the results implicit
in the Feynman theory, we will. investigate the im-
plications of this choice for real He4. We note at
the outset that our choice is severely tested by the
calculation. For example, even the sound velocity
c' = [eI ]' —2(KE)/mN is sensitively dependent on
our predicting the high-momentum components of
S(k) correctly, since [cf ]' is given by an integral
over the full self-consistent solution to S.

III. RESULTS FOR GROUND-STATE Ht.'4

Our proposed equation for S(k) [(2. 19) with g, =0]
may now be written, using Eq. (2, 6), in the form

= (o,'(k) + 2p(u, (k) V(k )

+— I [p(k+q)[k (k+q)]'
m (2v)'

—I"(a')(& q)'] [S(a') —1]. (3. 1)

For a solution, we use the simple potential

V(~) = Z, (a/r)[e —ye ], (3.2)

Ko„

Ko

QKo-

-I5KO-

FIG. I. Comparison between the 12-6 potential and V(r).

density values in the appropriate range, and have
used these functions to obtain values of &(p)/N by
finding a, numerical solution of the differential
equation (1.6) for densities in this range Ob-.
viously, if our calculated E(p)/X curve did not
exhibit a minimum in the chosen density range,
we wouM face an impa, sse. Fortunately, we find
that E(p)/N calculated in this manner does have
a minimum at a particular value of p close to the
observed helium density. The calculated curve
for Sp(k) at this self-consistent-density value is
shown in Fig. 2, together with experimental points

With ED=8. 940&& 10' K', &=0.2560, a=0. 3760 A,
and P =0. 8000. The constants are chosen to corre-
spond roughly to the traditional I ennard- Jones
(12-6) potential~ by fitting the position and slope
Bt the minimum, the position of the zero on the z
axis, and the value at a point (y = 3.60 A) corre-
sponding to the interparticle spacing in He4. This
potential is shown in Fig. 1, together with the 12-6
potential for comparison.

Having made a choice of potential, the only param-
eter remaining in Eq. (3. 1) is the particle density.
Furthermore, for our choice of potential, the angu-
lar integrals can be done explicitly. The result
is a one-dimensional nonlinear integral equation
for S(k). We have solved this equation with the
aid of an IBM 7094 computer, and find the follow-
ing features of the solution. At sufficiently low
density, the solution is indistinguishable from the
Bogoliubov result. At intermediate" densities
(still well below those appropriate to He'), the
quantity S (k) continues to remain less than unity
for all k. At densities in the neighborhood of the
He4 density, however the solution exhibits the
oscillatory behavior (with maximum greater than
unity) characteristic of the experimentally ob-
served structure. We have calculated Sp(k) for

2.0 "

l.5—

LIQUID STRUCTURE FACTOR $(k )

T HFORY

o e X- RAY DATA

oo o o o NEUTRON DATA

I.O

0
0 3

k(A I)

FIG. 2. Comparison of the theoretical ground state
8&{k) at the calculated density with experimental data.
The x-ray points are taken from Ref. 14 (T= 1.4'K) and
the neutron points are taken from Ref. 15 (T=1.06'IQ
The dashed line represents a slope taken from'the experi-
mental sound velocity. Precise comparison of the calcu-
lated slope with the experimental value appears in Table I.
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for He4 taken from the x-ray data of Gordon, Shaw,
and Daunt, '4 and from the neutron data of Henshaw. "
The Bogoliubov solution at the same density for the
same potential 18 also shown in ordel to emphasize
how small the perturbation theory result is for
higher densities. The calculated density, energy
per particle and sound velocity [taken from the
slope of the S(k) curve] are shown in Table I. The
experimental values for these quantities, taken
from Atkins' s" book, are also shown. We have,
in addition, listed the value of the kinetic energy
per particle calculated from Eq. (1.2).

One interesting question concerns the behavior
of S(k) at higher densities. The calculation de-
scribed above requires a knowledge of StI(k) only
very close to the E(p)/N minimum. We could,
of course, solve the differential equation for E(p)/

/N by using the known value at p = 0 and by comput-
ing density integrals of Sp(k) over all densities up
to the neighborhood of the E(p)/N mirdmum. How-
ever, we adopted a simpler procedure, involv-
ing only the region close to the E(p)/N minimum,
in which the boundary condition on the differen-
tial equation was supplied by demanding that the
sound velocity calculated from the second deriva-
tive of the energy be equal to the sound velocity
given by the slope of S&(k) at small k. [Table I
gives the value of this sound velocity, at the
E(p)/N minimum, produced by either expression].
However~ sollle calculations of Sp(k) weI'e made
at higher densities. As p was increased, the
first peak in S(k) became higher and shifted slight-
ly to smaller A. The amplitude of the oscillations
was also increased. This sort of behavior is to
be expected; S(k) should begin to look more sol-
id-like ' at higher densities. However, the changes
do not appear to be pronounced enough to imply
that Eq. (3. 1) is adequate for the solid. This
question remains to be investigated further, but
the fact that Fig. 2 shows the first peak in the
theoretics. l S(k) to be slightly too small at the liq-
uid density might suggest that the approximation
(3. 1) is not sufficiently solid-like and that an
increase in p will further emphasize the discrep-
ancy. Although we suspect that our approximation
becomes less reliable for higher densities, dif-
ferences between experimental and theoretical

TABLE I. Comparison between calculated macroscopic
parameters and experimental values, The experimental
numbers are taken from Ref. 16.

Theory Experiment Unit

tBP
C

(KE}

-8.11
0.152

248
10,2

-7.20
0.145

237

K'
gms/cm3
m/sec.
K'

values at liquid densities are too small to supply
any obvious clues concerning the errors involved
in Eq. (3. 1). Indeed, since we have made no at-
tempt at a best potential choice, the agreement
with experimental values seems extremely good,
both for the S(k) curve itself and for the macro-
scopic parameters E/N, p, and e. We expect a
somewhat large binding energy, density, and sound
velocity for this soft potential, and this expec-
tation is confirmed by the results in Table I.

To summarize, we note the following: Our pro-
posed equation for Sp(k) [Eq. (3. 1)] gives familiar
perturbation theory results in the weak-coupling
low-density limit, and is capable of extension to
interactions and densities appropriate to liquid
He4. In obtaining this equation, we have lost any
knowledge of the density fluctuation spectrum. By
this we mean simply that there are many parame-
trizations of )I,', consistent with (2.3)-(2.5). A knowl-

. edge of approximate equalities connecting various
moments of y, gives us little information about the
shape or resonant position of y, itself without fur-
ther drastic assumptions. Therefore we have
stressed the calculation of Sp(k) and the macro-
scopic thermodynamic quantities, and have not
attempted to introduce additional assumptions
needed for a complete discussion of y, . In Eq.
(3. 1) for S(k), the density appears as a parameter.
The self-consistent density is obtained for He' by
finding the minimum of E(p)/N as calculated from
Sp(k). Results for He' are shown in Fig. 2 and
Table I.
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We have estimated the effect on the long-wavelength spin-wave spectrum of the large spin
fluctuations in anearly ferromagnetic Fermi liquid, in order to investigate the possibility of
observing spin waves in liquid He . The study is based on a general formula, which we de-
rive from the spin conservation law, for the long-wavelength spin-wave dispersion curve
and the paramagnon model. With the parameters of the model. fixed by the He susceptibility
and the spin-diffusion coefficient data, the width of the spin-wave line and its shift from the
Larmor frequency are estimated as functions of the temperature, the pressure, and the
wavelength of the spin wave. The spin diffusion coefficient is obtained from the large damping
limit of the dispersion formula.

I. INTRODUCTION

The rapid advances of experimental low-
temperature physics leads us to expect that the
spin wave, as well as many other phenomena, in
liquid He' will be observable in the not too dis-
tant future. Some theoretical estimate on the
spin-wave spectrum of liquid He' would therefore
be of interest, and it is the purpose of this paper
to make such an estimate.

Theoretical investigations of the spin waves in
liquid He' and in some paramagnetic metals have
been largely based on the kinetic equations in the
Landau theory. ' Recently it has been shown that,
for Hes, some of the features of which the Landau
theory does not easily give an adequate descrip-
tion can be qualitatively understood, in terms of
the paramagnon model, ' as the consequences of
the large spin fluctuations implied by the fact that
the Hes is nearly ferromagnetic. One thus expects
that the large spin fluctuations would have impor-
tant effects on the spin-wave spectrum, and the
paramagnon model should provide a reasonable
qualitative description. %e are aware of the fact

that, unlike the Landau theory, which is a self-
consistent phenomenological theory within its
domain of application, the paramagnon model is
very crude and almost certainly not rigorously
self-consistent in its present form. ' However,
because of its simplicity and qualitative success
so far, we shall base our investigation on the
paramagnon model in spite of its crudeness and
ambiguities, which will be disc~issed in some
detail.

Much of our discussion will center around the
width of the spin-wave line, to which the previous
investigations' paid little attention. The physical
picture is clarified and the mathematical compli-
cation reduced considerably by exploiting the fact
that the interaction in the model conserves the
total spin and is of very short range. A qualitative
discussion of the physical processes involved will
precede the analysis of diagrams leading to our results.

An important feature of the spin-wave spectrum
is that it must be an infinitely sharp line at the
Larmor frequency, i.e. , the precessing frequency
of a free spin, for k-0, where k is the wave num-
ber of the spin wave, if the interaction conserves


