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We investigate the reaction =+ +d — p~+p within the framework of Regge-pole theory. Reggeization of
the amplitudes for this process is carried out in detail, and the asymptotic behavior of the helicity ampli-
tudes at zero momentum transfer is discussed. By assuming that the lowest anomalous threshold singu-
larity in the ¢ channel dominates in the nearby region, we calculate the nucleon-deuteron Regge residue in
terms of the pion-nucleon Regge residue. We also discuss the relations to the Regge-pole formalism of various
low-energy models used to study this reaction and its inverse.

I. INTRODUCTION

N the past several years, Regge-pole theory' has

made tremendous progress toward understanding
strong-interaction physics. Recently its applicability
has even been extended into low-energy regions via
finite-energy sum rules.? The intricate relationships
among the Regge parameters in the direct and crossed
channels, through analyticity, unitarity, and crossing,
provide a promising bootstrap framework.?

In the present paper, we shall study the reaction
7t+d— p+p in Regge-pole theory. The purpose of
our investigation is threefold.

(1) Experimentally, the high-energy data for this
reaction above 3 BeV total c.m. energy are very scant.
The data* from 2.4 to 3 BeV show that the broad peak
near the forward direction (which is symmetric with
respect to the backward direction) shrinks and moves
toward cosf=1 gradually, evolving into a sharp peak
at 3 BeV. In the same energy range, we notice that the
total cross section decreases monotonically roughly
like (s—32)—3, where s is the square of the total c.m.
energy and 2 is the sum of the external masses squared.
These facts strongly suggest the presence of Regge
behavior with nucleon-trajectory exchange, even at
intermediate energies. This reaction, along with back-
ward 7N scattering and NN — zr scattering, provides
a place to study the nucleon trajectory and the dip
phenomena’® associated with it. In view of this we
believe that a Regge-pole formalism is both necessary
and desirable for phenomenological fitting and for
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stimulating systematic experiments at higher energies
in the future.

(2) On the theoretical side, problems of treating the
Regge residue functions with unstable or loosely bound
particles are extremely interesting, yet these problems
attract less attention than they deserve. Udgaonkar
and Gell-Mann® have employed the semiclassical ray
method to study the Pomeranchuk residues for loosely
bound particles like nuclel and, in particular, the
deuteron. But one expects that these problems should
be handled within the framework of analytic S-matrix
theory. In S-matrix language, the loosely bound struc-
ture of the external particle manifests itself through the
existence of anomalous singularities in the residue
functions. The reaction that we considered has this
feature in that the d-p-n Regge residue function
possesses anomalous singularities. We calculate this
residue function, to a good approximation, in terms of
the 7-N-N residue functicn and the pion-nucleon and
deuteron-nucleon coupling constants. The method that
we used, which is analogous to the one employed by
Cutkosky” to study the deuteron form factor, is
applicable to many other cases.

(3) Finally, turning to the low-energy region, there
have been extensive investigations both theoretically
and experimentally for the reaction #t+d— p+4p and
its inverse (we shall call them pionic-disintegration and
pion-production reactions). Various models have been
proposed to account for the low-energy pion-production
data. In nonrelativistic calculations, Rosenfeld® and
Gell-Mann and Watson8, have used the model of final
state interaction between the two nucleons and obtained
a good fit to the data with a small number of parameters.
Mandelstam? has extended the analysis to higher
energies by including N final-state interaction. The
outgoing pion is assumed to be in a resonant (£,5) state
with one of the nucleons. Both the total and differential
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cross sections can be fitted very well with three
parameters.

In relativistic calculations, the one-pion exchange
(OPE) model!® has been employed, in which one nucleon
is peripherally scattered and then combines with the
other nucleon to form a deuteron. There is also the one-
nucleon exchange model.!* Both models only have
moderate success in certain ranges of energy. Dispersive
approaches have been carried out by Vasavada,!? by
Chahoud, Russo, and Selleri,'® and recently by Schiff
and Vann!* to study the pionic-disintegration reaction.
The anomalous cut in the cross channel is included
together with the one-nucleon Born term. Good agree-
ment with the data is obtained.

While we expect that the high-energy data should be
best understood in the framework of Regge theory, even
in the low-energy region the Regge-pole theory in-
corporates in a broad sense the ideas contained in all
the models mentioned above. We attempt to understand
these models in a coherent picture through the Regge
formalism. This has been made possible by using the
duality concept that has been emphasized by Chew and
Pignotti'® recently in connection with multiperi-
pheralism and resonance production.

The work is as follows: In Sec. II, the singularity
structure for the full and partial-wave amplitudes is
studied, with special care for the anomalous singu-
larities. In Sec. III, we consider the construction of
t-channel helicity amplitudes and their relationship to
a set of invariant amplitudes. The kinematical singu-
larities are extracted. Section IV considers the analytic
continuation of the partial-wave amplitudes into the
complex J plane. The Regge representation for the
amplitudes and the formula for differential cross section
suitable for data fitting are obtained. The asymptotic
behavior of the helicity amplitudes at ¢=0 is discussed.
In Sec. V, we calculate the discontinuity of the d-p-n
residue function across the anomalous cut and evaluate
it by approximation. For simplicity the treatment is
carried out for spinless nucleon and deuteron; we
indicate how to handle the actual spin. Section VI
contains a discussion of the connection of the Regge
formalism to various low-energy models.

II. ANALYTICITY PROPERTIES OF AMPLITUDES

For definiteness we call the process #t+d— p+p the
s reaction and $+d— p+=— the ¢ reaction. Since we
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shall spend most of our time working with the ¢ reaction,
we denote the four-momenta of the particles'® in this
reaction by p, d, p, and ¢, in corresponding order. The
Mandelstam variables are defined as s=(p—p)?
t=(p+d)?, and u= (d— p)?, with s+i4u=2m>4 M+ pu?
=3, and where m, M, and u are the masses of the proton,
dueteron, and pion, respectively.

Since the #- and #-channel reactions are identical, so
are their singularity structures. It will be sufficient for
us merely to study the singularities in s and ¢. Through-
out this paper it is understood that all the results
obtained in the / channel apply to the # channel as well.

A. Full Amplitudes

The singularity structure of the full amplitude and
the s-channel partial-wave amplitudes for the reaction
7t+d— p+p have been studied in detail by
Vasavada.? We shall not consider the normal threshold
singularities, except for listing them at the end of this
subsection. The formalism for the anomalous threshold
singularities utilizes a rather lengthy examination of
various graphs. One finds that there is only one anoma-
lous threshold in s, while two are present in ¢ (or #).

The general methods and criteria to determine the
singularities associated with Feynman graphs have been
developed by Karplus, Sommerfield, and Wichmann
and by Landau.” To facilitate our discussion, we sum-
marize their conditions and general formulas for the
anomalous singularities associated with triangle graphs
in Appendix A.

The anomalous singularity in s arises from the graph
shown in Fig. 1. Using Eq. (A3), we get

Sa=M?*+u*— M2/ 2m?
1 (M) 2m) [ (42— M) (dm?—
zMZ_“(M—A-[’a) ’

2)]1/2
(2.1)

where @*=mB and B is the deuteron binding energy.

There are two anomalous singularities in ¢ that are
associated with the graphs shown in Figs. 2(a) and
2(b). Again using the formula (A3), we obtain

ta=m2+ M2/ 2m?
+ (Mu/2m?)[(4m*—
~m+2u(u+2a)

M2)(dm2—pu?) ]2
(2.2)

F16. 1. Graph that gives rise to the
anomalous threshold at s=s,.

16 We use the metric p%= po®—p?; |p| is also denoted by p.

17 R. Karplus, C. M. Sommerfield, and E. H. Wichmann, Phys.
Rev. 111, 1187 (1958), 114, 375 (1959),L D. Landau, Nucl, Phys.
13, 181 (1959)



Fi1c. 2. Graph that gives rise to the
anomalous threshold at (a) f{=#, and
(b) t=4,".

and

ta' = m242M 22/ m?
+ (2 /)Lt — M =) ]2
~m*+8u(u+a). (2.3)

We summarize the singularities of the full amplitude
as follows:

(a) There is an anomalous threshold at s=s,, a
normal threshold at s=4m? a physical threshold at
s=(M+u)?, and higher physical s thresholds.

(b) There is a pole at t=m? two anomalous thresh-
olds at =1, and {=1{,’, a normal threshold at = (m-+u)?,
a physical threshold at ¢= (M -+m)?, and higher physical
¢ thresholds.

B. Partial-Wave Amplitudes

The right-hand cuts of the s- and ¢-channel partial-
wave amplitudes are the same as described above in
(a) and (b), respectively. We shall only discuss some of
the important left-hand cuts. The general formulas to
obtain them are rederived in a simple way and given
in Appendix B.

For the s-channel partial-wave amplitudes we list the
following singularities:

(a) The pole at {=m? gives rise to a finite cut from
s=s, to s=s_, where

sp= M2 p2— M2/ 2m?
£ (Mu/2m))[(4m*— M*) (dm*—pH) ]2, (2.4)

(b) The normal threshold cut starting at ¢= (m—+u)?
gives rise to a cut that can be conveniently described
by the functions

SE1) =5E—0+(1/20) (m*—p*) (M*—m?)
£ (1/2)[NEm* w)Nt;m* M) ]2, (2.5)

where
)‘(x)y7z) = x2+y2+2:2“’ 2xy* 2)’2- 22x.

This cut starts at s=S+[(m+-u)?] and becomes complex
and symmetrical about the real axis for S*[(M+m)%]
<s<St[(m+w)?], finally becoming real again for
sSSHL(MH+-m)?]. ' ‘

(c) The anomalous cut from ¢=t¢, to t=(m+pu)?
generates a cut from s=S*[(m—+u)?] to s=S5*(1,).
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For the t-channel partial-wave amplitudes we list the
following singularities:

(a) a cut from ¢=— o to =0 that is always present
if the initial and final channels all have unequal masses;
(b) a cut with branch point at

t=t,=m?+ M?%u2/2m?

£ (Mp/2m*)[(4m*— M) (4m*—p*) ]V, (2.6)

which is generated by the pole at u=m?;
(c) a cut that can be traced by the functions

T(0) = H(Z— 1) — (=) (M2 — )/ 20
e (1/20) DA N, M) 12,

which is generated by the threshold cut at = (m+u)2.
This cut is real at =T+ (m+u)?], becomes complex
and symmetrical about the real axis for 7*[(m-+M)?%]
<t<TH[(m~+p)*¥], and becomes real again for
ISTH (m+M)*];

(d) a cut with branch points from ¢= T+ (m+u)%]
to t=T%(u,) generated by the anomalous cut from
u=1u, (numerically the same as {,) to #=(m-+u)?; and

(e) a cut starting at #=3(M2+pu2— 2m?), which then
becomes complex and symmetrical about the real axis
until %< (m?—My), and which is generated by the
s-channel normal threshold cut at s=4m?2.

In passing, we note the very interesting fact that the
rightmost left-hand branch point sy, given by (2.4) for
the s-channel partial-wave amplitudes, coincides with
the Jowest right-hand branch point s,. Similarly, for the
t{-channel partial-wave amplitudes, £, coincides with
te. This results in the rather unfamiliar situation of
having the whole real axis covered by cuts for the
partial-wave amplitudes. One may wonder whether
this situation always occurs in amplitudes possessing
anomalous singularities. It turns out that this is not
the case (an example is 7w — dd). It is quite easy to
show, however, that this situation will occur whenever
the external masses and the mass of the cross-channel
pole satisfy certain constraints. The proof is given in
Appendix B.

III. HELICITY AMPLITUDES AND
KINEMATICAL SINGULARITIES

Since we shall Reggeize the ¢-channel amplitudes, we
first construct the helicity amplitudes in this channel
and derive their relationship to a set of invariant
amplitudes. In the /-channel c.m. system, p is chosen
along the positive z axis and p is taken to lie in the
xz plane. The scattering angle is defined by z=cosf
=p-p/pp. The following expression is very useful later:

cost=(1/4pp)[(s—u)— (M*—m?*)(m*—p*)/t]. (3.1)



174

A. Helicity Amplitudes and Invariant Amplitudes

From Lorentz invariance we can write the amplitudes
in the form

Fr=a(p)M -ev(p), (3.2)
where 7%(p) and v(p) are the Dirac spinors for the proton
and antiproton, respectively. The 4X4 matrix M -¢ is
a Lorentz scalar constructed out of particle momenta
and Dirac matrices!® and is linear in the polarization
vector of the deuteron,' denoted by e. With the
consideration of parity conservation and a little
manipulation of the Dirac matrices, it can be shown
that there are six linearly independent invariants. We
shall use a set of invariants for M - € as follows:

6
M'€=Z Azll

=A:(e-p)+As(e-p)+As(y- )+ Au(y-d)(v- €

+A45(y-d)(ep)+As(y-d)(ep), (3.3)
where the A; are functions of the invariant variables
s, t, and %. The function M, is essentially the same as
the M function introduced by Stapp.? The basic
analyticity assumption is that the M functions are
analytic functions of the components of the momentum
vectors, except at dynamical singularities. It follows
from the work of Hepp and of Williams?' that the
invariant functions 4; are free of kinematical singu-
larities, except for the possibility of simple poles at
o(s,t)=0, where ¢ is the Kibble boundary function.??

Now if we put the helicity spinors u,(p), ,(5), and
e into (3.2) and (3.3), the F\, \», obtained are just the
helicity amplitudes defined by Jacob and Wick, apart
from normalization.?® After some algebra we have (we
use == to stand for A\,==3 or Ap==3)

Fy 11=—% sinf(12-cos)!/2p
X[(E£G1—G2) Ao+ (£G5+Ge) 4]
+(1Fcost) 1 2[(FGs+ Gy A3

+(£G1—G)A4], (3.4a)

18 The Dirac matrices used here are the same as those used by
S. S. Schweber, An Introduction to Relativistic Quantum Field
Theory (Row, Peterson and Co., New York, 1961).

191n the rest frame of the deuteron, the spin states can be
characterized by €%, where ¢=(g4,0) with g*'=(£449)/V2
and g°=2. The helicity states in the f-channel c.m. system are
given by e¢=R[ei"/v]B(—d)é*, where B is a boost taking the
rest deuteron to a state with momentum —d and R is a rotation.

20 [, P. Stapp, Phys. Rev. 125, 2139 (1962).

21 Xlaus Hepp, Helv. Phys. Acta 37, 55 (1964); D. N. Williams,
University of California Lawrence Radiation Laboratory Report
No. UCRL-11113, 1963 (unpublished).

22T W. B. Kibble, Phys. Rev. 117, 1159 (1960).

23 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
The amplitude F that we used is related to the S matrix by

Sed,ab(s,8) —8cd, ab :

= (2m)*8(pe+pa— pa— pb) (Pacpsopeopao) M2 F eg, av(s,1).
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Fy ro=(1/V2M)(12cosh)!/?
X { (G1:FG2) [ﬁwA 1+ (ﬁ;bo‘i'dop COS@)A 2]
+V2(G1=£Ge) A3 —V2(GsF Gy) A s+ (£ G5+ Go)
X [pwA s+ (Ppotdop cosd)Ae]}, (3.4b)

F:t,—{-—l: %\/7 Sinﬁp

X [(£G1—G2) A+ (£Gs+Ge)Ade], (3.4c)
where w=+/f and the G’s are given by
G1,o=(1/2m)[(poF m)(potm)]'2,
Gs,a=(1/2m)[(PeFm)(poFm)]'2, (3.5)

Guri=G{w—(—1)'m],

The other six helicity amplitudes are related to the
above set by parity conservation, i.e.,

F—)\p,—)\ﬁ—)\d(s;t)‘: 77(_ 1))\1’_)\;’+)\dF)\p,)§\d(s)t) ) (36)

where n="n.mmpna(— 1)*~r*r=524= —1 and 7,(s;) is the
intrinsic parity (spin) of the particle i.

The partial-wave expansions® for the helicity ampli-
tudes are

Froama(s,0)=2 QI+1DFy am g’ (w)dr7(0), (3.7)
J

i=1,2,34.

where A=X\,—Ar, u=NAs—\,, and dy,7 is the d function
for the rotation group. The reason that we use w rather
than ¢ as the variable for FV is due to the existence of the
MacDowell symmetry?*; w is the proper variable for
studying F”.

B. Kinematical Singularities

We follow the general method for Reggeization of
amplitude with spin developed by Gell-Mann ef al.? to
form the parity-conserving amplitudes. These ampli-
tudes have the advantage that they are asymptotically
dominated by a Regge pole of definite parity. They are
defined by the rule

f)p,)\ixdiE (\/7 COS%@)_”"H"(\/Z Sin%0)~l)‘_"’F)‘p,)\5)\d
=+ (— 1)M1(VZ sind )= Petul

X (\/2_ COS%@)"“”‘"“IF_)\?,)‘T,)\d , (38)
where A,=max( [A],|x] ). Thus we have
f]_ = _A2P(G1 COS@'-Gz)
—243G4—24.,Gs— A GP(GS C059+G6) , (393)
f1_= —A 2?(G1*‘ G2 COS@)
—24 303— 24 4G7—' A GP(G5+G3 COSO) y (39b)
Jot=(VZ/M) pw(A:G1+ AsGs) + AsGst- M244Gs
+ (ﬁﬁo","dop COSG)(A 2G1+A aG5) y (39C)

24 S, W. MacDowell, Phys. Rev. 116, 774 (1958); J. D. Stack,
Ph.D. thesis, University of California, Berkeley, 1965 (un-
published).

2% M. Gell-Mann, M. Goldberger, F. Low, E. Marx, and F.
Zachariasen, Phys. Rev. 133, B145 (1964). Note that there is a
gnis&rsil;t in the formula for e; 3/~. The correct expression is given
in (4.3).
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foo=(2/M) pw(— A1Go+ A 5Ge)+ A3G1— M24,G3

+ (Ppotdop cost)(— A:Gat+A4Gs), (3.9d)
J-rt=ApG1+AepGs, (3.9¢)
J-1r=—ApGot+ AepGh (3.9f)

where we define f,*= fy 1, *. As functions of w, the
G’s have the following properties:

Gi(w)=—Gipa(—w),
Gi(w)=Gia(—w),

Hence we see explicitly that the amplitudes fi,* have
the MacDowell symmetry, as expected:

Sra(sw)=(=1MA7(s,—w)

The implication of this symmetry relation on Regge
trajectories and residue functions will be discussed later.

The amplitudes f,,¥ do not have any kinematical
singularities in s, by construction. Their kinematical
singularities in w are almost explicitly displayed in (3.9).
Before going any further, we remark that because of
the symmetry (3.10), any kinematical factor K(w)
contained in f+(s,w) implies a factor K(—w) in f~(s,w),
and vice versa. This observation serves as a useful check
on the general results giving kinematical singularities
for boson-fermion amplitudes obtained by indirect
methods. Indeed, we have found that the kinematical-
singularity factors for a general BF — BF amplitude
obtained by Hara and by Wang? are incorrect, since
their prescriptions do not satisfy this criterion. The
kinematical singularities of f5,* are extracted as follows:

i=13
i=51.

(3.10)

f)\di(S,ZU)EK)\di(‘ZJZ))f)\di(S,’LD) ) (311>
where
K (w) = Ko*(w) = (1/w)[(wtm)*— M*]1"
X [(wam)?—p2]'2, (3.12)
K_1*(w)=(p/w)[(wFm):—M*]"*
X [(wam)i—p? V2, (3.13)

the functions A,*(s,w) being free of kinematical
singularities in both s and w. Our results (3.12) and
(3.13) agree with those obtained using the general
formulas worked out by Cohen-Tannoudji, Morel, and
Navelet and by Jackson and Hite.?”

IV. REGGE REPRESENTATION
A. Analytic Continuation in Angular Momentum

To proceed toward the Regge representation of the
amplitudes f* we start with their partial-wave ex-
pansions,? which are readily obtained from (3.7)

26Y. Hara, Phys. Rev. 136, B507 (1964); L. C. Wang, <bid. 142,
1187 (1966).

27 G. Cohen-Tannoudji, A. Morel, and H. Navelet, Saclay
Report (unpublished); J. D. Jackson and G, E, Hite, Phys. Rev.
169, 1248 (1968).
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and (3.8),

fxd*=}; QI+ Dlep i (@) P (w)
tein @A T @)1 (41)

The parity-conserving  partial-wave  amplitudes

F\,”*(w), which connect states of parity =4=(—1)’"1/2
are given by
(4.2)

F\JE=F nJFF_ 0,

The functions e\,/%(z) are defined in Ref. 25; for our
purpose we only need to know the following relations
to Legendre polynomials:

ey E=Feylt=—Pr(2)/N2(J+3),

b3

ey s =Py () NI+ IO~ DT+,

From (4.1) it is evident that F),7*(w) possesses the
same MacDowell symmetry as does fi,%(s,w),

By (w) = (— DMEF(—w).

(4.3)

(4.4)
The inversion formulas of (4.1) are?
1 rldz
Fr)= / — (=1 Py (&) (5)
+PJ:I:%(Z)fi:F(syw)] ) 1= 1’0 (4'5)
[iG+2)3
= | 4
2V2(21—1)J 1
X[ Pra(z) = Prya(8) ] f-1%(s,0)
Le+2T
2v2(21+-3) ),
X[PL(Z)—P1+2(Z):|f_1:F(S,‘ZO) ’

F_I.I:t(w)

2

(4.6)

where for convenience we define /=J—3%. Equations
(4.5) and (4.6) can be readily continued analytically
into the complex J plane by the Froissart-Gribov
procedure if we assume that the functions fi,* satisfy
the Mandelstam representation with a finite number
of subtractions. As usual we must continue the even
and odd (J—3%) partial waves separately in order to
allow the Sommerfeld-Watson transformation to be
made. Let 4,, .+ and 4,,,.* be the spectral functions
for fi,*, so that

f)\diz—

T s'—s

1 /“" ds’ Axgs=(s',w)

a

4.7)

u—u

1 /” du' Ay g ,w)

™ a

Putting (4.7) into (4.5) and (4.6), we obtain the J-
continued  partial-wave amplitudes of definite
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signature o,

Piro(u) = K #w)(— 14fit4o ()

+ K F(w) f;(HDF o (w), i=1,0 (4.8)
1(142) ]
I-{‘—IJj:,a'(w) — K_li(w)[: ( )§~f—1(1_1)i’_”(w)
2141
[+2)]
@ ), @)
2143
where fy,'*° is defined by
fkdliﬂ: _/ ds’ Ay g, (5" w)3V2
2rpp Jsq
. XL[Qu(z) = b-10aQ112(2) ]
+a _/ du' Ay gt w)iV2
ZWPP Ua
X[Qi(z) = b_100112(2)].  (4.10)

The amplitude F),/=° agrees with the physical ampli-
tudes at values of J given by J=2r+¢!/2 with # an
integer.

B. Asymptotic Form of Amplitudes

Following the method of Mandelstam,?® we rewrite
the expansion (4.1) as

hit= 3 T+

XATEw" 2) (= 1) -2, 74 (=) I3, 7 ()
+LBT0) = (— )BT (—5) Iy 72~ (a)
+ = (2) — (= DMy T=(—5) D2 ()

+LEWT () + (= DIH2E T~ (—2) IR T ()},
(.11)

where A=3%, u=31—),, and FE,,/*(z) is the function
obtained from e,,/%(z) by replacing P; with ®,= — (1/7)
Xtanlr Q_;—1. The summation in J runs over all half-
integers. In obtaining (4.11), we have used the fact?
that Ej;5,’*=0 for negative half-integral J and
Iy s T=e;32,’* for positive half-integral J. Now
we convert (4.11) into a contour integral by replacing

w dJ
> with —34 /
c

)
J=—c0 cosmJ

with the contour C enclosing the whole real axis. The
Regge poles are contained in Fy,/*:°, with quantum
numbers =%, B=1, parity &, and signature o. The
leading trajectories with o positive are N, and Ng, and
with o negative they are N, and N;. In the Chew-

28 S, Mandelstam, Ann. Phys. (N. Y.) 19, 254 (1962).
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Frautschi plot NV, is lower than N, by about $#; hence
in practice we neglect the contributions from N, and N;
at high energies. In fact, good fits®?® have been obtained
for the backward =NV scattering by retaining only the
nucleon trajectory for =% exchange. Furthermore, for
large z, E/+ dominates over E/~ asymptotically by a
factor 2, so that the latter is also negligible. Thus, as
we expand the contour C to infinity, throwing away
everything but the moving poles at the far left, only
the first term of the curly bracket in (4.11) remains:

Zad;}— 1
™ (o) BrFEy 3007 (2).
CosTa .

At (s,w)= (4.12)

Here the ay(w) denote the trajectory functions of NV,
and Ng, respectively, and the 8\,=(w) are the residue
functions defined by

@)= lim [J—au@Ih, @), *13)

with
n(ay)=3(14- g ir(ax—1/2))
The MacDowell symmetry (3.10) implies that
(4.14)

ay(w)=az(—w)
and

Brat(w)=(— 1B\ (—w). (4.15)

From (4.8)—(4.10) we see that the residue functions have
the following factors of @ and kinematical singularities:

BiF(w) < K& (w)(pp)e=172,
B-1*(w) = K_1*(w)
X[(ox—3)(art3) ]2 (pp) =512

Furthermore, since we consider ay to be the leading
trajectory, B, (w) must vanish®?® at the point when
a4 (w) passes through a negative integer. Hence we can
define reduced residue functions that are suitable for
parametrization in data fitting as

vit(w)=(—1)(2/m)"*8:+(w) [ (ex+1)/
K& (w)(pp)e=172,
vrH(w) = (2/m)*B1H(w) T(azt1)
X[(er—3)(axt+3) 1%/
K_y*(w)(pp)e=".

Putting the asymptotic form?® of the E functions and
(4.17) into (4.12), we obtain the Regge representation

i=1,0

(4.16)

i=1,0

(4.17)

29V, Barger and D. Cline, Phys. Rev. Letters 19, 1504 (1967).
30 The asymptotic form of the E functions are

et ((2Y T D)
B, e~ 2) et ggein,

_— - g 12 o —IN 12T (a41) —
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for the amplitudes

n(as)
+ -
JHsim) T(ay+3) cosmay
X KA w)yE(w)se=12, =10 (4.18)
oy)(2a.—1
f_li(s,w)= 71( :t)( £ )

T(ay+3) cosmay
X K 1= (w)y_1t(w)se=32.  (4.19)
The factor 2a.—1 in (4.19) is due to J=3% being a

sense-nonsense transition point for these amplitudes;
hence the nucleon pole is not present. The factor

,ﬁ\p )‘p)\dl

do T (do) 1
dt 2pip\dQ) 3 Swsp2 A
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n(@)[T(a+3%) cosma vanlshes at nonsense wrong-
51gnature pomts (a=—%,—3, -+) in the same
way that gives the dip phenomenon in backward =V
scattering. It has been argued by Mandelstam and
Wang?! that, in general, because of the existence of a
fixed pole at a nonsense wrong-signature point, one does
not expect to observe dips unless the third double
spectral function is small. However, from the experi-
mental fact that the dip in backward =V scattering is
very prominent, factorization leads us to believe that
an observable dip should be present in our reaction.

Using the Trueman-Wick crossing matrix,?? we obtain
the formula for the differential cross section of the
mt+d— p-+p reaction:

= (1/6msp:®) ( [sing6|>+ [ cosi8 L | fras T+ | fra|?
+ | fraot 2| frao [+ | sing| ([f++~+|2+|f++-_|2)]

+(1/3msp2) (| cos3b|2—|singf|?) Re(fo 44T forts™™F fraot o™ — [sinf|2fy T fr %),

where p; (p;) is the initial (final) momentum in the
s-channel c.m. system.

C. Asymptotic Behavior at {=0

The asymptotic behavior of the helicity amplitudes
for large s at =0 is worth a few words. Let us first
invert the relation (3.8); we get

Fy = (1Fcost) *(fit£fr), (4.21a)
Fy vo=(12cost) 2 fe=t fo*), (4.21b)
Fy _=sinf(12cost)2(f_r£f). (4.21¢)

As is well known, in the narrow strip between cosf,=1
(85 is the s-channel scattering angle) and ¢=0, the
quantity |cosf| is bounded by unity no matter how
large s is. From the work of Freedman and Wang,? we
know that the power behavior of the amplitudes f* in
(4.18) and (4.19) is preserved even at {=0. One is
tempted to conclude that the asymptotic behavior of
the helicity amplitudes at {=0 will at most go like

(4.22)

A careful examination shows that this is not correct.
From (3.1) it is seen that as £— 0 for large s, one has

cosh0 Lot/ (M= m?)(mi— ) ],
sinf~1.

On the other hand, from (3.11) we know that the func-

Fj:,+)\d’\’sa—[ 1/2—\d| .

(4.23)

31 5. Mandelstam and L. L. Wang, Phys. Rev. 160, 1490 (1967).
a 93264T) L. Trueman and G. C. Wick, Ann. Phys. (N Y.) 26, 322
3 D. Z. Freedman and J. M. Wang, Phys. Rev. 153, 1596 (1967).

(4.20)

tions wfi*(s,w), wfo*(s,w), and w?f_1*(s,w) can be
expanded in Taylor series at w=0 for a fixed s. Taking
f1E, for example, using (3.10) and (3.12), we can write

1 oo
fir(sw)==—2 [ (Hwr(FE1)".

w n=0

(4.24)

Using the Regge representation to calculate the right-
hand side of (4.24) and putting the result and (4.23)
into (4.21a), we obtain the following in the limit w— 0:

Fi 4 1(5,0)=2f1D(s)~(C1+Cso Ins)s*=1/2 (4.25a)

F_ 4(s,0)~—2[s/(M*—m?)(m>— u) ]'*
X f19(s)~s*. (4.25b)

Similarly, we obtain

Py ols,0)~s®, (4.25¢)
Foo(5,0)~(Cs+Cia Ins)sa—1/2, (4.25d)
Fy 4 (5,0)~sa1i2, (4.25e)
F_ _(50)~(Cs+Cea’ Ins)s>—1 (4.251)

where the C’s are constants, a=a(0), and o’=da(0)/dw.

Note that the power in s for each amplitude is exactly
equal to a—%|A—g|. It is easy to show that the s-
channel helicity amplitudes, denoted by Gyp,an,, have
the asymptotic behavior like s* 3=+l with N'=X\;—\,
and u'=X\—M\g.

V. NUCLEON-DEUTERON REGGE RESIDUE

From factorization we can decompose the residue
function 8y, as

ﬂ)\“zﬁ)\ﬂ'ﬁ#d (5.1)
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where B8\* and B,? are the residue functions for the
m-N-N and d-p-n vertices, respectively. Since the bind-
ing energy of the deuteron is extremely small, the
impulse approximation will be very accurate. In this
approximation, the dominant reaction mechanism is
that in which the incident pion interacts only with one
of the nucleons within the deuteron. In S-matrix calcu-
lations, this is equivalent to assuming that the anoma-
lous cuts are the dominating singularities in the nearby
region. In the following, we calculate the d-p-n residue
function in terms of the 7-N-N residue function by
assuming that the anomalous singularity associated
with Fig. 2(a) is the dominating one. The anomalous
singularity associated with the graph shown in Fig. 2(b)
is presumably very weak because the w-r scattering
amplitude is small near threshold.

We shall ignore the spins of the nucleon and deuteron,
which merely complicate the algebra. The mass differ-
ence between the proton and neutron is also neglected.
At the end we shall outline how to treat the actual
spin case.

Referring to Fig. 3, we apply the Cutkosky rules* to
write the discontinuity of the amplitude across the
anomalous cut, denoted by [F(s,f) ]..c.:

G
[F(srt)]a.c-=‘g—/déq2

2w

Xo(q*—u*)o(g*—m*)8(qs’—m*) Fan(5,0),  (5.2)

where F.y is the pion-nucleon scattering amplitude and
3=(gs—q)% Here g and G are the 7-N-N and d-p-n
coupling constants, respectively. We change variables
by using

d4gs=dq:%dgs?dqs2ds J (5,5,6)0(J) , (5.3)
where J-2=det|2g;-q;|, with 7,7=1,2,3,4 and qs=¢3—q.
We obtain

[F(S’t)]a.c.=

gG(4mi)! 5+
[_—)‘(t,M27m2)Jll2 ./;._
F ,rN(S‘,L‘)
X ,
[G+—38)(E—8-)]"
where 3. are the two roots for § of the equation
det|qg;-g;| =0. We are only interested in the asymptotic

expression for §. at large s such that sS>M? and s3>,
which takes the form

5.~s(1—b/a)
=+ (s/a) [0+ 4atm?— a(M>+pu2—2m?) 212,

where

(54)

(5.5)

a(t) =\(t,M 2 m?)
and

b() = (M=) (u= 2m)+ MM —m*—1)..

% R. E. Cutkosky, J. Math. Phys. 1, 429 (1960).
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Fic. 3. Diagram for calculating .
the discontinuity.

For large s and fixed £, 3, increases linearly with s.
Hence we can use the Regge representation for both
F(s,t) and F.n(3,t) in (5.4).

Following the method employed by Cutkosky? in
calculating the deuteron form factor, we can write (5.4)
approximately as

P~ ——gG a0 " g ) (5.6)
(s, ~ gk fa /;_ 5 e ©
where
1 tn=(m+pu) 1
fd(t)E—f dt'[_)\(t/,Mz’mz)]—uztl t

= f(t7t">_f(tata) ) (57)
with
f)=La(@®) ]

Xsin_l[a(t)—{—(t—Mz_mz)(t——t)] a0

2Mm(t—t')
=a(t)/(t—M2—m*)(t—1) if a(t)=0.

In (5.6) we have ignored those terms arising from the
pinching of the § integration between &, and the singu-
larities of Frx(3,f) in 5. With the amplitude F.x approxi-
mated by its Regge asymptotic form (legitimate for
large s), those terms do not arise.

We write the Regge representations for the ampli-
tudes F and Fry as follows:

1— g—ima(t)
F(s,t) =———B"(Bt)s>®,
sinra(f)
{— g—iralt) (5.8)
Fan(s,t)=— (8O Jrs=®.
sinmra(f)

Putting (5.8) into (5.6), we obtain (with x=§/s and
%y =34/5)

1 o
0= ——£C 0B / da

xa(t)

X .
[@r—2)(x—2) ]

The integral in (5.9) can be calculated numerically if
a() is given. Physically the most interesting region is
for small and negative #. In this region we see from (5.5)
that |§,—35_|<<|54+5-| ; hence we can approximate the

(5.9
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integral in (5.9) by replacing x* with (1—3/a)<. Finally,
we obtain

B =—3gGfa(H(1—b/a)=p~(1).  (5.10)

We outline briefly the procedures to treat the spin:
With spin included, the amplitudes corresponding to
the graph shown in Fig. 3 can be written

gs+m
912—u2+i;
% (Gsy-e—Gpga €)(—gatm)

(g2 —m>+ie)(gs® —m?*+ie)

g .
S,t)= 72 4 2L 2N 1/2 -,
Pep=ap)| #0060

]m@, (5.11)

where Gg and Gp are the S- and D-wave d-p-n coupling
constants,3® and F,y1/2(5,f) is the pion-nucleon scat-
tering amplitude with isospin /=% in the ¢ channel.
Applying the Cutkosky rules to (5.11), we have

[F(s,t>]a.e.=—2§~,ﬂ(p)[ / digs Fox 19 (3,)
e
X (gs+m)(Gsy- e—Gpgs- €)(—qot+m)
X 8(q1®—u?)d(ge2—m?) 5(qs2~m2)]75v(§) . (5.12)

The 6 functions ensure that only the on-shell values uf
F.nx will be needed. In terms of the usual 4 and B
amplitudes, F,y is given by
FWN(I/Z)(S'J) =4 (1/2)(§’t)

+3gHy F-@)BADGY. (513)
Putting (5.13) into (5.12), we have only three types of
integral to carry out, namely,

I= /d“qg DR(s,0), (5.14a)
I,= f ‘g DR(,1)q,, (5.14b)
I;w= fd442 DR(§7t)g2Mq2V) (514C)

where D= §(q:12— u?)8(g22—m?2)8(gs>—m?) and R can be
either 4 or B. Using their Lorentz-covariant properties,
it is easy to reduce the last two types of integral into
the first one. Taking I,, for example, since the three
4-vectors g, d, and p are coplanar, we can write

I,=Jd,+JTsp,. (5.135)
Reducing (5.15) to I-p=J(d-p)+Jem? and I -d=J ,M?

% R. Blankenbecler, M. L. Goldberger, and F. R. Halpern,
Nucl. Phys. 12, 629 (1959).
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+J(d-p), we solve for Jy and J:
- (2m2— u?) (t—m2—M2)+2m2MZI
Nt,M?*m?)
1+ 3m2— M2 — 22
NE,M2m?) r

)

]2=

We can write I, as
I}w=]3g,uv+J4dydv+JBﬁuP-v_}_JG(ﬁﬂdv—*_duﬁv)

and solve for J3,- - -,J¢ in terms of 7 in a similar way,
which we shall not elaborate. Now the integral I is of
the same type as that in (5.2) and hence can be handled
just as in the spinless case.

For the remaining job, we must form the parity-
conserving amplitudes for F(s,) in (5.12); they in turn
will depend only on the right parity-conserving IV
amplitudes. Thus we can obtain the expressions for
the Regge residue functions B,% separately for the
trajectories a..

VI. LOW-ENERGY MODELS

Through the recent development of finite-energy sum
rules, it has been recognized that the Regge representa-
tion, when extrapolated down to the low-energy region,
still describes the actual amplitude in an average sense.?
On the other hand, amplitudes at low energies in general
can be represented very well by the direct-channel
resonances using the Breit-Wigner form. Thus there
exists a connection between the high- and low-energy
parameters. With the duality concept introduced by
Chew and Pignotti,' one can see how a smooth transi-
tion is achieved from the single Regge-pole representa-
tion to the multiple Regge-pole representation and
conversely. We shall employ this duality concept to
relate the various low-energy models, used previously to
study the reactions nt+d % p+p, to the Regge model.

Consider the double Regge-pole representation for
the amplitude of the reaction N4+N—N+N-+m as
shown in Fig. 4. In addition to the pion trajectory, any
meson trajectory that communicates with the NN
system can also be exchanged. However, since we are
interested in the region with small subenergy sy of the
two outgoing nucleons, pion-trajectory exchange will
probably dominate because of the small mass of the
physical pion that enhances the Regge residue. The
left-hand portion of the diagram shown in Fig. 4
(including the middle vertex) can be viewed as either
the NV amplitude with one external line Reggeized or

//
N b
N T N\\j

F16. 4. Double Regge-pole
exchange diagram.
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roughly as the d-p-n Regge residue if syy=M2. A similar
statement can be made for the right-hand portion of the
diagram. Hence the final-state interaction between the
two nucleons can be described approximately by the
pion-trajectory exchange, whereas the final-state inter-
action between the pion and the “adjacent” nucleon can
be described by the nucleon-trajectory exchange. In-
deed, a recent study?®® of the pion-nucleon amplitudes
using the finite-energy sum rules with nucleon exchange
confirms this point of view. Thus we see that the final-
state interaction models proposed by Rosenfeld, Gell-
Mann, and Watson® and by Mandelstam? are consistent
with the Regge formalism.

If we fix the subenergy at syy=M? and integrate over
the momentum transfer carried by the 7 trajectory, the
result corresponds to a Reggeized version of the OPE
model (see Fig. 5).1° As for the one-nucleon-exchange
model,!! it can be considered as an approximation
(though it may not always be an adequate one) to the
single Regge-pole exchange formalism.

Several authors!?~!* who study the pionic-disintegra-
tion reaction via dispersion relations have also at-
tempted to calculate the anomalous-cut contribution.
A practical problem that arises in this approach is the
approximation of the pion-nucleon amplitudes that

Fic. 5. Double Regge-pole exchange
with the two outgoing nucleons combining
to form a deuteron.

appear in the discontinuity formula. We would like to
point out that the calculation is much simplified by
using the Regge asymptotic form for the 7V amplitudes,
as is done in Sec. V.

To summarize our work, we have set up a Regge-pole
formalism for the pionic-disintegration and pion-
production reactions. We hope that this will facilitate
data fitting at high energies for these reactions. We are
able to calculate the d-p-n Regge residue in terms of the
m-N-N Regge residue by assuming that the lowest
anomalous singularity in the ¢ channel dominates the
small-t region. The method that we employed can also
be applied to many other reactions involving loosely
bound particles, such as elastic =d scattering.
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APPENDIX A

Anomalous threshold singularities are the singularities
that lie below the lowest normal threshold on the
physical sheet. We summarize here the conditions that

F16. 6. A general triangle graph.

must be satisfied for the existence of anomalous singu-
larities of a triangle graph shown in Fig. 6. Let

c*tet—a? d*+e2—b? c2H-di—t¢
e 2e 7= 2de - 2d
Then, if the conditions
[yval <1, [9s] <1, (A1)
cos~ Yy, +cosly, >, (A2)

are satisfied, an anomalous singularity in ¢ exists and
is given by
cosly,= cos™ly,+cos™ 1y,
or
ye=3ays—[(1—=a")(1—ys) 2. (A3)

APPENDIX B

The methods used to obtain the left-hand cut singu-
larities of partial-wave amplitudes are well known.
Special cases have been studied by many authors, and
a general treatment has been given by Kennedy and
Spearman.?” We shall present here a somewhat different
method that reproduces the general results easily.

Consider the partial-wave projection for the ampli-
tude of the reaction a+b— c+d:

1

dl(S) = A(syzs(s:t))Pl(za)dzs

-1

1
= / A(5,35(5,2)) P1(3,)d3s.

-1

The so-called left-hand singularities of a a; arise from
the pinching of the singularities of 4 in  or # with the
endpoints of integration. Hence these singularities can
be obtained from the following equations:

(B1)
(B2)

2i(s,tp) =1,
Z,(S,up) =1,

3 J. Kennedy and T. D. Spearman, Phys. Rev. 126, 1596 (1962).
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where f, (#,) are the positions of either poles or branch
points in the ¢ channel (# channel). In general, it is
rather awkward to solve for s directly from Egs. (B1)
and (B2). Instead, we employ the following observation:
The three manifolds defined by z,2=1 (x=s,t,u) all
contain the physical boundary surface defined by setting
the Kibble function ¢(s,f,%)=0,22 and they possibly
differ from one another only by surfaces of the form
x=0, depending on the mass assignments. It is evident
that s=0 is a solution of (B1) and (B2) if and only if
(a2—b2)(c2—d?) 0. Hence we can replace (B1) and
(B2) with two equivalent sets of equations:

2(S,0p) =21 (B3)
plus s=0 if (a?—0%)(c?—d?)=0;

2u(Sy1p) =1 (B4)
plus s=0 if (a®—5d%)(c2—d?)>0.

Taking (B3) as an example, with the f-channel c.m.
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scattering angle given by
4pacpra cost=(s—u)+(a*—c*)(b*—d*)/1,
we immediately get
s=3[(@+b- &) — 1]~ (a*— ) (b~ d%) /21,
+(1/2¢,) IN(Ep,0%, )N (Ep,0%d2) JH2. (BS)

Now we are ready to give the proof promised at the
end of Sec. II. Consider the s reaction ¢-+&— c¢4-d, and
let e be a pole in the ¢ reaction a+&— b+d. If the masses
of these five particles satisfy (A1) and (A2), then the
anomalous singularity in s obtained from (A3) will
coincide with the highest left-hand branch point
generated by e in the s-channel partial wave. A direct
application of (A3) gives

Sa=c2+d2+(1/2e%) [ \(e2,a% c®)\(e2,b2%,d%) ]2
—(1/2¢%)(c*+ e*— a?) (d*+ e*—b?).

But this is identical to the larger one of the two solutions
given in (BS5) with ¢,= ¢
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Extension of Axiomatic Analyticity Properties for Particles with Spin,
and Proof of Superconvergence Relations*

GILBERT MAHOUX{ AND ANDRE MARTINT
The Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790
(Received 25 March 1968)

It is shown that any regularized helicity amplitude that is known from axiomatic local field theory to
satisfy dispersion relations for —#<#<0 is in fact analytic in the quasi-topological product |¢| <RXs in
the cut plane with cuts s=C-+\, s= —¢—pu+C’, where A,u>0 and R is a fixed number. This is the extension
to the scattering of nonzero-spin particles of a result obtained in the scalar case. As a first consequence,
the Froissart limits are extended to all helicity amplitudes. Furthermore, it is shown that for —#,<¢<0
and s going to infinity, the regularized helicity amplitudes in the ¢ channel, with initial (final) helicities M\
and A (u2 and us), are bounded by Cst—max(AllsD) (Ins)? if A+ is even, or by Cst—max(M:lkD (Ins)? if N+ is
odd, where A=X\1—X; and p=pg1—us. This gives superconvergent amplitudes as soon as one of the spins is
larger than 1. The case of spin-O-spin-1 scattering is marginal, and in the absence of any detailed dynamical
information, one cannot obtain a superconvergent amplitude in that case.

I. INTRODUCTION

INCE the discovery of superconvergence relations,!

it has appeared more and more clearly that these
relations had a more general character than what was
indicated by their original derivation. In particular, it
appeared that current algebra had the only role to
supply a locality condition. Later on, superconvergence
relations were obtained without current algebra, but in

* Research partially supported by the Air Force Office of
Scientific Research and by The Institute for Theoretical Physics
State University of New York, Stony Brook, N. Y.

T On leave from CEN-Saclay, France.

1 On leave from CERN Geneva, Switzerland.

1S. Fubini and G. Segré, Nuovo Cimento 45, 641 (1966);
V. de Alfero, S. Fubini, G. Rossetti, and G. Furlan, Phys. Letters
21, 576 (1966) ; Ann. Phys. (N.Y.) 44, 165 (1967).

the framework of a Regge model of high-energy scat-
tering. Even this seems to be too restrictive. What we
want to do here is to try to see what survives if one
starts from axiomatic field theory and unitarity only.
The reason why it is not @ priori hopeless to do this is
that in the case of scalar particles it has been shown by
one of us (A.M.)? that local field theory and unitarity
are indeed sufficient to derive a bound on the forward
scattering amplitude |F(s, cosf=1)| <s(Ins)?* that was
originally derived by Froissart in the framework of
Mandelstam representation.?

We shall see that the main difficulty in this problem
is to prove the existence of a sufficiently big analyticity

2 A. Martin, Nuovo Cimento 42, 930 (1966).
3 M. Froissart, Phys. Rev. 123, 1053 (1961).



