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Structure of the Nonleptonic Weak Interactions of Mesons
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The limits of validity of an effective weak Hamiltonian involving an intermediate vector boson are
studied by examining suitable nonleptonic weak processes. Two extreme assumptions are studied. (1) It is
assumed that the dominant contribution to the weak amplitudes is given by the convergent part of the
nonleptonic weak matrix elements. Current algebra and spectral-function sum rules are used to evaluate
approximately the strong-interaction eRects. We discuss the approximations involved in such a procedure
and examine the possibility of parametrizing the diverse nonleptonic matrix elements in terms of a common
weak-boson mass. Values of this mass ranging only from 3 to 5 SeV are found, notwithstanding the variety
of processes considered. The dependence of the nonleptonic weak matrix element on SU(3} breaking is
discussed. (2) The alternative assumption is examined that the divergences in the nonleptonic matrix
element are not somehow cancelled, and that they give the leading contribution to the weak amplitudes. In
this case we show that given certain boundedness conditions on some scattering amplitudes, the nonlep-
tonic matrix elements are quadratically divergent, and the cutoff momentum is independent of strong-
interaction eRects. From the diverse weak processes considered we Gnd cutoff momenta ranging from 2 to
5 BeV/c. These results and their implications are discussed.
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MAJOR difficulty of weak interactions is that
their present description is in terms of a phenome-

nological theory whose exact limit of validity is un-

known. One would naturally expect to obtain informa-
tion about the structure of weak. interactions fromm

purely leptonic processes, in particular p decay and
lepton-lepton scattering, thus avoiding any complica-
tions due to strong interactions. ' However, the only
available data in this case concern p decay, and so one is
forced to examine the more numerous weak-interaction
effects involving hadrons. The main difficulty in ob-
taining an idea of the validity of the phenomenological
theory from processes involving hadrons is the separa-
tion of weak-interaction effects from electromagnetic or
strong-interaction effects. Recently, however, tech-
niques essentially based on the algebra of currents have
indicated the possibility of evaluating the strong-
interaction effects or separating the weak effects. In
Sec. II, we will brieQy discuss the techniques and the
processes to which they may be applied, together with

our form for the weak-interaction-eRective Hamil-

tonian and the various approximations we shall make.
In Sec. III, we shall employ the concept of an asymp-

totic symmetry and spectral-function sum rules to
evaluate the convergent part of the various relevant
weak processes involving pseudoscalar mesons. In Sec.
IV, on the other hand, we shall examine the most
divergent part of the weak matrix elements for the
processes considered in Sec. III and discuss how the use
of current algebra and certain boundedness assumptions
enables us to obtain results essentially independent of
strong-interaction effects. Lastly, in Sec. V, we sum-

marize and discuss our conclusions.

II. METHODS AND APPROXIMATIOKS

We shall consider two Inethods of evaluating the
nonleptonic weak matrix elements. The first allows us

' A. Pais and G. Feinberg, Phys. Rev. 131,2724 (1963);A. Pais,
Notes of Lectures given at the I,A.E.A. Seminar, Trieste, Italy,
1963 (unpublished).

to determine the convergent part of an amplitude by
approximately evaluating the strong-interaction effects.
The second enables us to evaluate the most divergent
part of an amplitude independently of strong-interaction
eHects. We shall only consider weak amplitudes in-
volving pseudoscalar mesons, since it is only in this case
that both techniques are applicable.

The first method consists in evaluating a vertex
function or self-energy diagram at the unphysical point
for which all extremal legs have zero four-momenta.
The vertex, or se1f-energy diagram, is then expressible
in terms of axial-vector- and vector-current spectral
functions. These spectral functions are assumed to
satisfy certain sum rules as a consequence of an asymp-
totic symmetry for the axial-vector- and vector-current
Green's functions. ' At the above-mentioned unphysical
point, one obtains a convergent result, since all relevant
divergences are proportional to the mass of the external
meson. Clearly, then, the results obtained by such a
procedure are physically meaningful only if in reality
the divergences are cancelled by higher-order effects
(weak interactions in our case) or are at nmst loga-
rithmic and do not produce a significant change in the
results for various reasonable values of the cutoff
momentum, their contribution being negligible in either
case.

However, the divergences we shall encounter in the
nonleptonic weak-interaction matrix elements are qua-
dratic and, unless cancellations occur, are expected to
render all results extreme1y cutoff-dependent. This
being the case, we may take either of the following
points of view.

(a) As we have suggested above, higher-order effects
eliminate the divergences. In this case, we parametrize
the breakdown of the local current-current interaction
by an intermediate vector boson mass. We then attempt
to estimate the weak vector boson mass by the previ-
ously mentioned method, through the examination of

~ S. Weinberg, Phys. Rev. Letters 18, 507 (1967);T. Das, V. S.
Mathur, and S. Okubo, ibid. 18, 761 (1967).
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where

H, tt"(0)=—g' dsx T(j„(x)j„t(0))Is.„„"(x), (2.1)

/8ov+ tfotfv/mw
dsq e'&'*~ —, (2.2)

k q'+msv' —ie

m~ being the intermediate vector boson mass, which

we shall always assume to be large relative to other
masses in our weak amplitudes. The usual weak-

& J. Bjorken, Phys. Rev. 148, 1467 (1966).' B. L. IoBe, in Proceedirtgs of the 1967 Iaternatiortal Cowferertce
oa Particles artd Fields, Rochester (Interscience Publishers, Inc. ,
New York, 1967), p. 447; B. L. Io6e and E. P. Shabalin, Zh.
Eksperim. i Teor. Fiz. Pis'ma v Redaktsiyu 6, 978 (1961)
)English transl. : JETP Letters 6, 390 (1967)g.

'Information about the cutoff momentum from nonleptonic
weak interactions, independently of strong-interaction effects, has
also been obtained by F. E. Low /Comments Nucl. Particle Phys.
2, 33 (1968)j and R. N. Mohapatra, J. Subba Rao, and R. E.
Marshak LPhys. Rev. Letters 20, 1081 (1968}g. The approach
employed by the above authors, however, is @Q'erent from ours,

various nonleptonic weak eGects. One aim is to examine
the possibility that the various weak processes may be
correlated in terms of approximately the same value for
the weak boson mass.

(b) One may have that the matrix elements are
divergent and that cancellations do not occur, the cutoff
being naturally supplied by the weak, or electromagnetic,
or some yet unknown, interactions. In this case, we shall
assume that the most divergent part of the matrix
element gives the dominant contribution to the ampli-
tude, and we then attempt to estimate the cutoG mo-
mentum. To this end, we may employ a second tech-
nique whereby the most divergent part of the weak
matrix element may be related to the equal-time
commutator of two currents. ' This method has been
previously applied in the context of weak processes, in
showing that, for the particular case of neutral leptonic
currents in weak hadronic decays, strong-interaction
eGects do not eliminate the divergences due to weak
interactions. 4 We shall similarly show how results
essentially independent of strong-interaction effects can
be obtained from the processes we shall consider and„ in
particular, we shall obtain estimates of the cutoG
momentum. ' Again we shall be particularly concerned
with the possibility of obtaining approximately the
same cutoG momentum from the diverse weak processes.

However, it could well be that physical reality lies
between the above two extremes, that is, both the
convergent and divergent (with cutoff) contributions
are present and of comparable magnitude. If this is the
case, one needs 8. more detailed knowledge of the
structure of the hadronic weak currents beyond their
equal-time commutation relations. Nevertheless, some
conclusions may still be drawn, and we shall return to
this point in Sec. V.

I.et us now examine our form for the eGective weak
Hamiltonian and the conventions we shall follow. The
effective hadronic weak Hamiltonian is given by

coupling G is related to g' by

g'/msvs= G/V2.

The currents J„are given by'

(2 3)

jo'(x)d'x, j„t(0)
—F0=0

=if;;sj „'(0), (2 5)

jso'(x)d'x)j„ (0)
—s(}=0

=if*st s.'(0), (2 6)

jap'(x)d'x, js„&(0)
—no=0

=if"j."(0) (2 7)

and 8v (8~) are the vector (axial-vector) Cabibbo angles.
We shall restrict ourselves to the above effective
Hamiltonian, Eq. (2.1), and not consider its local limit
(msv'-+oo, g'/mtr' fixed). The results obtained in the
latter case will be more singular and exhibit higher-
order divergences. It should be stressed that we take the
vector and axial-vector Cabibbo angles to be diBerents
in the above effective Hamiltonian. An analysis of the
experimental data for the leptonic decays of hadrons has
shown that this seems to be the case.'

We shall use partially conserved axial-vector current
(PCAC)' in the form

B„j»'——etc P4V', (not summed over i), (2.8)

where c is the pion decay constant, ts, the mass, and p'
the Geld of the ith pseudoscalar. In the above form for
PCAC, Eq. (2.8), we clearly have c =c&=c, which is
required, up to second order in SU(3) breaking, by
vector and axial-vector dominance of the 6rst-spectral-
function sum rules for chiral SU(3)SU(3). "With the
above form for PCAC from the E„~, vr„2 rates and the
E„3+,K,,3 rates one obtains, respectively, sine~ ——0.26
and siney ——0.22. These values are consistent with the

e Latin indices are SU(3) indices and Greek indices are space-
time indices.

s M. Gell-Mann, Phys. Rev. 125, 1067 (1962); also Physics I,
463 (1964).

s By this, we do not mean that the "bare" angles Lno SU(3)
breakingj are di6'erent, but rather that SU(3)-breaking etIects
make them so. That SU(3) breaking may have this effect is not
too surprising, since, for the vector couplings, because of the
Ademollo-Gatto theorem LM. Ademollo and R. Gatto, Phys. Rev.
Letters 13, 264 (1964)j, the apparent angle is expected to deviate
from the bare angle only to second or higher order in the SU(3}
breaking; whereas, for the axial-vector coupling, one does not have
the Ademollo-Gatto theorem, and one may expect effects to erst
order in SU(3) breaking.

9 N. Brene, L. Veje, M. Roos, and C. Cronstrom, Phys. Rev.
149, 1288 (1966)."Y.Nambu, Phys. Rev. Letters 6, 380 (1960); M. Gell-Mann
and M. Levy, Nuovo Cimento 16, 703 {1960).

» R. J. Oakes, Phys. Rev. Letters 20„513 (1968);C. S. Lai, ibid.
20, 509 (1968).

J„=j„'+"cos8&+ js„'+cs cos8&

+j 4+'s sin8v+ js 4+" sin8g, (2.4)

where the j„' (j s„') are the usual vector (axial-vector)
currents satisfying the current algebra~:
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corresponding values obtained from a recent examina-
tion of the leptonic decays of baryons. "

The spectral functions associated with vector and
axial-vector currents are

'&'(q') = —s de e '& ~(0
~

T(j '(x)j &(0)) ~
0)

(8„„+M„/m')
dm'p "(ms)

q+m ze

pv'~(m')
3„4b—„4 dm', (2.9)

m2

&s "(q') = —s ~'~ s "*(0I2"(Ss '(*As '(o)) I0)

(4.+q.q.lm')
dm'p~'&(m)

q +m —ze

& gpgv pv'&(ms)
+ —8„43„4 dm' . (2.10)

q+@ ze m2

We assume that these functions satisfy the first-spectral-
function sum rules' for chiral SU(3)SU(3):

lsP—$p v'(m') —pg'(m') j=c', (2.11)
0 1S

48$
Lpv'(m') —pv'(m')(=0. (2.12)

0 m

We shall not make use of the second-spectral-function
sum rule for SU(3) breaking, "which, in the context of
single-particle saturation, has been criticized on experi-
mental grounds. '4 In Sec. III, we discuss the single-
particle saturation of the above spectral functions
pv(m'), p~(m').

Another result that we shall use in Sec. IV is that the
time-ordered product

~ "(q P Pf) =s &'* &"'*(fl~&i.'(*)i '(o)) ls& (2.»)

satisfies'

lim qsT„„(qp,q,p;,pr)
rjp~00

~'*e"*(flt i'(0,x),i

'(o)llew)+o(1iqo)

(2.14)"¹Brene, M. Roos, and A. Sirlin, CERN Report No. Th. 872,
1968 (unpublished).

'3 Let us note that we do not take the point of view that SU(3)
is a spontaneously broken symmetry, which then leads to massless
scalar mesons. Indeed, in our spectral-function representation for
the Green's function of the vector current, Eq. (2.9), we have
neglected the effects of possible scalar mesons, since their doubtful
existence is not necessary unless one uses the second spectral-
function sum rule for SU(3) PS. L. Glashow, H. Schnitzer, and S.
Weinberg, Phys. Letters 19, 134 (1967)j. We shall similarly
neglect the occurrence of the so-called "c terms" when we conti.ngq
our nonleptonic weak amplitudes to the soft-meson limit,"J.J. Sakurai, Phys. Rev. Letters 19, 803 (1967).

The above result, Eq. (2.14), implies certain bounded-
ness conditions on combinations of invariant coefficients
in the spin-space decomposition of the amplitude Eq.
(2.13).We shall return to this point in Sec. IV, when we
shall use it to pick out the most divergent part of the
nonleptonic matrix element.

We shall restrict ourselves to nonleptonic processes,
since, besides the wealth of experimental data available,
the diagrams contributing to the various matrix ele-
ments involve large internal momenta, thus allowing us
to test the validity of the effective Hamiltonian, Eq.
(2.1). In choosing which processes should be examined,
we must bear in mind that the effects we wish to study
are pure weak effects. Thus, among nonleptonic meson
decays we may examine the E&' ~ ~+a decay, which is
related to all other pure weak decays by the AI= 2 rule
and PCAC."It would not be meaningful to examine a
process such as E+—+ ~++', since presumably, besides
being of first order in the weak interactions, it is also of
second order in the electromagnetic interactions. " Its
matrix element should then also be proportional to the
fine-structure constant. However, in this case, it is not
clear how electromagnetic effects may be evaluated. A
process that involves electromagnetic effects that may
be separated and estimated is the E20~ 2y decay. We
shall therefore consider this process. Lastly, concerning
second-order weak effects, the Ei'-E~' mass difference
is presumably a pure weak effect, and we shall therefore
examine it too."

To recapitulate: We shall restrict ourselves to the
consideration of the E&' —+ 2m- and E&' —+ 2p decays and
the E~o-E~' mass difference in the context of the effec-
tive Hamiltonian (2.1).

III. CONVERGENT CONTRIBUTION TO
NONLEPTONIC MATRIX ELEMENTS

In this section, we shall consider the previously men-
tioned processes under the assumption that the diver-
gences in the nonleptonic weak matrix elements are
cancelled by higher-order weak eRects. Ke shall evalu-

'~ Y. Hara and Y. Nambu, Phys. Rev. Letters 16, 865 (1966);
M. Suzuki, Phys. Rev. 144, 1154 (1966).

"In particular, if one assumed that it were pure first-order
weak and computed the matrix element, one would And that it is
proportional to the weak coupling constant and the weak-boson
mass or cutoff, that is, for example, of the form kGL2, L being the
cutoff momentum and k some constant. Then, since the rate for
AI =-', processes is smaller than the usual weak rates, remarkably
low values for the cutoff momentum or boson mass would be
obtained.

~~ We do not consider other possibly second-order weak effects
such as E20 —+ p+p, since, besides the possibility that such pro-
cesses, if they occur, are in part due to electromagnetic interactions
PM. A. B. Beg, Phys. Rev. 132, 426 (1963)g, only an upper limit
exists for their rates. Thus, if one assumes that they are purely
weak decays, on examining their matrix elements, remarkably
large volumes of the boson mass or cutoff momentum would be
obtained. The actual cutoff momentum or boson mass could, of
course, be much lower, and the large values obtained are simply
due to the fact that the experimental upper limit is large. Our aim,
of course, is to 6nd the lowest possible values of the cutoff mo-
mentum or weak-boson mass needed to maintain agreement with
experiment for the various weak processes.
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c""d'x.„g(~+s.—
l j(x) l0) (3.1)

(2~)"'(2&)"'
—(27r) 4ih'(q p)—

—
ou~ X+X 0 (3 2)

(2~)"'(2Vo)'"
)

where j(x)=—(CI —p&') px is the E is source current and

P is the total momentum of the 2' system. We now
define a vertex function or scalar form factor:

-(~'w
I j(o)Io)—=F(—C'), (33)

ate the convergent part of the nonleptonic amplitudes
by examining the weak matrix elements in the limit for
which all external legs have zero four-momenta. We
begin by considering the Eis —+ vr++s. decay process.
Let us represent the vertex function in such a manner
that the nature of the approximations we shall make is
explicitly exhibited. "

We have

.„,(~+~-
l
jt,o&;„

meson,
ImF (t')

F(t) =F(0)+— dt'
4p~n t (t t ZE)'

(3.4)

On restricting ourselves to two-pion states in the
unitarity sum, we have, as a solution to the above
Eq. (3.4),"

f t " s' (t') )
F(t) =F(0) expl — dt'

4r 4„.* t'(t' —t))
(3.5)

Z

=—tv=
C

jM'(x, 0)d'a, H, tt (0) l 0), (3.6)

where y is related to the two-pion s-wave phase shift.
F(0) is the Eto ~ 2m vertex evaluated at zero E-meson
mass, q'= 0. We approximate it by evaluating the vertex
function, Eq. (3.3), in the soft-E-meson limit, q„=0.To
erst order in the weak interactions, we have, in the
limit q„—& 0,

&2~le.ft (0) l&t'&

which we shall assume satisfies a subtracted dispersion where we define M withtheusualfactors (2s.) st'(2E) 't'
relation in ]—= —q', which of course is the mass of the E omitted.

We further approximate the vertex by evaluating it in the limit for which each of the individual pions has zero
four-momentum. We then have

(s.+gr—lH, ff (0) lEis&= —(cos8v sin8~ —cos8~ sin8v)l d'x(0l Tl j„x(x)j, (0)—js„(a)js,x(0)
C

+2j„(x)J„(0)—2j „(*)j„(0)jlo&~„„-(*)I, (3.7

where we have defined j'(x) —=jx(x) for i=4, 5, 6, 7 and j'(x)—=j (x) for s= 1, 2, 3. We now use the spectral
representations for the currents LEqs. (2.9) and (2.10)], together with the first spectral-function sum rules LEqs.
(2.11) and (2.12)j, and obtain for the above matrix element l Eq. (3.7)j

3g2
(7l 7f

l Huff (0) l
Ei )= (cos8& sin8& —cos8& sin8&) d4qdm'

c'(2s-)4

Lpgx(ms) —pi x(ms)+2pg (ms) —2pv (m')$

(g'+ mw') (g'+ m')

The physical decay amplitude is given by F( pres), —
which is related to F(0) through Eq. (3.5). We then
note that, since F(—tax')WO, F(0) cannot be zero. We
shall assume that the vr-m s-wave phase shifts are small,
so that the amplitude F(—pic') is not too different from
F(0) or our approximation LEq. (3.8)) to F(0).

We now evaluate the matrix element, Eq. (3.8), in the
context of a vector and axial-vector meson dominance
assumption of the spectral functions. We approximate
the spectral functions by the lowest states

pr '(m') =2c'm'8(m' m')—(3.9)

' See, for example, K. Nishijima, FNNdumerItal Particles (W. A.
Benjamin, Inc. , New York, 1963), p. 276; also M. Goldberger and
K. M. Watson, Collision Theory (John Wiley 8z Sons, New York,
1964).I am grateful to Professor M. A. 3.Beg for discussions and
suggestions on this point.

p„'(m') = c'mg, sb(m' —m~;s), (3.10)

m and m~ being the vector and axial-vector meson
masses, respectively, and we have used the KSRF
relation to express the spectral functions in the above
form for convenience. " We assume the existence of
axial-vector mesons (At,E~*)"whose masses are re-
lated to the vector-meson masses by m~ ——2m

"K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16, 255
(1966); Riazuddin and Fayazzudin, Phys. Rev. 147, 1072 (1966).
Since there is some doubt about the justi6cation of this relation,
we may accept it as an empirical observation.

"A. H. Rosenfeld et al. , Rev. Mod. Phys. 40, 77 (1968).
"This may be regarded as a consequence of a chiral symmetry

for each vector meson. We note that Weinberg's second sum rule,
while not necessarily meaningful when applied to SU (3) symmetry
breaking (see Ref. 14), does not lead to any inconsistency if used
only in the context of chiral symmetry. That is, J'dm'[pz'(m')
—py'(m')]=0.
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We then obtain the following expression for our matrix element, Eq. (3.8):

3g1 zzzx*' zzzs ' 2nzrr' mQ
(zr+zr

I H,«"(0) I
Ki'& = (cos8v sin@—cos8~ sin8z ) ln — — ln

2 (2zr)'c mK+ mp 2mK+ 2mK+2

that is,
3g z

( + -
I H, "(0)

I
K ') (cos8v sin8~ —cos8~ sin8z )

2 (2zr)'c«zs '

2mp4 mg ' 4mp4 mg '
ln — ln, (3.11)

ms '—m p' «zp' mph'" —2«z p' 2zm p'

m zmp )—mK* ln 2mK*' ln2 4m, '1n2 —2mp ln 3 12
mK4 «z, ' ~

for m~2))m2. The above matrix element is related to the E&' —+ m+x rate by

(3.13)

and we obtain

On comparing with Eq. (3.12), we obtain
mg =5 SeV,

(3 14)

(3.15)

where we have taken g'/«zP= G/V2 with 6= 10 '/zzz„', m~ being the nucleon mass, and sin8~ =0.26, sin8v ——0.22.
The next weak process we consider is the Ey'-E2' mass di6erence. To second order in the weak interactions, it is

given by

BE=E(Ki') E(Kz') R—eoz(2zr)' —d'x(KoI T(H ff (x)H ff"(0))IK'&+(K'&-+K')

=Re-', i(2zr)o d'x(Ko
I P8(xo)He«w(x)H „(0)+8( x )H «w(0)H «w (x)g I

Ko&+ (Ko ~Ko) (3 16

Inserting a complete set of intermediate states,

BE=Re-', i(2zr)' P d'x(K'I L8(xo)H.«"(x) I zz&(zzl H.«"(0)+8(—xo)H ii"(0) I zz&(zz I
H «"(x)HAIK')+ (K'~ K')

=Re-', i(2zr)' Q d'x(K'I LexpLi(pro —p.,) xo/8(xo)H. «"(x,o) I zz&(zz
I
H.«"(0)

n

+8(—xo) expl i(px, —p„,) x—o)H.«"(0) I zz&(zz I H, iz" (x,o)j I
K')+ (Ko &-+ Ko),

where px and. p„are the momenta of the K mesons and. the 'intermediate states, respectively. Taking Imprr, )0,
we obtain for bE,

B(ux—u-)
(K'IH «"(0)l~ &~(IH«"( )0IKo&+(Ko~Ko).

pro pro
(3.17)

One may be concerned about the validity of using our
nonlocal effective Hamiltonian (2.1) to calculate second-
order processes and obtain a result such as Eq. (3.17).
We note that for zlzt" ~~, with g'/zzzs' fixed, our
effective Hamiltonian (2.1) reduces to a point structure
and our Eq. (3.17) is exact. Presumably, then, our
treatment of the effective Hamiltonian (2.1) as a local
object in the above involves a neglect of corrections of
the order zzz„'/ms' to the contribution of the zzth

intermediate state, m„being the mass of the eth
intermediate state. Since we shall later consider the
contributions of the lowest-mass intermediate states in
Eq. (3.17), for which m„'«zzzzr', we expect that in this
case the approximation is justified. We shall later
discuss the validity of our low-mass intermediate-state
approximation.

We now restrict the intermediate-state sum to states
n and nKE with n a single-particle state, in this case the
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x' and the q. When we later consider the E2 ~ 2y bosonmassinthetwo casesareinagreement, ameasure
decay, we shall mak. e an analogous approximation. H of justification is given to our approximation.
the results we shall obtain for the cutoff momentum or In the soft-E-meson limit Eq. (3.17) becomes

(2or)'
8„o—„o(Eio) ~o(Eo )= Re E (

2c
j„o+'~(x 0)dox a.«-(0) ll&

x&«l
8(ii-)2P-o

jop +' (x,0)d x& Po«" (0) l0) +(E'~ E') . (3.18)
pz —Poo

We further approximate our matrix elements in Eq. (3.18) by evaluating them in the soft-m' and o7 limit, obtaining'o

4 1
8p'= ——Re(sin0v cos0i —sin0g cos0~)' d'x&0

l TL2jo„(x)jo, (0)—2j„(x)j, (0)—j, (x)j. (0)
c (Pz 7o-)—

+jo„z(x)jo.z(0) jl0&A„„"(x) l + l
d'x(0l TLjo„z(x)jo,z(0)—j„z(x)j z(0) jl0&h„,"(x), (3.19)

(pz' —uo')

which, again employing the spectral representations for the currents LEqs. (2.9) and (2.10)j together with the first
spectral-function sum rules LEqs. (2.11) and (2.12)$, can be rewritten as

(2or)'

9g (sln8v cos0v —sln8~ cos8g)
Re

C4

1

-(~ '—v ')&

d4qdm'

L2p, -(m') —2p, -(m')
(q'+ ms ') (q'+ m')

2 3
pv (m')—+p~ (m')j +

( z' —~,')
de dm' 9, (m') —p, (m')j

l
. (3.20)

(q'+ ms ') (q'+ m')

As before, approximating our spectral functions by single-particle states LEqs. (3.9) and (3.10)j, and assuming
m~)m', we obtain

9 1 f mio

mph'

(sin8i cos0v sin0~ —cos0~)'
l

mz*o ln —2mzo' ln2 4m, ' 1n2—+2m, ' ln
4(2or)4m' 4 (pz' —p ') & mz" mp

l
mz*o 111 28$z*' li12 l, (3—.21)

(pz' —p„') k mz"

which we compare with the experimental mass difference2o 8p, =p(Eio) —p (Eoo) = —0.48/r, = —3.6)& 10 ' eV. With
the same parameters as used for the E»' decay, we obtain

mg =3 BeV. (3.22)

The last process we must examine is the E2' ~ 2y decay. For this decay, we shall study a pole, model in terms of
and p poles analogously to the E»' —E2' mass difference. We then consider the following matrix element:

3f(Eo +2y)= d x&2yl T(P—o«(x)Ho~"(0))lEo'&

8(uz —p.)
=(2~)'oZ L&2vl&-"'(0) l«&&iol& «"(0) lEo'&+&2~I& «"(0&l~&&«l&-'«(0) IEoo&3 (3 23)

Pzo Poo

where H, "' is the effective electromagnetic Hamiltonian. and M(Eoo~ 2y) is defined with the usual factors
(2or) "'(2E)—'~' omitted. Again we restrict ourselves to the lowest-mass intermediate states. These are the or' and g

"The effect of ?lx0 mixing on our 6nal result is negligible because of its small magnitude. R. H. Dalitz and D. G. Sutherland, Quogo
Cimento 3?, 1777 (1965).
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for the first term in Eq. (3.23) and the E2og2y and. E~'m'2y for the second term. We shall then have

i(2')' i(2n-)'
~(E '~ 2v) =

&2&i�&.

-"'(0)
I ~&&~ III «"(o) IE2'&+ &2ml&-'«(0)

I
~'&&~'I&.«"(o) IE~'&

i(2s.)' i(2s.)'
&0I & «"(o) I ~E2'&&2&

I
&-"'(0)

I ~&
— (o I

& «"(o) I
~E2'&(»

I
&.-"'(0)

I
~'& (3 24)

PK+Pg 14K+Pe

As before, we evaluate the nonleptonic matrix element in the limit for which the E~, and then the ~ and q, are
soft. We then obtain

3g z 1
M (E20~ 2p) = (cose~ sln8~ —cos8v slnBv)

(2s.)4c' (~x'—~.')

X&2~IIf. "(0)l )
Lp~ (nz')+2p~ (m') —2pv (m') —pvx(m)'j

d'qdm'
(q'+ms ') (q'+m')

K (m2) p
K (4i42)j

d4qdm' . (3.25)
(q'+ «4s ') (q'+ m')

nzg =3 BeV. (3.27)

This result is consistent with our previous values, Eqs.
(3.15) and (3.22).

I.et us note a few points about our nonleptonic matrix
elements. As we have seen, they depend on the differ-
ence of the vector and axial-vector Cabibbo angles, and
are therefore presumably of first order in SU(3) break-
ing. Hence, as is expected, they will vanish in the
SU(3) limit. '4 Our procedure in this section has been to
continue first the strange pseudoscalar mesons and then
the nonstrange pseudoscalars to the soft limit. The
results then obtained depend on SU(3) symmetry
breaking only through the difference of the vector-

The above matrix element (3.25) is related to the
E2' —+ 2p width I'z, by

rx, = (1/16~~~) I
~(E2'~ 2v) I' (3 26)

and similarly the xo and p to 2p matrix elements oc-
curring in Eq. (3.25) are related to the 4r' —+ 2y and

q —+ 2y widths. As before, limiting our spectral functions
to one-particle states, Eqs. (3.9) and (3.10), and using
Fx;=(9.9&2.1)X10 " MeV, 2' and 0.74X10 ' MeV,
0.87)&10 ' MeV for the x', g —+ 2y widths, respectively,
we evaluate m~, obtaining

current and axial-vector-current Cabibbo angles. If, on
the other hand, we had continued to the soft limit for
the strange pseudoscalars last, we would have arrived
at matrix elements which depend on the SU (3) breaking
also through the combination of the spectral functions
obtained "

YVe may then conclude by remarking that, within the
context of our rather drastic approximations, we have
consistently found a weak boson of mass in the range
3—5 BeV independently of the radically diferent nature
of the processes considered.

IV. DIVERGENT CONTRIBUTION TO NON-
LEPTONIC MATRIX ELEMENTS

In Sec. III, we have approximately evaluated the
convergent part of the nonleptonic matrix element, and
w( assumed that the divergent part is cancelled by
higher-order weak effects or, for some other reason,
gives a negligible contribution. The purpose of this
section is to examine the possibility that the most
divergent part of the nonleptonic matrix element is not
cancelled and gives the dominant contribution to the
weak amplitudes.

Let us consider a typical nonleptonic matrix element
involving two different spin-zero states i, f:

—
Zg

&f I lf.«"(o) Ii&=
(2s.)4

(4„+q„q„/ms')
&"*&flT(~.(~)~'(0)) li&

q'+ms '—i4
(4.1)

"J.W. Cronin et at. , Phys. Rev. Letters 18, 25 (1967)."M. Gell-Mann, Phys. Rev. Letters 12, 155 (1964); N. Cabibbo, ibid. 12, 62 (1964).
"See for example, S. L. Glashow, H. J. Schnitzer, and S. Weinberg, Phys. Rev. Letters 19, 205 (1967). Presumably, if one

demands that the amplitudes evaluated at the same unphysical point by the two previously mentioned procedures, should coincide,
certain constraints between SU(3) breaking in the spectral functions, weak-boson mass, and the difference between vector-
current and axial-vector-current Cabibbo angles will be obtained.
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If the integral over the internal momentum q is divergent, then the most divergent contribution will come from the
q„q,/4r4+ term in the weak vector-boson propagator. We shall comment later on the 8„„terms.

Thus, restricting ourselves to the longitudinal terms in the weak-boson Green s function, we have

q gag' X

d'*d'q (f I a„T(J„(x)J„t(0)) I i&
q'+tsar' —p 4

ass '(2m)4
(fl {$(xp)[Jp(x),J„t(0)j+T(B„J„(x)J„t(0))}Ii). (4.2)

q'+ sl gr' 46—
The first term vanishes because of the de integration, and one then has.

&fl &.«"(o) Ii&=
4p4s '(2m )4

d'xd'q 8„(fI
T(C (x)J„t(0))Ii)

q +tel@ —zp

«4g '(2m)' . (fl{h(xp)[C'(x),Jp'(0)j
q'+ms' —ip

+i(p' —Pf).T(c'(x)J'(0) &
—T(c'(*)c'(o))}

I i& (4 3)

We have defined C (x) = B„J„(x),and p; and pr are the momenta of the initial and final states, respectively.
Further, we have

(flB,«"(0) li)=
ms '(2ir)'

d'xd'q (f I {8(xp)[BpJ (x),Jot(0)j
q'+ms" —i p

+ (P'—Pr).T(c'(*)J."(0))—T(C'( )C'(o))} I &

m44'(2x)4
d'xd'q (fl {—8'(xp)[Jp(x), Jpt(0) j

q +tpl pt $6

+i(p,—pr). T(c (x)J'(0))—T(c'(*)c'(o))}Ii& (44)

ln the above, if one is willing to accept Eq. (2.14), the most divergent contribution will come from the equal-
time commutator term, or the first term on the right-hand side of Eq. (4.4). Let us see this by examining the
following scattering amplitude'.

T„(p,,pr, q) =i d'x e"*(f—I T(C (x),J„t(0)) Ii)= Ap, „+Bpr„+—Cq„. (4 5)

Proceeding as before, we have

q„T„= d'x e' '(fl {b(xp)[—8„J„(x),Jpt(0) j+i(p, pg).T(C (x)—J,t(0))—T(C (x)Ct(0))}Ii). (4.6)

We now note that the functions A, B, and C in Eq. (4.5) depend on q through the invariants q' and p q. Large
values of these invariants can be obtained by considering the limit qo ~~ and q fixed. In such a limit, as for Eq.
(2.14), we have

lim qpTp= d'x e"*b(xp)(fI [4 (x),Jpt(0) 1l i&+ 0(1/qp)

p,pA+Bqpprp+Cqp'= qp;A Bpr q C— — —

(4 7)

Hence, if we accept the validity of the expansion. [Eq. (2.14)j an.d compa're Eqs. (4.6) and (4.7), we see that the
most divergent contribution in Eq. (4.4) will come from the equal-time commutator term. We further note that in
Eq. (4.1) the contribution from the 5„„term in the weak vector-boson Green s function, by Eq. (2.14), is also not
expected to contribute to the leading divergence (quadratic) in Eq. (4.4).
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We then obtain the following expression for the leudieg divergence of the nonleptonic matrix element:

&fl II.«"(0) I z) =
Zg2

mrv'(2n )4

Zg'

&iq s

. 8'(*o)&fl CIo(*),Jo'(0)HI &

q'+ms '—ie

L'&fl 8oJo(0) Iz&,
ms '(2n. )4

where we defined. a cutoB momentum L and

8(&s)CJo(*) Io'(0) 3=8'(*)~o(0)

(4 8)

In obtaining Eq. (4.8), we have made use of the fact that the matrix element &f I
BaIs I i& is independent of the weak-

boson momentum. As we can. then see, the strong interactions do not lead to a damping of the nonleptonic matrix
element.

I.et us now apply the above considerations to the weak nonleptonic processes we have previously considered.
We first examine the E~' —+ m+m matrix element

» j»' "(x0) II «"(0) (4.10)

where we have taken the soft-pion limit for one of pions in order to obtain a final expression in terms of known
matrix elements; also, our states are normalized as before. The above limit does not decrease the degree of the
divergence; indeed, proceeding as before, we obtain

7t' Zg
&~+~-

I a.„-(o)IE,o&= L'(cos8& sin8v+cos8v sin8&)&s.
I

Bsjp
'

I
Er')

v2ms 'c(2s.)'
7r2 2L2

that is,

fix(cos8. sin8v+cos8, sin8. )&n I
„-"IE;),

2&2«zs 'c (2m)'

3GL'px'(cos8~ sin8i +cos8r sin8~)
l~l = l&~+~ III.«"(0) IEi'&I = U++af )-

32 (2s )V2c

(4.11)

(4.12)

when f+ and f are defmed by

&~'ls ~*'IE+&= (1/~~)Lf+(I'x+I'-)v+ f (I'x I' ),3— (4.13)

Information on f+/f can be obtained from the E» decays. Unfortunately, the experimental situation is unclear s'

For the sake of argument, we shall take f+/f —0.8, as obtained from muon polarization measurements, sr and
shall neglect form-factor variations. Then on comparing Eq. {4.11) with the experimental value of the matrix
element (3.14), we obtain a cutoff momentum

L=5 BeV/c. (4.14)

Q2 (~ 2 ~ s)s
(cos8v sln8v+cos8g sln8g) L +

64(2n)' f -(~-—ux)

{Ix fz.) f '(I x'-—fz.')' lzx+—fz. f
& 1+ — + 1+—

(f x+Iz ) f+ — I -{I-+I x) fx—f - f+-
3(I x' I,')' 1 f, I x—f ', 3(I—x' I,-')' (1 px+—I, f
Iz~(IJ» lzx) — 3 fz,+Ibex—f~ f'- fz~(lzs+lzx) — E3 Ized yf~x—(4.15)

'e L. B. Auerbach, A. K. Mann, W. K. McFarlane, and F. J. Sciulli, Phys. Rev. Letters 19, 464 (1967).
'r The measurement of g f (0)/f+(0) using polarization is less sensitive to form-factor variations, and probably gives a better

experimental value. We do not consider the possibility of large variations from the above value at t=(~~-m ) . See also D.
putts, R. Stiening, C. Wiegand, and M. Deutsch, Phys. Rev. Letters 20, 955 (1968).

Let us now examine the Ere ICss mass differen-ce (3.17). Here, we directly apply our result (4.8). As before, we

restrict our intermediate-state sum in Eq. (3.17) to the mrs, r) and rrsEK, r)EE states. We then obtain
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and on comparing this with the experimental mass
splitting, we arrive at the remarkably low value of the
cutoff momentum,

1.=2 BeV/c. (4.16)

(cos8v sin8v+ cos8~ sin8~)

from which, proceeding as before, using the experimental
values for the m, E, q to 2y matrix elements, we obtain
a cutoff momentum

I =2-3 BeV/c, (4.18)

a result in agreement with our previous results. I.et us
then note that, notwithstanding the various, rather
drastic approximations made, we have obtained values
for the cutoff momentum within a remarkably small
range, that is, 2—5 BeV/c.

Once one accepts the algebra of currents and the
boundedness assumptions for amplitudes implied by
Eq. (2.14), one finds that the leading divergence for
nonleptonic decays is not damped by strong interactions.
The value then obtained for the cutoff momentum from
nonleptonic weak decays is much lower than the cutoff
momentum for weak interactions usually obtained from
considering the unitarity bound to the 6rst-order Born
approximation of v+1~ v+l ( 300 BeV/c in the
center-of-mass system).

V. SUMMARY AND CONCLUSIONS

Ke have considered all nonleptonic matrix elements
that contribute to pure weak effects or processes for
which the electromagnetic effects can be estimated.
From the 6rst alternative we considered for the non-

leptonic matrix elements (Sec. III), we found values of
the weak vector-boson mass ranging from 3—5 BeV.
Considering the severe approximations we have made,

One could of course expect that higher-mass inter-
mediate states in Eq. (3.17) would alter our result, Eq.
(4.16). However, Eq. (4.14) does not depend on any
intermediate-state truncation.

Let us now, as before, examine the E20 —& 2p decay in
order to check the consistency of the intermediate-state
truncation. Here, again, we directly use Eq. (4.9). We
note that, since Je Xs and Ess Q, our nonleptonic
matrix element depends only on SU(3) breaking, that
is, on f in Eq. (4.13).

Our Eq. (3.24) then becomes

Im(z, 2~) I

the values obtained are not inconsistent. It is perhaps
superfiuous to remark that even if assumptions em-
ployed in Sec. III are correct, we do not mean that the
physical weak boson mass should lie in the above range,
but rather that the nonleptonic matrix elements give
consistent values of m~ at the unphysical point at
which they are evaluated.

We note that if we consider the limit m~'~00
(keeping g'/mQ fixed, and assuming we can interchange
the limit and the order of integration) for a typical
nonleptonic matrix element, e.g., Eq. (3.8), the weak
nonleptonic amplitudes are divergent unless the spectral
functions satisfy certain additional moment relations
such as

I pv'(ts )—p~'(nP)gnPd18s= 0. (5.1)

Then, if the local current-current coupling, or Fermi
theory, can be considered as the above limit of our
weak Hamiltonian (2.1), we may conclude that unless
Eq. (5.1) is satisfied, it does not lead to finite nonleptonic
matrix elements.

The alternative possibility for the nonleptonic matrix
elements, Sec. IV, leads to consistent values for the
cutoff momenta obtained from the various processes
considered. These values range from 2—5 BeV, and are
much lower than the result obtained from the unitarity
bound for purely leptonic processes. Moreover, we have
seen that the cutoff is independent of strong-interaction
effects. These results were obtained by assuming Kq.
(2.14). This is equivalent to assuming unsubtracted
dispersion relations for all our amplitudes. Formally, our
nonleptonic matrix element, Eq. (4.1),may be related to
an off-shell scattering amplitude"" of weak vector
bosons onto hadrons. Then we can deduce information
about the high-energy behavior of the various ampli-

tudes by examining the predictions of the Regge model. "
It is easy to see that our scattering amplitude will have
contributions from invariant amplitudes behaving like
v &s& with rr(t) a trajectory with the quantum numbers
E= (—1)I, I=-'„S=1, which is presumably the tra-
jectory associated with the Ez meson, a member of the
same SU(3) multiplet as the A s [n~, (0))0). Thus, we

expect that some of our invariant amplitudes probably
need subtractions. Presumably this will only make the
divergences worse. 3' The above arguments are, in any
case, only valid if there are no fixed poles (1=0 in this
case) in any of our amplitudes, which cannot be
excluded a priori.

"G. N. Cottingham, Ann. Phys. (N. Y.) 25, 424 (1963)."We assume the existence of only c-number Schwinger terms.
~ The arguments are similar to the ones employed for electro-

magnetic self-energies. H. Harari, Phys. Rev. Letters 17, 1303
(1966)."M. B. Halpern, Phys. Rev. 165, 1611 (1967).



2164 G I OVA K N1

For the second alternative we considered, in which the
divergences are not cancelled by higher-order eRects and
the high-energy contribution is not somehow damped,
it is not clear how meaningful is the contribution of the
low-mass intermediate states in Eq. (4.1). However,
one may ask, since we have found small values for the
cutoff Inomentum, whether one should also include the
low-energy contribution, as, for example, determined in
Sec. III, in the total matrix element before comparing it
with the experimental value, in order to determine the
cutoff momentum. These two contributions will, in
general, interfere. Remembering that we are essentially
interested in determining as low an upper limit for the
cutoff momentum as possible, we see that, in the case in
which they interfere destructively, we shall only in-

crease the upper limit by a factor of V2 and, of course, in

the other we shall obtain even lower values for the upper
limit. In either case, the order of magnitude of the upper
limit for the cutoff momentum that we have found is
essentially unchanged. There are also terms involving
logarithmic divergences; however, they are of the form
ln (L/ms ) and, since we have found I. nzs, presumably
they are small.

I,et us now examine the significance of the low cuto6
momentum we have found. It implies an effective dimen-
sionless weak-interaction coupling G, q~ (g'/ms")L'

10 '. This of course means that higher-order weak
eRects will be damped by a factor 10 ' with respect to
the preceding order. Thus a possibly second-order weak
process, such as E~' —+ p+p, , would have the same order
of magnitude as the same process obtained through
first-order weak and second-order electromagnetic"
interactions. In general, in such a case one expects
diS.culty in separating weak and electromagnetic higher-
order eRects. From our previous considerations, since
the cutoff cannot be given by strong interactions, we ex-
pect that it may arise, for example, from some property
of the weak interactions (such as a self-coupling of the
weak boson) or from the presence of some unknown
interaction. A particularly suggestive possibility is that
it arises from the electromagnetic properties of the weak
boson, 4 especially since their higher-order contributions
are not too different in order of magnitude. Indeed, if
we expect the eRective weak interaction to be
smaller than the electromagnetic interactions, then
(7r'g'/ms')L'= (m'G/v2)L'(o& that is, I-(9 BeV.


