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The 0 (4) symmetry of the nonrelativistic hydrogen atom is exploited in conjunction with Green's-function
methods as a tool for the solution of Coulomb problems. The Bethe logarithm, the principal contribution
to the Lamb shift, is treated by this means, and a rapidly convergent series is obtained. This is used to
evaluate the Bethe logarithm of the 1S, 2S, and 2P states, and a discrepancy with the most precise pre-
viously published value for the 1S state is indicated, The new value is 2.9841285 with an estimated un-
certainty of &3 in the last figure. The discrepancy is beyond the reach of experimental observation at
present.

I. INTRODUCTION

HK "hidden symmetry" of the nonrelativistic
Kepler problem, ' which accounts for the ac-

cidental degeneracy of the hydrogen atom, has been
known since 1926, when Pauli' showed that

A= (1/2m)(p)& L—L&&p) —Zcr(r/r) (1)

is an additional conserved vector (a Hermitian form of
the classical Runge-Lenz vector) for the system. Using
the algebra containing A, he was able to find the energy
levels of the hydrogen atom and to analyze the Stark
eGect, within the framework of Heisenberg's matrix
mechanics. Then, in 1935, Fock' showed that, working
in momentum space, one could project that space
stereographically onto the surface of the unit sphere in
a four-dimensional space in such a way that Schrodinger
integral equation becomes simply the eigenvalue equa-
tion for hyperspherical harmonics. This showed ex-
plicitly that the symmetry group of the hydrogen atom
is not the obvious 0(3) but actually 0(4) .

Except for some early applications based on Eq. (1),
the hidden-symmetry group spent many years as a
curiosity without much applicability. Then, in 1961,
Biedenharn' published an analysis of the 0(4) group and
advocated its application to Coulomb problems, a
program he is currently persuing. ' His methods are
based upon developing an operator algebra involving
both Eq. (1) and spin operators. The Pock representa-
tion was resuscitated by Schwinger' in deriving an ex-
plicit construction of the Coulomb Green's function.

It is a well-known experience in quantum mechanics
that, from the point of view of applications, it is useful
to translate the operator-algebraic (Heisenberg) for-
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malism to the wave-function-analytic (Schrodinger)
language. It is the essence of Fock's stereographic pro-
jection that it allows us to make use of the full symmetry
inherent in Coulomb problems in combination with the
powerful tools of analysis. The stumbling block which
has caused the neglect of this method seems to be the
dependence of the projection upon the energy of one
given bound state, which makes working within this
subspace much easier than going outside; this would
appear to severely limit the scope of the method. How-
ever, combining the Fock projection with Green's-
function techniques may oGer a way out of this dif-
hculty. For, while projected onto the sphere by making
reference to a given energy level, the Green's function
still retains information about all levels.

The purpose of this paper is to illustrate this idea by
exploring the Lamb shift (in the lowest-order, non-
relativistic, dipole approximation) of a given energy
level. After some preliminary remarks (Sec. II) to
establish the problem (and notation) we separate the
lowest terms which contain the divergent integrals
(Sec. III), and convert the remainder to matrix form.
In Sec. IV the mathematical structure of these matrices
is analyzed. Finally, in Sec. V, the numerical results
are obtained.

(E &)G=
I

I". I—G(p, p'
I
E)—p')

2m)

27r2

(dp")G(p",p'I~)
= b(p —p'), (2)

(p—p")'

in which we make explicit the dependence of G upon
the energy E. Restricting ourselves to E(0, we put

ps
——(—2m')'t'

) (p)= p"+p',

II. PRELIMINARIES

To establish notation and conventions we discuss the
pure Coulomb Green's function briefly, following
Schwinger. ' Using units A=c=1, the Green's function
in momentum space is the solution to
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so that by

——G
2m 2x2

(dy")G(y", y')
=8(y—y') .

(y—y")'
(5)

and the normalization constant is
We project the three-dimensional momentum space onto
the surface of the unit sphere in a four-dimensional
space (the Pock sphere) via,

-n(n —l—1)! 1-it2
&4'n&=

(n+l)! E(
(19a)

&=(2po/~)y, ~.=(po'-p')/l, (6) where

Et 7r/2 "——+'(l!)' (19b)
so that the 4-vector $= ((p, () is of unit length. It will be
useful to introduce spherical coordinates (the angle n
should not be confused with n=1/137):

$p= cosa!
~

$r ——sinn cos8,

(p ——sinn sin8 co&,
(p ——sinn sin8 sing. Z„(((x)Z„((n) srn'ndn= 8„„, (20)

(The phases have been chosen to make X i real and
positive; this is not the usual choice, nor from the
group-theoretic point of view the most natural choice,
but we find it convenient to avoid the factor i'.) The
functions Z„i(n) satisfy

The element of surface "area" is

dQ= sin'ndn sin8d8 dg= (Spp'/X')d'p

or, conversely,

which makes the F ~ (Q) a, complete orthonormal set
(8) on the sphere.

The expansion

(I/Po') (dy) =dQ/(1+ 4)'. (9)

Defining a, 4-vector $' corresponding to momentum y'

(but still with the same pp), we note that

(5—&')'= (4Po'/»')(y —y')', (10)

with X' defined for y' in analogy with (4). Making the
further definitions

D(Q, Q') = Q —I';~m(Q) I'pic(Q')*
rttm 2n

I'„(„(Q)V„i (Q')*
I'(Q, Q') = Q

1—v/nnlm

immediately gives the solution to (14):

(21)

(22)

v= Znm/pp,

D(Q,Q') = 1/4pr'($ —$')',

I'(Q, Q') = —(X'X"/16mpp')G(y, y'),

(12) E = —P '/2m = —(Zn)'m/2n' (23)

(13) and the residues in the E plane are the wave function

(11) the poles at i =n give the spectrum via (11) and (3):

we can rewrite (2):

I'(Q, Q') —2p D(Q, Q")I"(Q",Q')dQ"=8(Q, Q'), (14)

where the points on the Fock sphere are denoted 0, 0'
arid the 8 function is given, according to (9), by

8(Q,Q') = (~'/8po')8(y —y') (»)

4„,„(y)= Z„,l
tan —' —

l
I', (8A), (24)

p„

writing p„whenever we mean pp corresponding to the
energy level E„, and P „correspondingly.

To turn now to the Lamb shift, v the displacement of
the state nplpmp to second-order perturbation theory,
in the dipole approximation, is

We now introduce spherical harmonics

I'- -(Q) =Z- ( ) I'-(8,~), ( )
DE(nplpmp) =

4m'7f-' ~=I

(dk)

where F'i (8,&) is an ordinary spherical harmonic and
n, l, m are integers: n&1, 0&l&n —1, lml &l. The
repr'esentation (16)makes explicit the thr'ee-dimensional
rotation group O(3) which acts on y (and g, which is
parallel to y). The functions Z t(n) are

Z„~(n) = X„~(sinn)'C„i 'r(c+uo,)s, (17)

where C„~ ~'+' is a Gegenbauer polynomial, defined

X(nolomol y ey y ei,
l
nplpmp), (25)E,—k —EX

where k is the intermediate photon energy, H is the
Hamiltonian operator for the hydrogen atom, and eq is

S. S. Schweber, An Introdmction to Relativistic Qnantm~n Field
Theory (Row, Peterson, End Co., Elmsford. , N, Y., 1961).
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the photon polarization vector. In momentum space
this becomes

AE(n plpmp) =
4m'm'

(dk)
(dp)(dp) 2 (p'e )(p 'e )

k 1

X1l.„...(y)*y..„.(p')G(y, p'I E.,—k), (26)

where the Green's function G satisfies, instead of (2),

(E„, lp H—)G=—8(y —y'). (27)

Using e), k=0 and integrating over angles in k space
(26) becomes

In the following sections we shall analyze Eqs.
(30)-(33) in detail. It should be emphasized that, so
far in the treatment, no intermediate states appear:
Only the single energy level E, enters. The other energy
levels are explicitly contained in the Green's function
G(p,p'~E'„p —k) which has poles in the k plane when
k= k„,„=I„,—I'„, for all hydrogen eigenvalues E„ in
the discrete or continuous spectrum. However, in going
from G to F, we have discarded the continuous spec-
trum, which could be recovered only by analytic con-
tinuation. Thus the continuum states never appear in
the remainder of this pa,per; the other discrete states
mi71 appear when we expand in hyperspherical
harmonics.

l) E(nolomo) =
37rm2

&d&(dy)(dy') p PV-.).-.(y)*

III. LOWEST TERMS
X4.,«,(p')G(p, p'

I
E.,—0), (28)

where we have introduced a cutoff E, since the integral
diverges. Note that the only k dependence is in G.

We now wish to project this onto the Fock sphere.
Although (27) is really identical to (2) with E=E„, lp, —
simply using (3) and (6) would have the effect of mixing
up the photon energy k with the projection. For present
purposes it is better to leave the k dependence explicit
by using

p.,= ( 2mE„,)'—"=Zoom/np

I'(Q, n' P) = b(Q, Q') 2v

+— D(n, n")
1+P(1+b) 1+P(1+4)

y r(n", n'~ p)dn", (34)

which is better behaved at large P. It. is also convenient
to introduce a, scale change in p:

Since we are interested in the behavior of (33) as
p ~~, it is inadequate to treat the extra term as a
perturbation of (14).It is better to rewrite (33) as

in place of pp in (6). We get in this way p= 2~/(I —~)', (35)

2 Z4n'm
AE(„p,«,~p) ———— Z (B,nolomo),

3r no
or, in rydbergs,

(30b)

AE(, «, p)
= —(2np„,4/3m'~)Z(B, nplpmo), (30a) so that the intervalP=0 to ~ is mapped onto p=0 to 1.

The reason for this is that (34) becomes

(1—)'h(Q, Q') 2 (1—)'
r(n, n'

~)o)
= +

I+2pb+)o' 1+2pko+))'

Here

AE(np, lp, mo) 4 Z4n'
Z(B,nplpmp) .

3' no
(30c) D(n, n")r(n", n'~ p)dn", (36)

Z(&,nolpmo) = dQdQ'V, i, p(n)*

&& I „„„,(n')g g' pdp r(n, n'~ p), (31)

where the factor (I+2ptp+p') ' is recognized to be the
generating function of l=0 spherical harmonics

I Kq.
(18)j. We may symbolically abbreviate (36) as

r= 6+vKr.

where we have introduced the dimensionless photon
energy

p=ma/p. ,' (32)

with corresponding cutoff B. The projected Green's
function r satisfies, instead of (14), the equation ob-
tained from (27) using (29) in the projection

r(n, n'~ p) —2, dn"D(n, n")r(n", n'~ p)

= 8(n, n') —P(1/ $o) r(n, n'
~ P), (33)

where the last term is the extra, term due to k, and
where s =no.

I'= 5+noA~+ (1 noK) 'no'KK—&-
=6+npKD+ r',

where we have placed u=no. The first term

(1—p) '8 (Q,Q')
A(n, n'ip) =

I+2pto+p

(38)

(39)

contributes a linear and a logarithmic divergence in k

It would seem logical to expand (37) about v=0, i.e. ,
the Neumann (Born) series for r. However, we wish
to set a=no, so that an alternative approach is needed.

We extra, ct the lowest (divergent) terms by using the
identity
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and thefact t a (by syn1111e

(46)

hen we note tha. This follows when weasP~ (p 1).

4p(1+p)
dp.

(1-p)'
(4o)

to obtain

(Q) I'dQ=Obl &nptpwp

' in E the second term
(i

function (Appell
lowest-order approxim

~"Il -. .-.(Q) I'
dQ

1+2pb+ p'

(1+p') (1+p')'

4p2 4p2
Thus

g (0)—
4p(1+p)

dp
(1—p)

dQ dQ'Fnptp~p(Q)

' —1—')'A pp(np, np, p)(1+p')—I-,nplpmo) =
4p2

. (48)

(Q')g ('~(Q,Q'Ip)X ~npipmp

4p(1+p)

(1-.)0

'n toBinPandcorresponding oI' the cutoQ in pwhere I' is
Ein k, an 2n, (1—p)' fl QtD(Q, Q")8(Q",Q

s 0
'

view of (44),s —+Oin vie
re no in r

'
ences. eno infrared diverg

t (') so tha (
h li

constan
'

earl in oi —E) ' whichist eslike 1— —, ' tes
The next term is

~-"-.(Q) I' l~l'
1+2p to+ p 1+2pb +P

or, by g'+b'=1,
b'I ~-..-.(Q) I

=Aio(no, no p— dO
2

(42)

= (nlml [1+2pb+pp'g 'ln'lm)Ai(n, n', p = nm

1'„i„(Q)*V„.i„Q

1+2pb+ p'

Z„i(n)Z„p(n) sin'n dn

1+2p cosn+n
(43)

Q) byre resented Y„~~
This s or e

'
ll convenient

16 . In

t ec or in, e.g.,
) The result (43 is

'

the 0 4) synunetry- e
t The

aluated in detail in pp

well-behaved as p —+ 1 . s,

L(p,nplpmp)

atrix element (diagonaldefined the basic matrixHere we have define
inl, m)

2np(1 —p) 'D(Q, Q')

(1+2.b+")(1+2. ~ p

This contributes to g

where

Z &'~ = 2mp L'(p, nplpmp),dp
p0

L'(p, nplpm p)

(Q)*V„,i, p(Q )( g'D(Q, Q')
,
I'

o~o o

2p o+p )(1+2pb+p

so that

—5')'= 2(1—H')1i4m'D(Q, Q') = (—
= 2(1—bb—

' —1/Sm'D(Q, Q')4 4'=1-b o-

and therefore

L'(p, plpnmp)

(+
we have from (12)unit 4-vectors, we avS' ce $ $' are uni

(49)

(50)

(51)

(52)

(53)

A „(n,n', 0)=S„„..

42) we use the
'

e identityReturning to (

(44) , Q *F„ptp p(Q')D(Q, Q')dQdQ (1 bio )1 np&p~p Q l nptp~p

(1+2pb+p')(1+2P o'

4 'b'=(1+2pb+p '
(-)—2(1+p') 1

0 2d~ I nplpmp

1+2P]0+p
(54)
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The second integral is easily evaluated using P'top(Q) =—2 ')'/s- (up to an unimportant phase factor):

1 dQ Y~o)op~(Q) = sA p(np, I,p)si&)op 5'op
8)rs I+2P)o+p'

The first integral of (52) is evaluated using (21); calling the integral I,

(55)

1I= P—
nlrb 2s

dQdQ'V„, ), ,(Q)*V ) (Q) V„,), ,(Q')F ) (Q')*(1—togo')

(I+2pb+ p ') (I+2pb'+ p')

= P —{I(nlmILI+2p&p+p'j 'Inplpmp)I' —I(nlmI I I+2pgo+psj 'gpInplpmp)I'}.
nlrb 211

(56)

The 6rst integral is then diagonal in /, m;

(nlmII I+2pgo+p'] 'Inolomo)=A), (non p)8)),8, (57.)

Similarly, using

g (P)+g (1)— )r2(I+P) 2 o(I+P)P

&(I-p)'
(I—p')

XA p(no, I,p)'B)po+ A)o(no, np, p)
I+2pko+p' I+p'

2p
-.(I+.) (1-") - I

A)(n, n—o,p)' I. (62)
n )o+1 n

2p

the second term is

so that

(1+p')
A 1,(n„no,p)—

4npp' Scop'

p

The first term of (62) can be directly integrated to
(nlmIL1+2pgp+p g tgpInplpmp) give B, the linear divergence. The second, which occurs

= (1/2p)p —(1+ps)A ) (n no p) jp)) $ (59) only for 5 states, is evaluated using Eq. (ll8):

Ao(n. 1 p)=(—p)"' ' (63)

which gives directly
—4np ln(1 —P)+4nph(2np) —1, (64)

where we have defined
(1—p') - A), (n, no, p)'

8p n-lo+1 n
(60)

j
h(j)= Z —.

k=1 Q

(65)

Supp'

(1—p')' A),(n, no, p)'

8ps n=)o+1
(61)

Noting (50) we see that the 6rst three terms all con-
tribute log(1 —P), i.e., logK divergences. When g&p&

is combined with 2&'), only the S-state log divergence
survives (together with the linear K divergence from
g(o))

8 Actually, we have not shown here that the in6nite series in
(60) converges. In fact, it is shown in the author's thesis (un-
published) that it converges at least as fast as e '. Furthermore,
it can always be summed exactly as will be seen in Sec. V. No
closed form for the sum has been found although for l =0 the sum
has been converted to an integral which can be evaluated directly
for n = 1, 2 but not in general.

A little care shows that (60) is well behaved' as p ) 0
I cf. Eq. (44)j; in the evaluation of the p integrals it is
best to separate the n=np term of the sum in (60) and
combine it with the preceding terms to make the be-
havior at p=0 explicitly smooth). Combining (60) with

(55),
(1+p')

'I(p, pn, lpmo) = —sAo(no, i,p)'8)oo+ A)o(no, no, p)
4eop'

The expression (64) can be rewritten by using

—2 In(1—P) = ln(B/2P) -+ lnB —ln2, (66)

where —lnP has been replaced by 0 as I' —+ i. The
result of this rearranging is

2&o)+2&') =B+L—2no lnB+2np
Xln2+4noh(2np) —1]b)op+2);~;t,„(67)

with Zr;;), containing the last two terms of (62). The
term 8 is removed completely by renormalization.
Using (30) and (32) we see that the term B contributes

2 Z4e'm mE
++(nolomo, B te1111)=

3' np pnp

= —(2/3s-)Zso. oK/nor; (68)

on the other hand, the electromagnetic self-energy
correction for the state nolomo is'

2 x (nolomo
I
tt'I nolomp)

AEp(nolomp) = —— kdk
3' 0 k

= —(2o)K/3m'7r)(nolomo
I
p'I nolpmp), (69)

' H. A. Bethe, Phys. Rev. 72, 339 (1947).
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which is identical to (68) on observing that, by the Observe that when p=0 we get from (44)
venal theorem,

Ci(0)„„=b (1—v/n) ',
which, combined with (37), yields

(79)

2v(1 —p)'
r'(n, n')—

1+2pb+ p'
dQ"D(Q, Q")r'(Q", Q')

4v (1—p) dn "D(Q,Q")D(Q",Q')

It is only hE—AED which is measurable and thus the
8 term cancels.

The remaining part of (67), when the logB divergence
is properly dealt with (Sec. V), contributes the major
portion of the Bethe logarithm for S states (96% for
1S, 90%%uo for 2S). Before discussing the evaluation of
these shifts, we must deal with Zz;„;,. in (67) and with
F'; this task will occupy the remainder of this and the
next section. However, we wish to point out that the
manipulations needed to extract this dominant 5-state
contribution have their counterpart in ordinary space
(see Appendix A).

The remaining part of (38) is r', which is the solution
to

and
r=(1—vE) '6 (80)

If we evaluate (78) we then have r completely. This
will be done in Sec. IV. First, let us see how (82) enters
Z. To do this we rewrite (82) in partial-wave form using
(16) and the ordinary spherical harmonics addition
theorem:

Q Y.i (n, 8,y)Y ( (n', 0',y')*

A(Q, Q'
i 0)= b(Q, Q'), (81)

reproduces the pure Coulomb Green's function (22).
Therefore,

r (Q Q ) ="(1—)' 2 t «( )B ( )'7-
n, n'Zm

X(nn')'&'V. , (n)V. , (n')*. (82)

1+2pko+ p' 1+2pb +p

X . (71)
1+2pko'+ p'

where

=z-()z- (') 2 v-(&,~)v-(e', ~')*
m=—l

=Z„~(n)Z„.i(n') P i(coszp) (2l+ 1)/4zr, (83)

coszp= cos8 cose'+ sin8 sine' cosQ —P') .

(nlnz Ir ln'1'm') —v(1—p)' p A~(zz, n"p)
n/1

1
X—(n"lm

~

I"
~

n'l'zn') = v'(1 —p)' P A ~(n,n",p)N" n"n" /

~ 2l+1
r'(Q, Q') = P P)(coscp) rt(zz, n'),

l=-0

with

Ke expand this in spherical harmonics by multiplying
by V~& (Q)*V .

~ (Q') and integrating over Q, Q' to get
We ca,n rewrite (82) by performing the nz sum:

(84)

1 1
X—3~(n",n'",p) A ~(n"',n', p)b~~ b„„~, (72)

// ///

in which we have used (21) in the form

r, (n,n') = v'(1 —p)
' Q (nn') '"

n, n'=Z+1

Xt Cg(p)Bg(p)'7„. Z„g(zz)Z„.i(n'). (86)

If we set

1
(nlnz

~

D I n'l'nz') =

Aber

t b-
2s

(73)
Replacing v by no and inserting into

'4p(1+ p)
dp I."(p,nolpnzp),

(1-p)'
(87)

(nlnz~ I"~n'l'nz')= (nn')'"r~(p)„„.b~~, b„„, (74)

B((p)„.= (nn') —'"2 ((n,n', p),

then (75) becomes the matrix equation

so that

I "(p,n pl pnz p) = dQdn'
(75)

x v.«p„,(n)*v.pt...(n )g Cr'(Q, n'),

~ 2l+1
I."(p nplpnzp) = P — sin'n sin'n'Z„, ~,(n)

Z=O

XZ„«,r~(zr, n')dn dn'g~~, „(89)
with

with

(nlnz
~

r'
~

'l'n)n=zv'(1 p) '(nn') ""—

dQdn' coszp P (cospp) V (8 p)

C~(p) = L1—v(1 —p)'Bi(p)7 ' (78) XV, ,(&',Q'}* (90)
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The latter is evaluated using

j.
xzl(x) = P,+,(x)+ Pl l(x)

2l+1 2l+1

and the addition theorem, with the result

which in turn follows from the Gegenbauer identity"

C . z'(x) = (l/zz') [C z'+'(x) —C z 2'+'(x)) (98)
(91)

The result is

1 ((n'+ l+ 1)(n'+ l)
Dl nn'
M (—)

lo+ 1

We thus split up (89);

4~ ( lo

gllom ) ~l, lo—l+ allo+1, ~
. (92)

2lo+1 (2lo—1 24+3 1 (n' —l)(n. ' —l—1)~'(2
(99)

2 n'(n' —1)

the other matrix D~(+)„„.is obtained from
I"=L++L

nn' ~l+1 e'n ~

~ (+) —D (-) (100)

with l= lo+1 or lo —1, respectively:

and

lp

2lo+ 1
sin'u sin'a' Z.olo(a)Z„olo(a')

XI'lo, (a,u') dada' (93a)

2lo+ 1
sin'a sin'u' Z„, l( a)Z„,l, (a')

X I'l,+l(u, u') dada'. (93b)

~l(z)- = («')'"[«( )Bl(z)'j-- (94)

The form of (93) is exactly what one would expect
from the dipole radiation selection rules. " This is the
first instance in our calculation where the transitions
from state nplp8$p to other states make their physical
presence known.

Finally, if we define

The matrix expressions will be further analyzed in
Sec. IV.

IV. MATRIX TERMS

In this section we shall investigate the matrix in-
version (78), which is equivalent to solving the integral
equation for I'(Q, Q'

~
p). In a sense then, the matrix Cz(p)

contains all the information expressed by the Green's
function for the system of hydrogen atom plus photon
(in dipole approximation). When p=O we know that

z =no is a singularity (or eigenvalue) corresponding to
the bound state at no, and Cl(0) does not exist. As p
moves away from 0, v=np is no longer a singularity. If
np&1, we will reach further singularities corresponding
to the dipole transitions. Thus we see that the matrix
(78) has a very complex structure.

To perform the inversion we will diagonalize the
matrix Bl(p). Since B&(p) is real symmetric, we seek a
real orthogonal matrix Ul(p) such that

Bl(1 ) = «(~)Bl(1)~l(u)', (101)
D (+) sul u Z„l(u)Z~ (pl(a)da,

then we may write L+ in pure matrix form

(95)
where Bl(p) is the diagonal matrix made of the eigen-
values of Bl(p). Let zz(p) be an eigenvalue of Bl(p)
and (Y (p)), m=i+1, l+2, be the corresponding
eigenvector. Suppressing the index I, we write

L = no2(1 —p)o[Dlo( 'Mjo —l(p)Dlo j~o~o, (96a)
2lo+ 1 2 B(z)-Y-(~)=z(z)Y-(z)

rn= l+1
(102)

lp 1

2lo+1
n 2(1 )o[D (+)~ ( )D (+)rj (96b) The left-hand side is, by (75),

Z B(z)-Y-(z)
The integrals D&+„„are obtained from the identity m=i+1

1 (n'+l+1)(n'+l)
sllla Z„~ ( .l(a) =- Z„+l,l(a)

2 zz'(n'+1) N1/2 1+2p cosa+ p2

(103)

Sin'a Z l(u) P =l~l" m—"2Y„(p)Z„l(a)
dcl—

1 ((n' —l) (n' —l—1)
Z. l, ((u), (97)

2 ( n'(n' —1)

If we define a new' vector

& (p) =m-'('X
l Y (p), (104)

"H. A. Bethe and E. E. Salpeter, in Handbuch der P/zysik,
edited by S.Flugge (Springer-Verlag, Berlin, 1957),Vol. XXXV/1.

"M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions |,'Dover Publications, Inc. , New York, 1966).
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sin"+'u C i i'+'(cosu) Q i~i" X (p)C i i'+'(cosu) n

E„)21+2p cosu+p'
1.e.)

Z /-&-(P)=P — )~.(p)
m=t+1

then the normalization factors on the Z„i are removed and we get

(105)

(1o6)

where I„ is given by Eq. (811).This indicates the use of generating functions, as described in Appendix C. The
generating function for I„ is simply the G&(x,y,p) of Appendix B. It is convenient to define

f(t,p)= Z t"+'x-(P)
m= l+1

(107)

so that t " 'f(t,p) is the generating function for X (p) that starts with t' With. these points in mind (106)
becomes, using (19),

1 f(»,p) d»
Gi(t, i/», p) —=p(p) Q t —'—'x„(p)

2mi s2'+' s ~=~+1 Sn)2

and so, using (321b),

2)+I
=p(p)«I — f(t,p)

«dt
(Los)

(2/+ 1) (1-") J'(-/, /+1; /+2; (t+p)(1-+p»)/(1 p)(» t-))f(»;)-
p(p)l I f(t p) = (109)

k

dt's

/+ 1 (1+tp) '+' L(»+p) (»—t) j'+'

This is an integro-differential equation for the generating
function of the eigenvectors. In writing it we have
assumed f(t,p) analytic for all t inside the unit disk. It is
this condition that determines the eigenvalues p.

Since the treatment of (109) is complicated, we will

illustrate here only the case l=O and refer the reader to
the author's thesis for the details of the general case.
However, we will give the general result.

For /= 0, F reduces to unity and (109) becomes

and the generator of the corresponding eigenvector

( t+p
g'"'(t, p) =~-(p)I

&1+tpi
(113)

The constant c (p) must be chosen to normalize ( I' }
and make Ui(p) an orthogonal matrix:

df 1 1 d» f(»,p)

dt 1+tp 22ri (»—t) (»+p)

f(t,p) f( p, p)— —

(1+tp)(t+p)
(110)

g'"'(1/y p)—
27ri dy

&&g'"'(y,p)dy, (114)

~ (p)=~(n&o) '" (115)

((y )I ( —')

g(t, p) = ~I
&1+tp

(in this case independent of p but not for /&0); the
plus sign must be taken in order that Ui(p) ~ 1 as
p~0.

eorem:
) differs from ~(t ) only by a constant and so The result for arbitrary / is stated as a th

is equally satisfactory as a generator for & (p). We see
Theorem': The eigenvalues pjpj of j109~ are

that since p(1, g(t, p) will have a branch point unless

(p(1—p') j ' is an integer n. Thus the eigenvalues are
pi )(p) = 1/m(1 —p') (m=/+1, /+2, ) (116)

where we have recognized that (m& i")(p) } is generated

If we set g(t,p) = f(t,p) f( p,p), we ca—n in—tegrate (110) by (d/dy)gi")(y, p). Then (114) gives

immediately, with constant of integration c.

p&") (p) = 1/n(1 —p') (112) and the corresponding eigenfunction is, correctly
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normalized,

vrhere
f( )(t,p)=c( )(p)g( )(t,p)+v( )(t p),

g( )(t,p)=(t+p)™~t/(1+tp)"—'

and therefore the expression in (96a) becomes, with a
little manipulation,

[Dto")~to+1(P)Dto""j.o-o
(118)

(P)=+ /[ (1 P ) j (119)

and g( )(t,p) is a polynomial of degree 2l in t needed to
bring f to the form (107).

Finally, we can write the results: LWto"'(p)«el'
XWl. + (p)'-.

co R So
Wt, "'(p)-,- (n+n.)(1—p)l p+

n= Zp+1+1 n+no—

and

U (P)

&t(p)"--= &- --[n"(1—p')3 '

„(n') ( )

(120) n=to+1+1 (e+np)(1 p)—

X[p+(n—np)/(n+np) j ', (125)

where the matrix Wl, (+)(p) is defined by

(n~+n~& 1 )!( ]) n+l+1pn +n"—2l—2(1 p2) l+1

(e"+l)!(n" l —1)!—(n'+ l)!(e' l —1)!—

XP(l+1 n', l+1——n"; 1—n' —n"; 1/p'), (121)

where the latter has been obtained by expanding
g("')(p), picking out the coefficient of t""+' and trans-
forming via (816).The hypergeometric function appear-
ing in (121) is a polynomial of degree min(n', n")—l—1

in 1/p' and so we see that the elements of Ut are
polynomials in p, a surprising result.

The matrix Ct(p)Bt(p)2 occurring in (94) is also
diagonalized by Ul(p):

Ct(p)&t(p)'= Ut(p)'~t(p)&t(p)'Ut(p), (12~)
where

Wtp + (p)npn= Q (V e )Dto + non'
n'= Zp+1+1

X Utokl(p)'- -/l:n(1 —«')) (126)

Combining these results, the level shift contribution
from (87) is

(lp+1 ~ 1
2'= 4np'l

(2lp+ 1 n=lo+2 no+ n

' (1+p)LW o"'( )-o-j'
~p+

p+ (n ep)/(n+np) —2lo+ 1 "=lo n0+n

' p(1+p)LWt. ' )(p)-"1'
X dp l. (127)

p p+ (e—no)/(n+np)

~t(p)- --=

n'(1+ p) ) n' lnp-
lp+e'+e, k n'+no&

with a=no. This immediately gives

ni(1+p)~ ( )- --= (
' ")'" Z «( )'- -, n(1-p )Wl. (-)(.)..-

eo j[(co+to)(n0+lp 1)j Ulo—1(P)-,-.1-
—[(n()—lo)(no —lo+1)$' 'Ul, 1(p). no+, ) (128)

ni+ npn1= Z+1

( ni nol-
Xl p+ l ni '(1—p') 'U (p)„,„" (124)

n,+ np) ol

When n(no the above integrals have a pole at
p=(np —n)/(np+n). In this case we must take the
principal value of the integral. In Appendix D it is

(123) demonstrated that these poles are merely the dipole
transitions. Note that when n=no, p=o is not a sin-

gularity of the integral although it is in (125).
The functions Wto(+)(p)„o„are easily evaluated in

view of (99) and (100); for example,

W (—)(p)
( 1)(nO+lO+1)(np+n) (Pnp+n 2tp-l(1 -2) lP-1

2nLno(e+ lp—1)!(e—lp)!(no+ lp)!(ep—lp—1)!j'"
((np+ lp) (e()+ l()—1)

~(lo e, lo no—+1;2——no —n; 1/p2) pot(lo n, lo—no—1; —n——no;—1/po)
l
. (129a)

& (np+ n) (e()+n —1) ~

Using the so-called "contiguous function" relations" two or three times, we can write (129a) more synirnetrically:

Wl, ( (p)n „1((n2—lp')'" (np' lp')'('—
(no,e,p) —«—o-1(«n p) I

gng lg( n eg
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and

where

If'«'+'(p) n,.
Qnp gp

1 f[n' —(lo+ 1)']'" [np' —(lp+ 1)']"'
%o(no, n,p) — Ko+r(no, n p) ~,

lp+1 k n
(129b)

( 1)oo+io—i(1 ps) «+'pn+ o—s«—o(n+no —1) lF(is+1 n—, le+1—no,' 1—no n—; 1/p )
E«(np, n,p) =

2[(np+lp)!(np —lp —1)!(n+lp)!(n lp 1)—l]"l
(130)

By counting powers of p, it is easily seen that (130) As emphasized in Appendix B, At(no, n,p) is a poly-
and hence (129a) define a polynomial in p. The con- nomial with rational coeflicients (depending upon n,
vergence of the series (127) is proved in Appendix E. np, etc.) and furthermore, for nano, divisible by p.

Thus the integral in (134) yields a, sum of the form

tP E(no, lo) —AEo SZ4 ns M—ln
np' 3or kp(np, lp)Ry

(131)

V. NUMERICAL RESULTS

The expressions derived above, after removing the
divergent self-energy AEp of Eq. (69), describe a
logarithmically divergent level shift for S states, but
are convergent for all others. The energy shifts are
traditionally expressed in a cutoff-independent manner
in terms of the "average excitation energy" kp(np, lo)

(all expressions are independent of mp), defined by

P(n)

q(n)

where p(n) and q(n) are polynomials in n. Such a series
[if convergent, which (134) is'], can always be summed
exactLy" by resolving into partial fractions

p(n) ito ho
~ ~ ~

q(n) &=i n+no (n+no)' (n+no)'

and applying

where 3f=E, the cutoff in photon energy, when
lp=0, and 3f is arbitrarily set at 1 Ry when is&0. + + ~(1+ )+ "~,(1+
Even more commonly used is the Bethe logarithm
ln[kp(np, lo)/(1 Ry)]:

&o(no, lo)
ln

1 Ry 1Ry

3or no' AE(np, lo) —ALp

o.' 8Z4
E q

(»2)
1 Ry)

l&A:——P"(1+,)+ " I, (135)
2! )

P(s) =—lnI'(s) .
ds

If we insert (67) into (30c) and then into (132) and use In our case it appears to be generally true that the
the relationship (32) between J3 and E, we see that only values ever needed for the polygamma functions
the ln(E/1 Ry) cancels and are the combinations

kp(np, lp)
ln -= [lnZ' —2 lnno+2 1n2+2h(2no)

1Ry —1/2no]8«, o+ (&fi it.+2')/2no (133)
and

(136)

(137)

1
2

n=lp+1, n Qnp

The only occurrence of Z in this is the (lnZ-')8«o which
we henceforth drop; the numerica, l results we get for
hydrogen can be extended to a,ll hydrogenic atoms by
restoring this term for S states. The term gf;„;~, comes
from the last two terms of (62) and 2' from (127). The
function h is defined by (65).

The term Zf;;t, , contains an infinite series which
contributes to (133) an amount

where f is the Riemann f function. "
Ke next turn to the infinite series term Z'. Both

series a,re of the form

no+n p+a(n)
(138)

where a(n) = (n —np)/(n+np). These series converge
like 1/n, i.e. , like t (3), as shown in Appendix E. (This
is due to the presence of the continuum contribution. )
However, if we observe Eqs. (E4) and (E5), we can

1 ' (1 p')(1+p)—'A „(n„n,p)'
X— dp-

'g p

"- P. M. Morse and H. Feshbach, Methods of Theoreti col
(134) Physics (McGraw-Hill Book Co. , New York, 1933), especially

pp. 422 and 423.
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break (138) into

Z — dpi''4o(p)-:3'
n np+n p

+2np g
~ (np+n)'

pDfr .(.).:j'
dp (139) where

p+ a(n)

remainder e„-f„-(2np+4),

e„-=n' "0+'&( termn

(143)

(144)

VVe know that for large n the terms are proportional to
1/n2"~4. Thus we can estimate the remainder ca,used
by stopping the series at n =n by

where the first series converges like 1/n' and the second
like 1!n4. The virtue of (139) is that the more slowly
convergent series, lacking the p+a(n) denominator in
the integrand, contains no logarithms and may be
summed exactly using (135). This is because the
polynomials in W2 are of degree depending on min(n, np)
and so for n)np are all of fixed degree. Thus (139)
leaves only a 1/n' convergent series to be summed
term by term. But we can go further. The reason that
we could go from (138) to (139) was the 1+p factor in
the numerator, which we used to cancel the p+42(n)
in the denominator to leave a more rapidly convergent
series to be summed. If we examine Eqs. (E2), we see
that 8' has, for large n, the behavior

(1 p2) 2 no (1 p) 2 o(1n+p) 2no

The 1—p factors determine the rate of convergence.
The 1+p factors can be used repeatedly 2np times, each
time resulting in an exactly summable series and a more
rapidly nonsummable part. When we exhaust these
factors, we will have a series to sum which converges
like 2np+4 Actua. lly, the (1—p')'"o factor occurs only
asymptotically, so that some care is required to extract
the (1+p)'"o factor without disturbing the (1—p)2"o

part. The details are given in the author's thesis. The
first series to be summed will have the general form

kp(1S)
ln =-,'-+2 in2y-', (Z4;„;„+Z'); (145)

Z4;„;4, comes from the last two terms of (64). We use
(63)

1 ~g~finite
19

dp (1—p2)(2+p)+Z= ——+Z, (146)
24

where, by (134)

QO

z= ——,
' P—

'6 2Q p

dp p'" '(1 p')(1+p)'—

rU)
1

=p j+2' (147)

and t„-(s) is the t function minus its terms through
1/no. Formula (143) gives a method of extrapolation of
the truncated series. The error introduced in using
(143) as an extrapolation, rather than as a truncation
error, is estimated by observing the rate of change of
e„- and of the extrapolated result, as discussed in the
author's thesis.

We now apply these methods to some explicit cases.
We begin with the 1S level. By (133) we have

1 p2n —2no—1(1 p) 2no

Z f- 4'"(n) dp ~()
where

r(j) = 1/( j+1)(j+3)+4/(2 j+3)(2j+5) . (148)

Therefore the two series for + and —may be combined Thus we have two sums to evaluate:
and only one set of integrals need be computed. The
integrals in (140) may be evaluated by combining the
in tegrals -p 0+1)(j+2)0+3)

P'dP

k

+ (—42)'»
I =O

7

a
(141)

where the absolute value signs allows us to use the
formula even when a(0(n(np) and represents the
necessary principal value. It is also convenient to use
the recurrence formula

1 1 ) 1=!Z,— l. =-: (149 )
j+l i+»i+2

00 1 8z
i=p (j+2)(2j+3)(2j+5) 3

the former being a "collapsing" series and the latter
by use of (135). Combining results we get

I (&)= 1/j 421 -~(42), —

Ip(42) = ln
l (I+ 42)/.

l
. (142b)

(142a) kp(1S) 17
ln -=—2 1n2+222'=2. 86370 56389+-,'g'. (150)

Ry 4

Finally, we must discuss truncation of the series (140). The numerical part of (150) is already 96% of the final
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-TABLE I. SUccessive approximations to the Bethe
logarithm for the 1S state.

Unextrapolated Extrapolated
Term e„-(144) Bethe logarithm Bethe logarithm

2 0.00910 64204 0.586 2.98329 91174 2.98430
3 0.00066 73039 0.486 2.98296 64213 2.984136
4 0.00011 44907 0.469 2.98408 09120 2.98412 88
5 0.00002 97937 0.465 2.98411 07057 2.98412 848
6 0.00000 99866 0.466 2.98412 06923 2.98412 8494

P p(+) (p) t

so that

pn+1
pA

—4(1 p2)i p2

2$(n 2)!—(n+1)!5't' & n

-'z'=-'
2 2

gg n —1 t p2& 2(1+p)(1—p2)2

dp)
o p+ (n —1)/(n+ 1)n=2

and we see that we have three 1+p factors in the
numerator. When we extract these and perform the
sums, we get

-'~'= 13/4 —l&'(1)—(38/9) L4 (l)—0 (1)j+&', (151)

with
t ps' 3(1 p)—2

Z'=4 Q dp, (152)
-= n(n+1)' o p+(n —1)/(n+1)

which is exactly of the form (140) and converges like
1/n'. Inserting (151) into (150), we get

kp(1S) 17 58
ln = ——+—ln2 —222'(1)+Z'

18 9Ry

= 2.97419 26970+2', (153)

using f'(1)=i'(2)=pt2r2. We now sum the series Z'
term by term using (141) and (142). The results are
summarized in Table I. In the extrapolated Bethe
logarithm, use has been made of (143)—(144) and the
"remainder" calculated to three figures. On the basis
of the figures in the last column and on the variation
of e„-, we can state our result

ln(ko(1S)/1 Ryf = 2.98412 85(3), (154)

which is to be compared with the most accurate pre-
viously published result of Harriman":

lnLkp(1S)/1Ryj=2. 98414 9(3).
"J.M. Harriman, Phys. Rev. 101, 594 (1956).

answer. Now

p(1+p)LJI'o'+'(p) t-j'
-'2z'=2 p — dp

~=2 n+ 1 p p+ (n 1)/(n+ 1—)

which converges like 1/n'. We can reduce this to a
convergence like 1/np by the techniques mentioned.
By (129) and (130),

kp(2P)
ln

16 ~ (11n'—12)(n—2)= —0.03412 95488+—Q
3 n=3 n(n+2)'

1 p274 5(1 p)4
dp

p+ (n —2)/(n+ 2)

The numerical parts of the two expressions are "exact"
(except for possible roundoff) and were obtained using
a desk calculator. Note that the integrals in the two
series are identical. Also, all the terms are positive.

The results, taking terms through n= 7 and ex-
trapolating with (143) and (144), are given below,
together with the electronic computer results of
Harriman" and of Schwartz and Tiemann" for
comparison:

lnLko(2S)/1 Ryj= 2.81179 8(9) (Harriman)
=2.81176 9883(28)

(Schwartz and Tiemann)
= 2.81176 98(3) (this calc.),

lnfkp(2P)/1 Ryf = —0.03001 637(1) (Harriman)
—0.03001 6697(12)

(Schwartz and Tiemann)
—0.03001 675(6) (this calc.) .

Our results are clearly in agreement with those of
Schwartz and Tiemann and in disagreement with
those of Harriman. Although the former are given
more precisely than our values, it should be noted that
our numerical results were obtained by one after-
noon's effort at an ordinary desk calculator, and could
easily be extended in precision electronically. It was
not our goal, however, to exceed the precision of
Schwartz and Tiemann, but rather to illustrate the
effects of the hidden symmetry group on the calcula-

'4 C. Schwartz and J. J. Tiernann, Ann. Phys. {iV. Y.) 2, 178
{1959).

We note that our result differs from this by seven
times Harriman's estimated error. In fact, the results
in Table I for n&4 are all consistent with each other
and inconsistent with Harriman's value. Moreover, pre-
vious precise calculations" for the 2S and 2P states
have shown Harriman's values also in error there. Thus
the value given above is very probably correct to within
the error stated.

We have similarly calculated the 2S and 2P Bethe
logarithms by these methods. The complete details
may be found in the author's thesis. Here we present
only the results after the series have been reduced to
1/n' convergence:

kp(2S) ~ (n' —1)(n—2)'
ln = 2.80917 38731+64 g

n'(n+2) 4

1 p2n —5(1 p)4
X ~p

p p+ (n —2)/(n+ 2)
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tion and to develop techniques exploiting the. O(4) We may write, correspondingly,
group.

AE(no&omp) = AE' (np~omp)+BE&'&(nplpmp)

+AE&"(nplpmp), (A10)
ACKNOWLEDGMENTS

The author wishes to thank Professor Julian Schwinger
for having suggested this problem and for his guidance where the first term of (A9) contributes
and encouragement. He also wishes to acknowledge
useful conversations with D. J. Newman. &E~o~(nolpmp)

where

Q

aE(ndpnp) =
4m'x' &=i

Py=p ey

(dk)
(P GP.),

(A2)

and ( ) means the expectation value in the state
Rolosso. The Green's-function operator

G=(E —k —H) '

[compare (27)] can be rewritten, treating the entire
Coulomb interaction as a perturbation,

H=Hp+V,
Ho= p'/2m,
V= Zn/r, —

(A4)

in terms of the free-electron Green's-function operator

Gp= (E„,—k —Hp)-'.

The operators 6, Go satisfy

G= Gp+GpVG= Go+GVGo.

Now pq conirnutes with Hp and so with Gp. Also,

(A5)

(A6)

APPENDIX A: LOWEST TERMS
(PHYSICAL SPACE)

The manipulation performed in Sec. III may seem
to be obscure from a physical point of view. Here we

give an alternative derivation equivalent to the develop-
ment there but without projecting onto the rock sphere.

From Eq. (25),

n & dk—(Pi')
4m'm-' ~-& k'

8s n
dPI4-~-(P) I'P' I, (A11)

3 4m'm' o k ]
i.e., exactly the renormalization term (69). The last
term of (A9) contributes

hE~'&(nplpmp)

=+
4m'm &-i

dk—(P)GpVGVGppi), (A12)
k

which, if projected onto the Pock sphere, is easily seen
to be the same as the contribution of (71) .

The remaining term,

constitutes the major portion of the Lamb shift for
deep-lying S states [for large np or l/0, the contribu-
tion from d,E&'& is comparable to (A13)j. Since (A13)
depends only on known quantities, it can be evaluated
by straightforward (but tedious) means. For the 1S
state, inserting the conlguration-space wave function

f and Gp, we get directly, in terms of the Bethe
logarithm (132),

CE

d E&'& (nplpmp) =
m2~2 g 1

X (k 'Px'GoV+P), GoVGoP), ), (A13)

so that
G

( no&omo) = —&-' [no&omo), (A7)
kp(15) 17

ln —=—2 ln2= 2.86370 56389,
1Ry 4

(P~GP~) = (P (Go+GoVG)P. )
= (P)PGo+PAoVGPx)
= (Pi'G —P) 'Go VG)+(PA'p VGP~)

+ (P),Gp VG VGpp), ) .
Applying (A7)

(P GP )= k'(P ')+k '(P 'GoV)+(—P GoVGoP )
+(PiGpVGVGpp), ), (A9)

which separates the terms in powers of V. The first
three terms, which depend only on the trivial Go, cor-
respond to the lowest terms of Sec. III while the last
term, involving G, corresponds to the I" part of (71).

exactly as in (150). This differs from the final value
(154) by only 4%. For 2S the contribution from (A13)
is 90% of the total; for 2I', however, (A13) is almost
entirely cancelled by hE~'&.

APPENDIX 8: A INTEGRALS

In this Appendix we shall evaluate explicitly the
A~(n, n', p) integrals introduced in Eq. (43). The in-
tegrals surprisingly turn out to be polynomials in p.
We also derive a generating function for the integrals
which is used in Sec. IV. As a byproduct, we obtain
some interesting identities for Wigner 6-j coeScients.
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M(n, L,e'L', p) = P (—p)" f(n)Cq'(cosn)Z~~(n)

XZ„( (n) sin'n dn. (82)

Now Ck'(cosn) is essentially Z&+& 0(n) aside from the
normalization factors, so that the product Cq'(cosa)
XZ t(a) can be expended in terms of Z„ t(n) by use of
the Clebsch-Gordan series for 0(4). Because of the
local isomorphism between 0(4) and O(3)O(3), the
Clebsch-Gordan coeKcients can be obtained in terms
of ordinary 0(3) coefficients. This has been carried
out by Biedenharn, 4 with the result for our case being

C~'(cosn)Z„t(n) =P (~kLI J)Z~+i, ~(&) (83)
J

where

(~kL
l
j) ( 1),(n+k+7 i)+l[~(—Jy 1 )]1/2

—',(e—1) —,'k—,'J
X

', (n 1-)— (84)

the latter is the usual Wigner 6-j symbol as defined,
say, in Edmonds. "The sum in (84) is over the finitely
many values of J permitted by the angular momentum
recombination problem implicit in the 6-j symbol.
These constraints also guarantee the reality of (nkLl J).
Thus we arrive at

M(mL, e'L', p) = P (—p)" P (mkL
l J) M (J+1L, n'L', 0) .

k=0 J (85)

Consider the more general integral

f(n)Z ((n)Z..( (n) sin'n dn
M(nL, n'L', p)=,(81)

o 1+2p cosn+p'

so that A~(n, n', p) is the special case f(n) = 1, L'= L. We
now use the expansion (18) with L=0, L= —p; the ex-
pansion is valid for all complex t inside the unit disk:

In the case of Al we get

n'+n —2

A~(e, n', p) = P* ( p—) "(ekLl n' 1),— (86)
k=l n'—nl

where the limits on k come from the 6-j symbol, and
the asterisk on the summation means that k goes
between limits in steps of Z. Thus we see that A~(n, n', p)
is a polynomial containing only even or only odd powers
of p.

(87)A, (e, n', —p) = (—1)"—"'A ((n,n', p) .

For L= 0, (nk0
l

n' —1)= 1 and we have the simple result

n+n' —2

Ao(e, n', p)= Q (—p)"
k=ln —n'l

and, in particular,

(p)f%s/(p)A+n'

p
2

(88)

p2n

AD(m, n,p) = =1+p'+ +p'"—'. (89)
p2

For l= 1 the coeKcients are

gz'+~"—k' —2k —2
(810)

and no simple form is possible. It will be noted that
for L=1 the coefficients (810) involve square roots.
These, however, are independent of k so that the
coefficients in Ai(n, n', p)' are all rational. This is true
for all l as we shall see below, because the square roots
come only from the X„lnormalization factors.

We now turn to the generating function for AL. Set
I

sin + nCn 3 1 + (cosQ)Cn' —t—1l+1(cosG)dn

0 1+2p cosn+ p'
so that

A ((n,n', p) =X„)N„.)I„„..

Let x, y be two complex variables inside the unit disk. Then we have

SJ@2L+2~do

(811)

(812)

G&(z y p)
— Q I,zn l lyn' l 1——— ——

n, n'=l+1

by means of (18).If we look first at p= 0, we have

(813)
(1+2p coscx+p2)L(1 —2x cosn+x2)(1 —2y cosn+y2)]'+'

(~ 0) P +n t 1 n' l 1— — — —
n, n'= L+1

sin"+'o.C~ ~ i'+'(cosa)C„~ i'+'(cosa)dn

n, n'= l+1
&n—

L
—ly n' —l—1

$7 2

(2L+1)!Z,
g&(xy),

1
'5 A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, N. J., 1957).

(814)
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(2l+1)!It,
Gl(x, y,0)=

l+1

by recognizing that the integral is the orthonor- we get
malization integral for Z„l, and by use of (19). In
(814) we have set

( 1 xy)2l+1

(rn+2t+1) l+1
!gl(xy)= 2 (xy)-I

m im+ ly 1

=F(2l+2, l+1; l+2; xy), l+1

(2l+ 1)!Kl
Gl(x, y,0)=

815

XF( l, 1;—l+2; xy), (817a)

(1—xy)'+'

where we have identified the series as an ordinary 2J'&

hypergeoinetric function. Using the identities" XF —l l 1 l 2; . 817b
xy ~

xy —1i
F(a,b; c; s) = (1—s) ' ' 'F (c—a, c b; c; s—)

s
=(1—s)-.I'! a, c b;c-;

(s—1)
(816)

Because of the negative integer —l in (817) the
hypergeometric series terminate, i.e., are polynomials.

To see how Gl(x, y, p) is obtained from Gl(x,y, O), we
put e' =s and change (813) to a contour integral:

(I s2)2l+2ds( 1)l+1

Gl(x, y,p) =—
2"+'i (1+ps) (p+ s)L(1—xs) (s—x) (1—ys) (s—y)]'+'

(818)

where the integral is around the unit circle. The integrand has a simple pole at s= —p and poles of order l+1 at
s= x, y all inside the circle, plus similar reciprocal poles outside. In (818) we change variables by

Q—p

1—up
(819)

which maps the disk conformally onto itself with the pole at s= —p going over to a pole at u=O (and s= —1/p
to u= ~). Then (818) becomes

( 1)1+1

Gl(x y p) = — (1—p')""'
22l+3i

X
du(1 —u') "+'

(820)
u f L(1+xp)—u(p+x)]((1+xp)u —(x+p)]L(1+yp) —u(p+y)] L(1+yp)u —(y+p)]) '+'

(1-p')"+' f x+p y+p
Gl(x, y,p) = Gl! —, , 0

((1+xp)(1+yp)]"+' &1+xp 1+yp

Thus we get finally Linserting Xl froin (19b)7 from (817)

2l+1)F(—l, 1; l+2; (x+p)(y+p)/(1+xp)(1+yp))
!Gl(x,y,p) =

22l+1 l j (1—xy)'"'(1+xp)(1+yp)

2l 1 1—p ~E& —l, l 1; l 2; —x p y p 1—p 1—xy
Gl(x, y, p) =

22 l+I ~(1+* )(1+y )(1- y)]"'

(821a)

(821b)

This, coupled with (812) and (813), gives a generat-
ing function for Al. It is obvious from (812) and (821)
that the coeKcients (nhl!n' —1) in the polynomial
A (n1, 'np) are rational multiples of E„1E„1.Therefore
Al(n, n', p)2 is a polynomial with rational coeKcients.
This is very important because it allows one to perform
many sums in Sec. V exactly.

It is worth remarking that (821) and (812) provide
a three-variable generating function for a class of
6-j coeKcients through (86) and (84).

We can also use (821) to prove some interesting
identities. For an illustration, set p= 1 in (821a). The
hypergeometric function at 1 can be evaluated and is,
in our case, (l+1)/(2l+1). From this we deduce

~ C '+'(cosn)C„'+'(cosl2) sin2n dl2

1+coscl

7r (2l)! /min(n, nz)+2l+1)=——(—1)"'"! (822)2" (l!)' 5 2l+1 )
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C(x,s)= P L P A. B ]xns"'.
n~~=0 m=0

(C4)

which appears to be a new identity for Gegenbauer The latter integral is just 2s.Q„. , so that C(x) yields
functions. As its counterpart (823) can be expressed
in terms of Al(n, n', 1) as

A l(n, n', 1)=
R(

( 1)n+n'

((n '—1')(n '—2') (n&' f—'))'"
k(n)' —1')(n)' —2') (n)' —P)I

Therefore C(x,s) is the generating function for the
product matrix AB. Thus (C2) is the formula for
multiplying matrices with their generating functions.

Similarly, for a matrix times a vector and the scalar
product of two vectors,

(where the square root is one if f=0), with n& ——min(n, n'),
n& ——max(n, n'). That is,

.+ -s -', (n' ——,') —,'(n —1)
( 1)$(k—n—n'l+l

&=t —'I —',(n —1) -', (n' —1) f

1 1
As generated by A x, — v(y)—, (CS)

2Ãz iyi —g

—1 ~(n&+l)(n&+L 1) —(n& f) —'~'

(B24)
2l+1((n)+f) (n)+/ —1) (n& —l)

and, for n=n', Al(n, n, 1)=n/(21+1), so that

APPENDIX D: DIPOLE TRANSITION
AND GORDON'S FORMULA

The pole in the integrands of (127) occur at (np)n)

k 0

-', (n —1) ', (n —1) —k
( 1)P—n+l—l

—,'(n —1) ', (n 1—) —l

p, = (np —n)/(np+n). (D1)1
(B25)

2l+1 Using (32) and (35) this corresponds to a photon energy

These are identities of the Racah-Elliot type, Pnpn 1 1
k, = P„,„=-',(Zn)'m ——

m S So

APPENDIX C: GENERATING FUNCTIONS
FOR MATRICES

Let A„, B„„bematrices, n, m=0, 1, 2, - .. We
de6ne generating functions for A and 8

which is just the energy difference A
p
—E„correspond-

ing to a transition. Referring to (25), we see that the
residue at this pole (the imaginary part of the level
shift) is

A(x,y)= P A„„x"y",
n, m~o

(C1)
Now

ImhE(nplpmp) = ——,'n P k„p„~v„p„('.

~npn ~npnrnpn y

(D3)

(D4)

B(x,y) = Q B x"y",
n, m=0

where x, y are complex variables. We assume the series
were well behaved for all x, y in the unit disk

~
x~ &1,

~y~ &1. Consider the contour integral

by taking matrix elements of

—iLr,Hj=p/m= v,

Im~E(nptpmp)= ', n P k—„,„—'~r„p„('.

(D5)

(D6)

1 dy f' 1
C(*,.)= —Aj *,—B(y,.)2~i,„,=l y k

'
y

ImbE(nplp ~ nip —1)= Psnkno„'
I

—Rnolo

Xlp/(2tp+ 1), (D 7)(on the circle
~ y ~

= 1, y*= 1/y). If we insert (C1), we get

(C2) In the notation of Bethe and Salpeter" we can identify

C(x,s) =
n, m, n', m' 0

ImaE(npfp~ neap+1) = —ss&k„, '~Z„,, "'~ ~'

X (lp+1)/(2lp+1), . (D8)
1

X —y ~yn'. (C3) where we have separated the individual dipole
2~i y transitions.
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Using (12/) and (30) we correspondingly pick out and so

2 Z4n'm lp 2np(no —n)
lmAE(nolo +n—lo—1)=—— 4np'

3 np' lp+1 (np+n)'

XCW, ' '(p...)...g' (D9 )
and

2 Z n4' mlp+1 2ep(sp n)—
ImhE(solo —+ nip+1) = —— 4np2

3 np' 2lp+1 (ep+n)'

XCW o'+'(p, ), $', (D9b)

8 1 (esp)2
IR

Zrrm ep"'(ep —n) in+no)

The dimensional quantity 1/Znm is the atomic radius
ap, the absolute value signs in (D10) arise because we
have only equations relating the squares of E and 8".
We thus arrive at, via (129) and (130),

gp(n+. Sp—1)!(4SSp) «+2(np —S)n+no —2«—4

g nip —1

I 6LCp( sp+ pL)!( sp lp 1)!(s+lp 1)!(s lp) lj1~ (s+np) +

(n lp ( 4nn—p ) ( . (s+so'! )X I

—
I

IFI Lp+1 n„l,+1——n;1—n —n
s i (nysp)'& ~ (no 's&—J

(So+ Lp) (Sp—S) ( (sp+n) 2)
+I II IFI Lo

—so Lo—n'1 —n —no'I
I I

. (D11)
E e, )Es,+n& k

' '
~n,—s& J

( S—Sp)
dp p(1+p)l p+ —

I CW1+(p)...j', (E3)
e+np(no+ lo+ 1)!(n+Lo—1)!

F(lp —n, lo no, 1——e—ep, z)=
(2lp —1)!(n+no —1)!

can be written using the observation
XF(lp—no, lo n; 2lo; 1——z) (D12)

This is essentially. Gordon's formula"" through not in Now the integrals (127),
the same form as published there. (D11) can be con-
verted to Gordon's form via the. identity 1

which can be proved by equating coeScients of powers
of s, and the continguous functions relations. "

2So( n —so)
1+p=l p+ I+

n+no~ n+no

APPENDIX E: CONVERGENCE OF SERIES

To prove the convergence of (127), we use the
asymptotic relation (as n -+oo ) where

(E5)
2SOI +=J++ E„+, —

e+ep

F(lp+1 n, lp+ 1 —np, 1—n —n—p, x)

F(lp+1 —np, np, n—p, x) =—(1—x) "2—'2—' (E1) dp pCw""'(p)-o-j', (E6a)

from which

W1o' '(p)-o-

(n+s 1 ) lp'n no 1(1 p—2)n—o

( S Sp)—
1Lp pl p+ I LW +(p) )' (E6b)

s+np)

2Cso(so+ Lo) (so—Lo—1) (n+Lo —1) '(s—
Lo) O' '

Comparing (E6b) and (E3) we see that, since
(E») 1+p& 1, we have E„+&I +, and so

an

(+)(p)„

+(n+n 1) ipn no+1(1 p2—) no

2sok(J 6+
n+no

2Cnp(no+ lp)!(Sp—lp —1)!(n+ Lp+ 1)!(n lp 2) ij'—"—
(E2b)

'2 W. Gordon, Ann. Physik. (5) 2, 103I (I929).

that is,
'n+npI +& J +.

QQ

(E7)
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Thus the series (127) will converge if reduce to

J
(pe.

»&0 S—So

('1'L — np 1)!(211p)!
ps

n.—pno —1(1 ps) 2npQ7p- (E9)
2(n+np)!

But the integrals J„, lacking the denominator, apart from outside factorials. Application of Stirling s
are much more tractable than the I„. In fact, formula then shows that the series in (F8) converges
for n large, we deduce from (E2) that the J„+ like 1/n'.
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Many-Level Formula for Scattering from Extremely Strong
Square Potentials*
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A version of the many-level formula for scattering is introduced, considering the potential strength as
the fundamental variable. It is applied to extremely strong square potentials. Under such circumstances,
we must deal with a sum over a large number of nonresonant terms. The mathematical technique developed
here will be directly applicable in the discussion of a singular potential scattering. Furthermore, Mccoy,
Heller, and Bolsterli have pointed out that a deep square well and a high barrier produce similar scattering
amplitudes, in spite of the difference in sign. This intriguing eGect is analyzed in the light of the many-level
formula. We can understand it clearly in terms of the dominance of the orthogonality e6ect. It refers to
such an eBect as is a consequence of the fact that the wave function is orthogonal to any normalizable
function introduced within the range of the square potential, which occurs if the potential strength tends to
infinity. In the case of attraction, the depth of the square well must be outside the "width of a resonance"
in order that this eBect may dominate. We may de6ne the relative probability of encountering a resonance
with the ratio of the width of a resonance to the distance between two adjacent resonances. It tends to
zero as the depth increases without limit.

1. INTRODUCTION

'F there is no strong singularity or long-range tail, any. ~ interaction (generalized potential) can be expanded

in a series whose individual term is in separable form

and associated with a particular form factor. An

individual form factor is de6ned as an eigenfunction of

the kernel of the partial-wave Lippmann-Schwinger

equation, and is labeled by the number of nodes, i.e.,
"the radial quantum number. " Taking into account
multiple scattering effects, the T' matrix will be given in

the form of a sum over contributions from such form

factors. This form of the T matrix bears a similarity to
the many-level formula (Breit-Wigner formula)' in that

* Work supported by the Committee on Research of Marquette
University. A preliminary report of this work has been presented
)Bull. Am. Phys. Sac. 11, 370 (1966)).

' An approach similar in form to the present one was developed
earlier and independently by H. Feshbach, Ann. Phys. (N. Y.) 5,
357 (1958), 19, 287 (1962); further references are given there.
Duke and Wigner applied Wigner's R-matrix theory to the
potential scattering from a square well; C. B. Duke and E. P.
Wigner, Rev. Mod. Phys. 36, 584 (1964).The Wigner R matrix is
essentially equal to the tangent of the phase shift, as measured
relative to the phase shift of a hard-core scattering (where the
radius of the hard core is equal to the radius of the internal region).
A summation over the number of nodes, which we call the "radial
quantum number, "was employed in their paper as in the present
paper; however, since it requires a substantial amount of work to
compare the two results, we do not attempt it in the present paper.

the poles and the residues of the T matrix are clearly
indicated, though the potential strength is used as the
variable instead of the energy. Therefore, an extended
use of such terms as "levels" and "widths" in referring
to contributions from individual form factors is
naturally suggested. The "many-level" formula enables
us to understand perfectly the analytic property of the
T matrix as a function of potential strength. The proofs
for these statements can be carried out with the use of
what we call the approach through the 6nite-rank
approximations, namely, by approximating a given
generalized potential with a converging sum of separable
potentials. This method was originally developed by
Weinberg' in a different form, and its merit was
emphatically demonstrated by Coester. ' The present
author analyzed its mathematical aspects from the
physicist's point of view and gave a rigorous proof. 4 It
is the purpose of this paper to study extremely strong
square potentials in order to shed light on scattering
from a singular potential. The method developed here

' S. Weinberg, Phys. Rev. 131,440 (1963);130 776 (1963)
Scadron and S. Weinberg, ibid. 133, 31589 (1964); S. Weinberg,
J. Math. Phys. 5, 743 (1964); M. Scadron, S. Weinberg, and J.
Wright, Phys. Rev. 135, B202 (1964).' F. Coester, Phys. Rev. 133, B1516 (1964).

4S. Tani, Ann. Phys. (N. Y.) 37, 411; 37, 451 (1966); these
papers will be referred to as I in the following.


