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The O(4) symmetry of the nonrelativistic hydrogen atom is exploited in conjunction with Green’s-function
methods as a tool for the solution of Coulomb problems. The Bethe logarithm, the principal contribution
to the Lamb shift, is treated by this means, and a rapidly convergent series is obtained. This is used to
evaluate the Bethe logarithm of the 15, 2S, and 2P states, and a discrepancy with the most precise pre-
viously published value for the 1S state is indicated. The new value is 2.9841285 with an estimated un-
certainty of 43 in the last figure. The discrepancy is beyond the reach of experimental observation at

present.

I. INTRODUCTION

HE ‘“hidden symmetry” of the nonrelativistic

Kepler problem,! which accounts for the ac-
cidental degeneracy of the hydrogen atom, has been
known since 1926, when Pauli? showed that

A=(1/2m)(pX L—LXp)—Za(t/7) ¢))

is an additional conserved vector (a Hermitian form of
the classical Runge-Lenz vector) for the system. Using
the algebra containing A, he was able to find the energy
levels of the hydrogen atom and to analyze the Stark
effect, within the framework of Heisenberg’s matrix
mechanics. Then, in 1935, Fock? showed that, working
in momentum space, one could project that space
stereographically onto the surface of the unit sphere in
a four-dimensional space in such a way that Schrodinger
integral equation becomes simply the eigenvalue equa-
tion for hyperspherical harmonics. This showed ex-
plicitly that the symmetry group of the hydrogen atom
is not the obvious O(3) but actually O(4).

Except for some early applications based on Eq. (1),
the hidden-symmetry group spent many years as a
curiosity without much applicability. Then, in 1961,
Biedenharn* published an analysis of the O(4) group and
advocated its application to Coulomb problems, a
program he is currently persuing.® His methods are
based upon developing an operator algebra involving
both Eq. (1) and spin operators. The Fock representa-
tion was resuscitated by Schwinger® in deriving an ex-
plicit construction of the Coulomb Green’s function.

It is a well-known experience in quantum mechanics
that, from the point of view of applications, it is useful
to translate the operator-algebraic (Heisenberg) for-
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malism to the wave-function-analytic (Schrédinger)
language. It is the essence of Fock’s stereographic pro-
jection that it allows us to make use of the full symmetry
inherent in Coulomb problems in combination with the
powerful tools of analysis. The stumbling block which
has caused the neglect of this method seems to be the
dependence of the projection upon the energy of one
given bound state, which makes working within this
subspace much easier than going outside; this would
appear to severely limit the scope of the method. How-
ever, combining the Fock projection with Green’s-
function techniques may offer a way out of this dif-
ficulty. For, while projected onto the sphere by making
reference to a given energy level, the Green’s function
still retains information about all levels.

The purpose of this paper is to illustrate this idea by
exploring the Lamb shift (in the lowest-order, non-
relativistic, dipole approximation) of a given energy
level. After some preliminary remarks (Sec. II) to
establish the problem (and notation) we separate the
lowest terms which contain the divergent integrals
(Sec. III), and convert the remainder to matrix form.
In Sec. IV the mathematical structure of these matrices
is analyzed. Finally, in Sec. V, the numerical results
are obtained.

II. PRELIMINARIES

To establish notation and conventions we discuss the
pure Coulomb Green’s function briefly, following
Schwinger.® Using units Z=c=1, the Green’s function
in momentum space is the solution to

2

(E— H)G=<E——ZP~)G(p, '|E)

=6(p—p),

Za dp")G(p",p' | E
/(p) p",p' | E) @

(p—p")?

in which we make explicit the dependence of G upon
the energy E. Restricting ourselves to £<0, we put

©)
)

po=(—2mE)'1?
and

)\(P)=P02+PZ ’
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so that

22

Mo 2o (@p”)G(p",p)
(p—p")?
We project the three-dimensional momentum space onto

the surface of the unit sphere in a four-dimensional
space (the Fock sphere) via

E=(2P0/)\)p7 £0= (1702—?2)/)‘; (6)

so that the 4-vector £= (£,£) is of unit length. It will be
useful to introduce spherical coordinates (the angle o
should not be confused with a=1/137):

=5(p—p’) . ()
2m

£y=rcosa,
=sina cosf
- ’ ™

£,=sina sinf cos¢ ,

£3=sina sinf sing.
The element of surface “area” is
dQ=sin’ada sinBdl dp= (8¢3/N*)d*p (8)
or, conversely,
(1/p0°)(d@p) = dQ/ (14 £0)°. ©)

Defining a 4-vector ¢ corresponding to momentum p’
(but still with the same o), we note that

(E=&)*=(4ps’/ W) (p—p"), (10)

with A’ defined for p’ in analogy with (4). Making the
further definitions

v=_Zam/po, (11)
D(Q,Q)=1/4r*(§—-¢)?, (12)

and
I'(Q,2)=—\\"%/16mpo*)G(p,p’) (13)

we can rewrite (2):
r(Q,Q)—2 / D(Q,Q)T(Q", Q)4 =5(Q,Q), (14)

where the points on the Fock sphere are denoted @, @
and the § function is given, according to (9), by

3(Q2)=(\*/8po*)o(p—p")- (15)
We now introduce spherical harmonics
Ynlm(Q) = an(a) Ylm(0;¢) ) (16)

where YV ,,(6,¢) is an ordinary spherical harmonic and
n, I, m are integers: n>1, 0<i<n—1, |m|<I. The
representation (16) makes explicit the three-dimensional
rotation group O(3) which acts on p (and &, which is
parallel to p). The functions Z.,(e) are

Z1(@) = N ay(sine)'C o1 (cosa) , 17)

where C,_;1""' is a Gegenbauer polynomial, defined
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by
1 ©
=2 #C"(x) (18)
(1—=2tx4)H1 =0
and the normalization constant is
nn—I—1)1 172
Nu= [w_—— ——] , (19a)
(11+l) ! Kl
where
Ky=m/22H(10)2. (19b)

(The phases have been chosen to make N,; real and
positive; this is not the usual choice, nor from the
group-theoretic point of view the most natural choice,
but we find it convenient to avoid the factor %) The
functions Z,(e) satisfy

/ Zul(@)Zwri() sinada= b, (20)
0

which makes the ¥ ,,(?) a complete orthonormal set
on the sphere.
The expansion

1
D(Q,9) =3 —Y uim(Q) Vn1m(Q)*

21)
nlm LN
immediately gives the solution to (14):
I/nlm(Q) ynlm(Q/)*
e = ——; (22)
nim 1—v/n

the poles at »=# give the spectrum via (11) and (3):
En= '—Pn2/2m: - (Za)2m/2ﬂ2 (23)

and the residues in the E plane are the wave function

4Pn5/2 P
¢nlm(p) = an(ta'n—1<—“>) ylnz(07¢) ) (24>
A2 Dn

n

writing p, whenever we mean p, corresponding to the
energy level E,, and A\, correspondingly.

To turn now to the Lamb shift,” the displacement of
the state #mlgmo to second-order perturbation theory,
in the dipole approximation, is

a 2 (dk
AE(H olo’mro) = —

dm?m? x=1 k

X (nolommo | p-ex Hp’exlnolomo>, (25)

no~

where k is the intermediate photon energy, H is the
Hamiltonian operator for the hydrogen atom, and e, is

78S. S. Schweber, An Introduction to Relativistic Quantum Field
Theory (Row, Peterson, and Co., Elmsford, N. Y., 1961).
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the photon polarization vector. In momentum space
this becomes

(k) ;
AE(rdome)— / @) (oo’ e

4m2r? T
X¥natomo(B) Y notomo(0)G (0,0 | Eng— k) ,
where the Green’s function G satisfies, instead of (2),
(Eny—k—H)G=05(p—p"). (27)

Using ex-k=0 and integrating over angles in % space
(26) becomes

(26)

2a K
AB(nolomo) =—— [ kedk(dp)(dp)P* P'Ynotomo(D)*
0

mm

X¥notome(P)G(D, p/lEno'~ k), (28)

where we have introduced a cutoff K, since the integral
diverges. Note that the only & dependence is in G.

We now wish to project this onto the Fock sphere.
Although (27) is really identical to (2) with E=E, —k,
simply using (3) and (6) would have the effect of mixing
up the photon energy & with the projection. For present
purposes it is better to leave the & dependence explicit
by using

Pno=(—2mE, )\ 2= Zam/n, (29)
in place of po in (6). We get in this way
AE(‘no,lu,mo) = — (2apn04/3m31r)£(B,nolomo) , (303,)
2 Z'am
AE (no,10,mp) = —— £(B;”0l0m0) ) (30b)
3r n04
or, in rydbergs,
AE(no,lo,mo) 4 Z4(13
_—— L(B,nolomo) . (30c)
1Ry 3 net
Here
L(B,nolomo) = f / QALY ngtome(2)*
B
XV oo @VE-E / B8 T@Y|8), (31)
0

where we have introduced the dimensionless photon
energy

B=mbk/pny’ (32)

with corresponding cutoff B. The projected Green’s
function T' satisfies, instead of (14), the equation ob-
tained from (27) using (29) in the projection

rQ,]8)—2 / 4’ D(Q,Q)I(Q 2 |B)

=8(2,Q)—B(1+£)T(Q,2'(8),

where the last term is the extra term due to %, and
where v=mn,.

(33)
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In the following sections we shall analyze Egs.
(30)-(33) in detail. It should be emphasized that, so
far in the treatment, no intermediate states appear:
Only the single energy level E,, enters. The other energy
levels are explicitly contained in the Green’s function
G(p,p'| En,—Fk) which has poles in the % plane when
k=kuppn = E,,— E,, for all hydrogen eigenvalues E,- in
the discrete or continuous spectrum. However, in going
from G to T, we have discarded the continuous spec-
trum, which could be recovered only by analytic con-
tinuation. Thus the continuum states never appear in
the remainder of this paper; the other discrete states
will appear when we expand in hyperspherical
harmonics.

III. LOWEST TERMS

Since we are interested in the behavior of (33) as
B—c, it is inadequate to treat the extra term as a
perturbation of (14). It is better to rewrite (33) as

3(2,2) 2
2 o
146(14£)  1+B(1+ &)
XT(@" 2 |8)de”,

r(Q,|8)=

(34)

which is better behaved at large 8. It is also convenient
to introduce a scale change in g:

B=2p/(1—p)?, (35)

so that the interval 3=0 to « is mapped onto p=0to 1.
The reason for this is that (34) becomes

(1—57)25(9,9’)l 2v(1—p)*

I‘(Q;Q/ lp)._— T
14+2pk0+p* 14+2p&0+p?

X / D(Q,2")r(Q",2'|p)dQ”, (36)

where the factor (14-2p&0+p2)~1is recognized to be the
generating function of /=0 spherical harmonics [Eq.
(18)]. We may symbolically abbreviate (36) as

I'=A+vKT. 37

It would seem logical to expand (37) about »=0, i.e.,
the Neumann (Born) series for I'. However, we wish
to set v=m,, so that an alternative approach is needed.
We extract the lowest (divergent) terms by using the
identity
IT'=A+n KA+ (1—noK) " neKKA

=A+n,KA+T’, (38)
where we have placed v=wm,. The first term
(1—p)%(2,2)
A@ |p)= ™ (39)

14+2pk0+p?

contributes a linear and a logarithmic divergence in %
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as B— (p—> 1). This follows when we note that
4p(1-+p)
(1—p)®

Because of the additional (1—p)? in K the second term
noKA contributes only a logarithmic divergence (in
fact, it vanishes except for S states; see below). The
simple manipulations leading to (38) correspond to
much less evident manipulations of the ordinary-space
Green’s function (Appendix A). If we use (39) as a
lowest-order approximation to I' we obtain

P 4p(1+p)
£(0)=/ /[dﬂ dﬂ,Ynolomo(Q)
0 (1 p)®

BdB — dp. (40)

X Ynolomo(ﬂl)z' E,A(SLQ, [P)

/ Pp—(ﬂ)‘L(P,nolomo) ; (41)

(1—p)®

where P is the cutoff in p corresponding to B in 8 and
K in k, and where

Ynolomo(ﬂ) 2E|?
L(p,nolomO)=]dQ'I-—~—*—J—‘l—L
1+2p&0+p?
or, by §2+$0 = 1’
EO2| Ynolomo(ﬂ) l 2
L(p,nolomo) = A1(no,no,0)— | d@——.
1+2p0+p*

Here we have defined the basic matrix element (diagonal
in 2, m)
Au(nn'p)= (nlm| (1420800717 | 0'lm)
Ynlm(ﬂ)* Yn’lm(g)
[
14+2p&0+p*
™ Z (@) Z wi(a) sina do
,/; 1+ 2p cosa+a?

(42)

(43)

using (16). In (43) we have represented V,um(2) by
{Q|nlm), This shorthand will be occasionally convenient
but |nlm) should be distinguished from the physical-
space ket vector in, e.g., (25), which is connected with
it by Eq. (24). The result (43) is independent of
because the O(4) symmetry-breaking & dependence
leaves O(3) invariance intact. The matrix element
Ay(n,n' p) is evaluated in detail in Appendix B. Surpris-
ingly, Aiunmn',p) is a polynomial in p (and therefore
well-behaved as p — 1). Also, by (20),

4 lo(n:nlyo) = 87"" * (44)
Returning to (42) we use the identity

4p*Ee* = (1+2pk0+p%)*
—2(14p) (1420 tp1)+ (142 (45)
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and the fact that (by symmetry)

f £o] ¥ natomo(©) | 242=0 (46)
to obtain
/ 502! Ynolomo(ﬂ) [ 2
—
1+2pf0+p?
(1402 (14p?)?
= e + A lo(nﬂjno)p) . (47)
4p? 4p?
Thus
1+ 2)— 1_ 22A0(n,7l,)
L(p,nolomo)=( P) ( 492) 10\720,720,P . (48)
P

Note that L is well behaved as p— 0 in view of (44),
so that there are no infrared divergences. Near p=1, L
behaves like a constant (3), so that (41) is divergent
like (1—P)~2, which is the same as linearly in B or K.

The next term is

2ni(1—p)" /’D(Q,Q")a(ﬂ"rﬂl)dw,
n =
14+2p%0+p? 14-2p£0" +p?
2no(1— p)4D(Q,2
_ no(1—p)*D(2,Q') . (49)
(14+2p&0+p*) (142080 +07)
This contributes to £
? +
£ = 2%0/ dpii-i)l‘ (p,nolomo) N (50)
where ’ P
L (p,noloma)
Ynolomo(ﬂ)* Ynolomo(ﬂl)‘f' E/D(Q;Q,)
= / dQdQ" . (5
(14+2p0+0%) (142080 +p%)
Since ¢, ¢ are unit 4-vectors, we have from (12)
1/4m?D(Q,Q") = (§—&)*=2(1—£&)
=2(1—&&'— & &), (52)
so that
£ ¥=1—kk/—1/8x2D(Q,) (53)

and therefore
L' (p,nolomo)

ddL (1— £08¢") ¥ notomo(2)* ¥ natomo(Q) D(2,2")
/ (14-2p£0+0?) (142080 +0?)

1 / aQ Ynolo'mo 2
14 2p&otp?

872

(54)
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The second integral is easily evaluated using V100(2)=2"1/2/7 (up to an unimportant phase factor):
1 dQ Y ngrgmo(2)
— / ————| =140(10,1,0) 0B mao- 65)
872 14 2p&0+p2
The first integral of (52) is evaluated using (21); calling the integral I,
I— Z 1 dﬂdﬂlynolomo(ﬂ)*Ynlm(Q) Ynolomo(Q/) Ynlm(ﬂ')*(l~£o£0’)
nim 20 (14 2p&0t+p ) (1+2p&0"+0?)
1
= 2 —{ [{nlm |[142pt0+p* T | noloma) | 2— | (nlm | [14-2pg0+p 2] €0 | nolomo) | 2}. (56)

nim 21
The first integral is then diagonal in [, m;
(ndm | (14 2pE0+p> T | molommo) = A 1(10,1,0) 81108 mmg- (S57)
Similarly, using

_ 1+20k0+p? 149

0 ) (58)
2p 2p
the second term is
(nim | [142p&0+p* T 0| nolommo)
= (1/2P)[57mo—" (1+92)A lo(n;npr)]alloammo: (59)
so that
(142 1
I= A 10(75071'“17/7)~
4nop? 81p*
(1=p?) = Au(n,nop)?
_ 3 L RTNP) . (60)

8p2 n=lo+1 n

A little care shows that (60) is well behaved® as p — 0
[cf. Eq. (44)]; in the evaluation of the p integrals it is
best to separate the #z=m, term of the sum in (60) and
combine it with the preceding terms to make the be-
havior at p=0 explicitly smooth). Combining (60) with
(55),

2

L' (p,no,lomo) = — £ 4 o(10,1,0) 26100+ A(no,n0,p)
4nop?
1 (1=pH? = Ay(n,nee)?
- - 2 —. (61)
8n9p? 8p% n=lt1 n

Noting (50) we see that the first three terms all con-
tribute log(1—P), i.e., logK divergences. When £©
is combined with £, only the S-state log divergence
survives (together with the linear K divergence from
<3(0))_

8 Actually, we have not shown here that the infinite series in
(60) converges. In fact, it is shown in the author’s thesis (un-
published) that it converges at least as fast as #~3. Furthermore,
it can always be summed exactly as will be seen in Sec. V. No
closed form for the sum has been found although for /=0 the sum
has been converted to an integral which can be evaluated directly
for n=1, 2 but not in general.

P r2(14+p) 2no(14p)p
dp(

£(0)+£(1)=/
0 (1—p)? 1—p
1_. 2

(
X A o(n0,1,p) 100+

A lo(no,no,p)
p

no(14+p)*(1—p?) = 1

S £ cAes). )
P n=lt+1 7

The first term of (62) can be directly integrated to
give B, the linear divergence. The second, which occurs
only for S states, is evaluated using Eq. (B8):

Ao(no,1,p)=(—p)"*, (63)
which gives directly
—4noIn(1—P)+-4noh(2n)—1, (64)
where we have defined
W(j)= % 1- (65)
k=1F
The expression (64) can be rewritten by using
—2In(1—P)=In(B/2P) — InB—In2, (66)

where —InP has been replaced by 0 as P— 1. The
result of this rearranging is
LOF LW =B+ —2n¢InB+2n,

XIn2+4noh(2n0) — 11610+ Ltinite, (67)
with Ltinite containing the last two terms of (62). The

term B is removed completely by renormalization.
Using (30) and (32) we see that the term B contributes

2 Z*oPm mK
AE(%oloﬂ’Lo, B term)= _—
3r nt Pnoz
=—(2/3m)Z%3K/ne®; (68)
on the other hand, the electromagnetic self-energy
correction for the state nologm, is®

L<nol0WL0 I 2 | nolomo>

2 K
AEo(nolomo) =— / kdm
3rJo k

= — (2aK /3m®w){nolomo| p*|noloma)
9H. A. Bethe, Phys. Rev. 72, 339 (1947).

(69)
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which is identical to (68) on observing that, by the
virial theorem,

(nol(ﬂﬂ() ’ j)z l nolomo> = — 21}'LE7,0= j),.oz . (70)

It is only AE—AE, which is measurable and thus the
B term cancels.

The remaining part of (67), when the logB divergence
is properly dealt with (Sec. V), contributes the major
portion of the Bethe logarithm for .S states (969, for
18, 90% for 2S). Before discussing the evaluation of
these shifts, we must deal with £finjte in (67) and with
I"; this task will occupy the remainder of this and the
next section. However, we wish to point out that the
manipulations needed to extract this dominant S-state
contribution have their counterpart in ordinary space
(see Appendix A).

The remaining part of (38) is I, which is the solution
to

2v(1—p)*
r'(Q,Q)—

1+ 2p0+p?
42(1—p)" /dQ”D(Q,Q”)D(SZ”,Q’)
1+ 2pkot+p? 14+2p&" +p?

/dQ”D(Q,QN)F’(Q”,Q’)

N C— )
14+2p&) +p?

We expand this in spherical harmonics by multiplying
by Yaim(2)*Y nirm (') and integrating over 2, @' to get

dm | T |0 Um’y—v(1—p)2 > Ai(nn’p)

1
X—@"lm | T |0 Vm’y=v2(1—p)* 3. Aunn”,p)
71// n

1rprrt
1

1
XA 0" sp)— A" 0 p) b b, (72)
7 n

in which we have used (21) in the form

1
<7le|D|n,l/m/>=h5nn’6ll’6mm" (73)
2n
If we set
(ndm | T’ |0 Um )= (n ) PT(0) nnr 118 (74)
and
Bl(p)nn' = (nn’)*WA l(n,n/,P) bl (75)
then (75) becomes the matrix equation
[1—=v(1—p)2Bi(p) ITu(0) = »*(1—p)®B:(p)*, (76)
so that
(ndm | T’ | n'U'm’y=v2(1—p)2(nn')1/2
X[Cl(p)Bl(p)a:lnn'(sll'&mm' 5 (77)
with
Cilp)=[1—»(1—p)*Bi(p) . (78)
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Observe that when p=0 we get from (44)
Cl(o)nn' = 6nn'(1 —V/’ﬂ)_l ) (79)
which, combined with (37), yields
I'=(1—yK)-1A (80)
and
A(Q,Q')0)=68(2,2), (81)

reproduces the pure Coulomb Green’s function (22).
Therefore,

I'(QQ)=r(1—p)°* > [Ci(p)Bi(p)*Tun

n,n’lm

X 13" ) 2Y i Q)Y i (Q)*. (82)

If we evaluate (78) we then have T' completely. This
will be done in Sec. IV. First, let us see how (82) enters
£. To do this we rewrite (82) in partial-wave form using
(16) and the ordinary spherical harmonics addition
theorem:

Z Yﬂlm(a)eid’) Yo lm(a/,01,¢,)*

1
=Zu(@)Zui() 22 Vim(0,6) Y 1m(8',0")*
1

=Z (@) Z (o) Pi(cosw) (20+1) /4, (83)
where
cosw= cosf cos#’+sinf sinf’ cos(p—¢’). (84)
We can rewrite (82) by performing the m sum:
w 2141
F/(Q,Q/) = Z Pl(cosw)I‘l(a,a') N (85)
=0 4
with
Dfe,a)=v*(1—p)® 2. (nn')'?
n,n'=l+1
X[Ci(p)Bu(p)* JnnZni(a)Zna(a') . (86)
Replacing » by %, and inserting into
14p(1+4-p)
£'= —dp L" (p,nolomo) , (87)
o (1—p)°
where
L//(p,ﬂoloﬁ'lo)=/dﬂdgl
X I’nolomo(Q)*Ynolomo(g/)z' EII‘,(Qyﬂ/) ’ (88)
w 204+1 7
L (p,nolgme) =y, —— / sin®a sin®a/Z ,10(ct)
=0 47 J,
) K ZnotoDilaya)da do’ grigme,  (89)
with
Litgme= / dQdY cosw Pi(cosw) ¥ igme(8,0)
X Ylomo(e,yd’l>* . (90)
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The latter is evaluated using

+1 l
xPy(x)= Pria(x)+——Pra(x) 91)
2141 241
and the addition theorem, with the result
471' lo lo+ 1
Bulgm= ( 51,10—1+ 5l,lu+1> . (92)
20+ 1\21,—1 20+3
We thus split up (89);
L'=I++1-,
with /=1o+1 or [p—1, respectively:
lo ™
L= / sinda sin®e’ Z yg10(e) Znore(e’)
20+1J,
XTp-1(a,0)dade’  (93a)
and
L [ Gt sin Zu o) Zu )
= sinda sin®a’ Z,q10(a)Z o100’
2ot 1 /o e
X Tpp1(a,a)dada’.  (93b)

The form of (93) is exactly what one would expect
from the dipole radiation selection rules.’® This is the
first instance in our calculation where the transitions
from state nolgmo to other states make their physical
presence known.

Finally, if we define

M y(p)nnr = (nn') *LC(0) Ba(p) T (94)

and

Dl(i)nn:=/ sinda Zu1(a)Zn 141(@)da, (95)
0

then we may write L* in pure matrix form

by
L= nOZ(l‘P)GEDlu(_)Mlo—l(P>Dlo(_)T]"ono; (96a)
2h+1
l+1
Lt= n02(1_p)6[Dlo(+)Mlo+1(p)Dlo(+)T]nono . (96b)

2t 1
The integrals D;*,,. are obtained from the identity

) 1/ +141)(n' 1)\ V2
sina Z, 11 a)=—<———-————) Znrg1,1(at)
1w (n’+1)

1<(n’—l)(n’——l— 1)
—5 n'(n'—1)

10 H. A. Bethe and E. E. Salpeter, in Handbuch der Physik,
edited by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. XXXV/1.

1/2
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which in turn follows from the Gegenbauer identity!!

Crit(®)=/n")[Cnr—i¥t(x)— Crrsa™(x)]. (98)
The result is
17/ 14 1) (0 + D\ V2
Dl(—)rm’=_< — “"’"‘) n,n/+1
2 n'(n'4+1)
1/ =) (n'—I1—1)\!/?
"‘(—_—'—*) 8an-1;  (99)
2 n'(n'—1)
the other matrix D;Y ., is obtained from
Dl(+)nn'=Dl+l(—)n'n« (100)

The matrix expressions will be further analyzed in
Sec. IV.

IV. MATRIX TERMS

In this section we shall investigate the matrix in-
version (78), which is equivalent to solving the integral
equation for I'(2,8| p). In a sense then, the matrix C;(p)
contains all the information expressed by the Green’s
function for the system of hydrogen atom plus photon
(in dipole approximation). When p=0 we know that
v=my is a singularity (or eigenvalue) corresponding to
the bound state at 7, and C;(0) does not exist. As p
moves away from 0, v=17, is no longer a singularity. If
no#1, we will reach further singularities corresponding
to the dipole transitions. Thus we see that the matrix
(78) has a very complex structure.

To perform the inversion we will diagonalize the
matrix Bi(p). Since B;(p) is real symmetric, we seek a
real orthogonal matrix U;(p) such that

Bi(p)=Ui(p)Bip)U:(p)",

where By(p) is the diagonal matrix made of the eigen-
values of B(p). Let u(p) be an eigenvalue of Bi(p)
and {V.(p)}, m=1+1, 142, --- be the corresponding
eigenvector. Suppressing the index /, we write

(101)

Y B0)unVu(0)=p(0)V (o). (102)

m=1I+1

The left-hand side is, by (75),

2 B)wnVulp)
m=1+1
1 ™ g sin®a Zni(@) 2o meib1® w2V 00 (0) Z mi(a)
o .

nlz J, 14-2p cosa+p?

(103)
If we define a new vector

(104)

11 M. Abramowitz and I. A. Stegun, Handbook of M athematical
Functions (Dover Publications, Inc., New York, 1966).

Xm(p) = mpl,szlYm(p) )
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then the normalization factors on the Z,; are removed and we get
T sin? 2 Cp 171 (cosa) X matt1® Xm(0)Coi_1*+1(cose) n
[ — o)X (o), (105)
. 0 14+2p cosa+p? Nni?
ie.,
© n
Z Inmxm(P)=I‘ Xn(P) ) (106)
m=I+1 N,

where I, is given by Eq. (B11). This indicates the use of generating functions, as described in Appendix C. The
generating function for 7,,, is simply the Gi(x,y,0) of Appendix B. It is convenient to define

0

fe)= 2 " Xu(p),

m=Il+1

(107)

so that {2-1f(fp) is the generating function for X,.(p) that starts with #. With these points in mind (106)

becomes, using (19),

and so, using (B21b),

1 ) & -
L e ) £
2 2l g n=04+1 N2
d 20+1
=u(p)Kz<E;) 1t (108)
F(—=1,141;142; — (t+p) 14p2)/(1—p2) (z—1)) f(z,0)
z . (109)

d\ 2+ Q@i41)! (1—p?)!
u(p)(;) fto)= 1 (1+tp)l+1fd

This is an integro-differential equation for the generating
function of the eigenvectors. In writing it we have
assumed f(Z,p) analytic for all ¢ inside the unit disk. It is
this condition that determines the eigenvalues p.

Since the treatment of (109) is complicated, we will
illustrate here only the case /=0 and refer the reader to
the author’s thesis for the details of the general case.
However, we will give the general result.

For =0, F reduces to unity and (109) becomes

af 1 1 dz f(z,p)
=" VNN
dt 14ip 2w (z—1)(z+0)

zf(t,p)—f(—:o; p)

(110)
(A+1p)(t+p)

If we set g(t,0) = f(t,0)— f(—p,p), We can integrate (110)
immediately, with constant of integration c.

t+op 1/ (1—p2)
) . (111)

4 (i ,P) = C(
1+ip

Now g(¢,p) differs from f(Z,p) only by a constant and so

is equally satisfactory as a generator for X..(p). We see

that since p<1, g(¢,0) will have a branch point unless

[u(1—p®) ]! is an integer #. Thus the eigenvalues are

1™ (p)=1/n(1—p?) (112)

LGe+p)(z—0) ]

and the generator of the corresponding eigenvector

g<n>(t,p>=cn<p>(ﬁ—”—)" .

(113)
141p

The constant ¢,(p) must be chosen to normalize { ¥}
and make U,(p) an orthogonal matrix:

0 0

> Va®()=1=Ko ¥ mXn®(p)?
m=p m=1
K : f ™(1/ )d
=L, g (1/y,0)—
i dy
Xg™(y,0)dy, (114)

where we have recognized that {mX,,(” (p)} is generated
by (d/dy)g™ (y,p). Then (114) gives
cu(p) == (nKo)™1/? (115)

(in this case independent of p but not for /£0); the
plus sign must be taken in order that Ui(p) —1 as
p— 0.

The result for arbitrary / is stated as a theorem:

Theorem: The eigenvalues u(p) of (109) are
pem(@)=1/m(1—p*) (m=I1+1,1+2,---) (116)

and the corresponding eigenfunction is, correctly



174
normalized,
Ffemy(t,0)=cmy(P)gamy(t,0)Fqemy(t0),  (117)
where
gy (tp)=(t+p)™/(1+tp)™ 1, (118)
camy(p)=Nm/[m'*(1—p*)"], (119)

and ¢m)(t,p) is a polynomial of degree 2/ in ¢ needed to
bring f,. to the form (107).
Finally, we can write the results:

ind By(p)nrnr= 8 [n"(1—p2) ] (120)
Uilp)nrnr
=7, p)
(/41" — 1) |(— 1) nHtH1pn'+n"—21-2(1 — 52) 11
T WD — — D)D) 1 — — 1)1
X (1=, I 1—n"; 1—n'—n"; 1/p%),  (121)

where the latter has been obtained by expanding
g™ (p), picking out the coefficient of #*"+! and trans-
forming via (B16). The hypergeometric function appear-
ing in (121) is a polynomial of degree min(n',n'")—1—1
in 1/p? and so we see that the elements of U, are
polynomials in p, a surprising result.

The matrix Ci(p)Bi(p)® occurring in (94) is also
diagonalized by U,(p):

Ci(p)Bu(p)*=Ui(p)"Ci(p) Bi(p)*Us(p),  (122)

where

Surmre
l—nﬂ(l—P)ZBl(P)n’n’
n’(l—i—p)/ n —no\ "

- ot ) bu
n'+no \ n'+ng

with »=m,. This immediately gives

Cilp)wrnrr=

(123)

n1(1+p)

n1+no

Myp)nrnrr=('n")? 3 Ui(p)"winy

n1=0+1

n1—no

X (p+ )— i} (1—=p) U (p)nynr (124)

1’L1+ g
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and therefore the expression in (96a) becomes, with a
little manipulation,

[Dlo(i)Mloi:l(P)Dlo(i)T]nono

P

n=lo+1+1 nT"no

(£) T
- [Wlo(i) (p)non]2 X Wlo (P) nng

n=lot1+1  (n+n0)(1—p)

X[+ (n—no)/(n+n)) I, (125)
where the matrix W;,&(p) is defined by
Wlo(i)(P)non = Z (\/nl)Dlu (:t)non'
n’=lo+1+1
X Utos1(p)Tura/[n(1—p%)]. (126)

Combining these results, the level shift contribution
from (87) is

I+l = 1
£’ = 4%02(
2l0+1 n=1lo+2 no-l—n

! P(1+P)[Wlo(+)(l’)non]2 lo [ 1
X / dp+ 2
o pt+(n—no)/(nt+no) 241 =t no+n
/1 P(1+P)[Wlo(—)(P)non]2
o pt+ (n—no)/(n+no)

When n<n, the above integrals have a pole at
p=(no—n)/(mo+n). In this case we must take the
principal value of the integral. In Appendix D it is
demonstrated that these poles are merely the dipole
transitions. Note that when n=mn,, p=0 is nof a sin-
gularity of the integral although it is in (125).

The functions Wy, & (p)nen are easily evaluated in
view of (99) and (100); for example,

1(L—=p) W3, (0) nn
= %no_‘/z{ [(ﬂo‘{'lo)(ﬂo"‘lo“‘ 1)]”2Ulo_.1(p)n.no——l
—[(mo—lo)(mo—lo+1)J12U jp-1(0) n,ne+1}  (128)

d,;) . (127)

or

_1 (no+lo+1) n n 1anotn—20—1(1 — »2)lo—1
(=1 (not+n)lp (1—p?)

Wlo & (P) non =

2n[no(n+Ily— 1) W(n—Lo) {(no+1lo) (no—lo— 1) I]/?

((no‘f“ bo)(no+1lo—1)
X F
(no+n)(no+n—1)

(lo—n, ly—not+1; 2—no—mn; 1/p2) —p*F (ly—n, ly—no—1; —n—mno; l/pz)) . (129a)

Using the so-called “contiguous function” relations!! two or three times, we can write (129a) more symmetrically:

Wi, (p)non 1((7’1«2“ )12
Vng ly

n

Elo(no,n,p) -

(o2 —Ue?)1/2
MElo—l(n07”:P)>

o
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and
Wa® @ 1 (In*= (ot 12] D= (o 1?1
i / Ezo(no,n,p)-—‘———-————Ezm-x(no,n,p)) , (129b)
\/%o lo+ 1\ n Mo
where
(= 1)notio=1(]— p2)lotlgntno=2l=3(y 30— 1) |F (lg+ 1—n, ly+1—n0; 1—n9—n; 1/p?)
Ey(nom,p)= (130)

2[(%0+ lo) '(%o'— l()— 1) ’(n'“f“lo) '(}’L* lo— 1) !]1/2

By counting powers of p, it is easily seen that (130)
and hence (129a) define a polynomial in p. The con-
vergence of the series (127) is proved in Appendix E.

V. NUMERICAL RESULTS

The expressions derived above, after removing the
divergent self-energy AE, of Eq. (69), describe a
logarithmically divergent level shift for S states, but
are convergent for all others. The energy shifts are
traditionally expressed in a cutoff-independent manner
in terms of the “average excitation energy” ko(7o,00)
(all expressions are independent of m,), defined by

AE(nol)—AE, 8Z%a® M
— e In . (131)
Ry 1103 3r ko(ﬂo,lo)

where M=K, the cutoff in photon energy, when
ly=0, and M is arbitrarily set at 1Ry when ;0.
Even more commonly used is the Bethe logarithm
In[ &o(n0,00)/ (1 Ry) ]:

ko(no,lo) 3T 1203 AE(H(),ZQ)——AEO
1Ry 1Ry

o 824
K
+(1n-—-—-)610,0. (132)
1Ry

If we insert (67) into (30c) and then into (132) and use
the relationship (32) between B and K, we see that
the In(K/1 Ry) cancels and

ko(ﬂo,lo)

In:

1

=[InZ2—2 Inn¢+2 In2+24(2n,)
—1/2n¢]610,0+ (Leinite L")/ 2n0.

The only occurrence of Z in this is the (InZ?)é;,,0 which
we henceforth drop; the numerical results we get for
hydrogen can be extended to all hydrogenic atoms by
restoring this term for S states. The term Lsinite COmes
from the last two terms of (62) and £’ from (127). The
function % is defined by (65).

The term &£iinite contains an infinite series which
contributes to (133) an amount

1Ry
(133)

1 1 (1-pH) 24 1,(no,m,p)?
/dp( p?) (1+p)2A 14(120,1,p) C(139)

P

As emphasized in Appendix B, A4(no,7,0)? is a poly-
nomial with rational coefficients (depending upon #,
no, etc.) and furthermore, for n=mn,, divisible by p.
Thus the integral in (134) yields a sum of the form

)
" q(n)

where p(n) and ¢(z) are polynomials in #. Such a series
[if convergent, which (134) is?], can always be summed
exactly'? by resolving into partial fractions

P(“)_ < [ 1 b 1 Cr L
‘1(”)_’?::1 1’L+Ouc[ (n+ak)2l (n-l—ak);l )

and applying

hod P(”) b ,

> —=2 (""ak\b(1+ak)+_“\l/ (14+ow)
n=1g(n) k=1 1!
where!l 12 :

d
Y(z)=—1nT(z).
dz

In our case it appears to be generally true that the
only values ever needed for the polygamma functions
are the combinations

¥(3)—¢(1)=2-2In2 (136)

v )= (=1)"5%()),

and

(137)

where ¢ is the Riemann ¢ function.!!
We next turn to the infinite series term £’. Both
serles are of the form

1 /‘ p(14-p)[ W 14(p)non 1*dp
notn Jo p+a(n)

; (138)

where a(n)= (n—mno)/(n+mn,). These series converge
like 1/73, i.e., like {(3), as shown in Appendix E. (This
is due to the presence of the continuum contribution.)
However, if we observe Egs. (E4) and (ES), we can

2P, M. Morse and H. Feshbach, Methods of Theoretical
Physics (McGraw-Hill Book Co., New York, 1953), especially
pp. 422 and 423.
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break (138) into

> / Aol 10 ) T

n not+n Jo

+2n0 2 / 1 dpp[Wlo(P)noﬂjz ’
n (notn)* Jo p+a(n)

where the first series converges like 1/#° and the second
like 1/n*. The virtue of (139) is that the more slowly
convergent series, lacking the p+a(z) denominator in
the integrand, contains no logarithms and may be
summed exactly using (135). This is because the
polynomials in W? are of degree depending on min(%,n,)
and so for n>mn, are all of fixed degree. Thus (139)
leaves only a 1/n* convergent series to be summed
term by term. But we can go further. The reason that
we could go from (138) to (139) was the 14p factor in
the numerator, which we used to cancel the p+a(n)
in the denominator to leave a more rapidly convergent
series to be summed. If we examine Egs. (E2), we see
that W? has, for large #, the behavior

(1=p?)Pmo=(1—p)*ro(14p)2m.

The 1—p factors determine the rate of convergence.
The 14-p factors can be used repeatedly 27, times, each
time resulting in an exactly summable series and a more
rapidly nonsummable part. When we exhaust these
factors, we will have a series to sum which converges
like 2n9+4. Actually, the (1—p®)27 factor occurs only
asymptotically, so that some care is required to extract
the (14p)*» factor without disturbing the (1—p)2™o
part. The details are given in the author’s thesis. The
first series to be summed will have the general form

(139)

1 pZn—2no—1(1 __p)2no

2 fnolo(i)(n)/ “de-

Therefore the two series for + and — may be combined
and only one set of integrals need be computed. The
integrals in (140) may be evaluated by combining the
integrals

(140)

1 jd
@)= [ =
0 pta
-1 (—a)* |14a
=3 ——+(—a)'In l, (141)
k=0 j—Fk a .

where the absolute value signs allows us to use the
formula even when a<O0(%#<#,) and represents the
necessary principal value. It is also convenient to use
the recurrence formula

Ii(a)=1/j—al;1(a),
Io(e)=In|(14a)/a]|.

Finally, we must discuss truncation of the series (140).

(142a)
(142b)

0(4) SYMMETRY AND LAMB SHIFT

2047

We know that for large # the terms are proportional to
1/n?7t4, Thus we can estimate the remainder caused
by stopping the series at z=7 by
remainder~e;{;(2n,+4), (143)
where
ex=n*HX termna (144)
and {(2) is the ¢ function minus its terms through
1/m2. Formula (143) gives a method of extrapolation of
the truncated series. The error introduced in using
(143) as an extrapolation, rather than as a truncation
error, is estimated by observing the rate of change of
en and of the extrapolated result, as discussed in the
author’s thesis.
We now apply these methods to some explicit cases.
We begin with the 1.5 level. By (133) we have

ko(1S)
In:
1Ry

=54+21n243(Lrinite+ L) ; (145)

Lrinite comes from the last two terms of (64). We use
(63)

1 ! 19
3L inite= *“[ dp (1—p2)(2+p)+2=——+Z, (146)
2Jo 24

where, by (134)

w 1 !
2==1 5 - [ dopti—p)(i4er
n=2Mn Jo
RS R (147)
=0 72
where
r()=1/G+1D(G+3)+4/(25+3)(25+5). (148)
Thus we have two sums to evaluate:
® 1
2
= (F+1(G+2)(G+3)
w 1 1 1
=0 \j+3% j+3/j+2
and
0 1 -8
=——4[y(3)—¢(1)], (149b)

5 G100+ 3

the former being a “collapsing” series and the latter
by use of (135). Combining results we get

ko(1S) 17
R =:—21n2+%£’=2.86370 56389-+3L£’. (150)
y

n

The numerical part of (150) is already 96%, of the final
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TasBLE I. Successive approximations to the Bethe
logarithm for the 1S state.

Unextrapolated ~ Extrapolated
n Term e7(144) Bethe logarithm Bethe logarithm
2 0.00910 64204 0.586 2.98329 91174 2.98430
3 0.00066 73039 0.486 2.98296 64213 2.984136
4 0.00011 44907 0.469 2.98408 09120 2.98412 88
5 0.00002 97937 0.465 2.98411 07057 2.98412 848
6 0.00000 99866 0.466 2.98412 06923 2.98412 8494

answer. Now

=23

1 /ld p(14+p)[W o (p)1n ]2
n=2n+1J,

O ot (= 1)/t 1)

which converges like 1/#3. We can reduce this to a
convergence like 1/#® by the techniques mentioned.
By (129) and (130),

w (+)( ) ! ~4(1—p?2) ntl 2)
=)\t ) P ( w )
so that L1 s () (1 )

=2 n Jo p+(n—1)/(n+1)

and we see that we have three 1+p factors in the
numerator. When we extract these and perform the
sums, we get

38'=13/4—3¢/(1)— B8/ (E) —¢v (1) ]+2’, (151)

with
p(1—p)"

0 %—1 !
e / :
EEAAETYY RS T

which is exactly of the form (140) and converges like
1/n8. Inserting (151) into (150), we get
ko(1S) 17 58
In =——+—In2— ' (1)+2
Ry 18 9

=2.97419 26970+3’,

(152)

(153)

using ¢'(1)=¢(2)=%n2. We now sum the series 2’
term by term using (141) and (142). The results are
summarized in Table I. In the extrapolated Bethe
logarithm, use has been made of (143)-(144) and the
“remainder” calculated to three figures. On the basis
of the figures in the last column and on the variation
of ez, we can state our result

In[£0(15)/1 Ry]=2.98412 85(3),  (154)

which is to be compared with the most accurate pre-
viously published result of Harriman'®:

In[%0(15)/1 Ry ]=2.98414 9(3).
13 J. M. Harriman, Phys. Rev. 101, 594 (1956).
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We note that our result differs from this by seven
times Harriman’s estimated error. In fact, the results
in Table I for >4 are all consistent with each other
and inconsistent with Harriman’s value. Moreover, pre-
vious precise calculations for the 25 and 2P states
have shown Harriman’s values also in error there. Thus
the value given above is very probably correct to within
the error stated.

We have similarly calculated the 25 and 2P Bethe
logarithms by these methods. The complete details
may be found in the author’s thesis. Here we present
only the results after the series have been reduced to
1/n® convergence:

£o(25) » (n*—1)(n—2)*

=2.80917 38731464 X
Ry n=3 p3(n+2)*
p*r3(1—p)*

1
X/d
0

-,
p+(n—2)/(n+2)

In:

£o(2P) 16 o (11n2—12)(n—2)
In =—0.03412 954884-— > —————
1Ry n=3 n(n+2)°
p*r 3 (1—p)*

1
x [ et
o pt+(n—2)/(n+2)
The numerical parts of the two expressions are “exact”
(except for possible roundoff) and were obtained using
a desk calculator. Note that the integrals in the two
series are identical. Also, all the terms are positive.
The results, taking terms through #=7 and ex-
trapolating with (143) and (144), are given below,
together with the electronic computer results of
Harriman'® and of Schwartz and Tiemann'* for
comparison:

In[%0(2S5)/1 Ry]=2.81179 8(9) (Harriman)
=2.81176 9883(28)
(Schwartz and Tiemann)
=2.81176 98(3) (this calc.),

In[%0(2P)/1 Ry ]=—0.03001 637(1) (Harriman)
—0.03001 6697(12)
(Schwartz and Tiemann)
—0.03001 675(6) (this calc.).

Our results are clearly in agreement with those of
Schwartz and Tiemann and in disagreement with
those of Harriman. Although the former are given
more precisely than our values, it should be noted that
our numerical results were obtained by one after-
noon’s effort at an ordinary desk calculator, and could
easily be extended in precision electronically. It was
not our goal, however, to exceed the precision of
Schwartz and Tiemann, but rather to illustrate the
effects of the hidden symmetry group on the calcula-

( 1“5C) Schwartz and J. J. Tiemann, Ann. Phys. (N. Y.) 2, 178
1959).
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tion and to develop techniques exploiting the O(4)
group.
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APPENDIX A: LOWEST TERMS
(PHYSICAL SPACE)

The manipulation performed in Sec. III may seem
to be obscure from a physical point of view. Here we
give an alternative derivation equivalent to the develop-
ment there but without projecting onto the Fock sphere.

From Eq. (295),

o 2

(k)
AE(mlono)= / —(;Gpry, (A1)
4mPr? \=1 k
where
nH=p-er (A2)
and ( ) means the expectation value in the state

nolomo. The Green’s-function operator
G=(En,—k—H)! (A3)

[compare (27)] can be rewritten, treating the entire
Coulomb interaction as a perturbation,

H = H o+ V 5
HO=P2/2m) (A4)
V=—Za/r,
in terms of the free-electron Green’s-function operator
Go= (En,—k—Ho)™ L. (AS)
The operators G, G satisfy
G=Go+GoVG=Go+GVGy. (A6)
Now p) commutes with Ho and so with Go. Also,
G l 11;01()1”0) =—k1 I 71;010’)%0) y (A7)
so that
(0GP0 =(\(GotGoV G)p)
=(P2Go+ MGV GPr)
=(OG— PGV G)H (MG VGpr)
+(PGVGVGopr). (A8)
Applying (A7)
(MG =—EUP D)+ Upa2GoV )+ {(rGoV Gopy)
HOGVGVGopr), (A9)

which separates the terms in powers of V. The first
three terms, which depend only on the trivial Gy, cor-
respond to the lowest terms of Sec. III while the last
term, involving G, corresponds to the I part of (71).
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We may write, correspondingly,

AE(nolomO) = AE©® (ﬂoloﬂio)+ AE® (nolo’mO)

+ AE® (n(]lomO) ) (Alo)

where the first term of (A9) contributes

AEO (nolgmo)
-5 f X
dmin? = ) R2
& «

3 dmn? /OK dk( / dPl'Pnzm(p)lzpz), (A11)

i.e., exactly the renormalization term (69). The last
term of (A9) contributes

.AE(” (nolomo)

=+

o 2

dk
—(MGVGVGopr), (A12)
4m?r r=1 E

which, if projected onto the Fock sphere, is easily seen
to be the same as the contribution of (71) .
The remaining term,

a 2 dk

AE(I) (nolo‘}'n()) =
miniy=1J k

X EIPIGV+mGVGopr), (Al3)
constitutes the major portion of the Lamb shift for
deep-lying S states [for large 7o or 150, the contribu-
tion from AE® is comparable to (A13)]. Since (A13)
depends only on known quantities, it can be evaluated
by straightforward (but tedious) means. For the 1S
state, inserting the configuration-space wave function
¥ and Go, we get directly, in terms of the Bethe
logarithm (132),

Eo(1S) 17
In———=——21n2=2.86370 56389,
1Ry 4

exactly as in (150). This differs from the final value
(154) by only 49. For 2S the contribution from (A13)
is 909, of the total; for 2P, however, (A13) is almost
entirely cancelled by AE®,

APPENDIX B: A INTEGRALS

In this Appendix we shall evaluate explicitly the
Ai(nn'p) integrals introduced in Eq. (43). The in-
tegrals surprisingly turn out to be polynomials in p.
We also derive a generating function for the integrals
which is used in Sec. IV. As a byproduct, we obtain
some interesting identities for Wigner 6-; coefficients.
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Consider the more general integral

™ f(@)Zni(@)Z w1 (@) sin’e da
M(nl 'l p)= / ik ,
0 14-2p cosa+p?
so that 4,(n,n’,p) is the special case f(@)=1,I'=1. We
now use the expansion (18) with =0, {=—p; the ex-
pansion is valid for all complex ¢ inside the unit disk:

(B1)

T

M (n,l,n’l/,p)=;::0 (—p)* / F(@)Crl(cosa) Z i)
X Zwy(a) sinada. (B2)

Now Ci'(cose) is essentially Zy,1,0(a) aside from the
normalization factors, so that the product Cx'(cose)
X Zni(e) can be expended in terms of Z,/;(a) by use of
the Clebsch-Gordan series for O(4). Because of the
local isomorphism between O(4) and O(3)®0(3), the
Clebsch-Gordan coefficients can be obtained in terms
of ordinary O(3) coefficients. This has been carried
out by Biedenharn,* with the result for our case being

Ckl(cosa)an(a)=§ (nkl| N)Zy31,0(0),  (B3)
where
(nkll])= (_ 1)%(n+k+.f—1)+l|:n(]+1)]1/2
A R
x{ }; (B4)
3(n—1) 3J l

the latter is the usual Wigner 6-; symbol as defined,
say, in Edmonds.'® The sum in (B4) is over the finitely
many values of J permitted by the angular momentum
recombination problem implicit in the 6-j symbol.
These constraints also guarantee the reality of (nkl|J).
Thus we arrive at

Ml p)=3 (—p)* S (nkl|J) MT+1L, 27,0).
k=0 J
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In the case of 4; we get
n'4n—=2
Ai(ng’p)= ¥ (—p)t(nkl|n'—1), (B6)
k=|n'—n|

where the limits on % come from the 6-j symbol, and
the asterisk on the summation means that %2 goes
between limits i steps of 2. Thus we see that 4,(n,n',p)
is a polynomial containing only even or only odd powers
of p.

A l(ny ﬂ/, —p) = (— 1)n—n’A l("yn,yp) . (B7)

For /=0, (nk0|n'—1)=1 and we have the simple result

n+n’'—2
4 O(Hyn/?p): z (_p)k
k=|n—n’|
(=p)im=l—(=p)*t"’
= ) (B8)
1—p2
and, in particular,
: —n2n
Ao(”y”;P)= 1 N = 1+P2+ cte +P2n*2 . (BQ)
—p
For /=1 the coefficients are
ni+n't—k2—2k—2
(nkl|n'—1)= (B10)

L= D= D]

and no simple form is possible. It will be noted that
for /=1 the coefficients (B10) involve square roots.
These, however, are independent of % so that the
coefficients in A1(n,n’,p)? are all rational. This is true
for all 7 as we shall see below, because the square roots
come only from the N ,.; normalization factors.

(B3) We now turn to the generating function for A;. Set
* sin2+20C, ;1" (cosa)Crr—1_1(cosa)da
= [ , (B11)
0 1+2p cosa+p?
so that
Ayn p)=NulN ol pn . (B12)
Let x, y be two complex variables inside the unit disk. Then we have
( i l ™ sin?*2ada (B13)
Gi(x,y,0)= Ly —1= / B13
’ nn'=11 o (142p cosa+p?)[(1—2x cosa+x2)(1—2y cosa+y?) |+
by means of (18). If we look first at p=0, we have
Gi(x,y,0)= X x"—l“y"'—l—lf sin?2aC,, ;1 (cosa)C— 11 (cosa)da
n,n/=l+1 o
= i xn—l—lyn’~l~l e
n,n/=1l+1 ‘\77”2
2I+1)!K, ) (B14)
=&\,
+1

15 A, R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, N. J., 1957).
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by recognizing that the integral is the orthonor-
malization integral for Z.;, and by use of (19). In
(B14) we have set

) f( )(m-!-ZH—l) I+1
81 o w2 m m—+I+1
=FQl+2,141;1+2; xy),

(B15)

where we have identified the series as an ordinary o/
hypergeometric function. Using the identities!*

F(ab;c;2)=(1—32)*(c—a, c—b;c;3)

=(1—z)““F(a, c—b;c;(—z)—), (B16)

z—1

0(4) SYMMETRY AND LAMB SHIFT
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we get
24+ 1K, 1
Gl(x:y)O)=
I+1  (1—xy)2t
XF(—1,1;142;xy), (Bl7a)
Q+1K 1
Gl(x’y70)=
I+1 (1—xy)Ht
xy
XF(—I, 415142, ) (B17b)
xy—1

Because of the negative integer —/ in (B17) the
hypergeometric series terminate, i.e., are polynomials.

To see how Gi(x,y,p) is obtained from G(x,y,0), we
put e**=z and change (B13) to a contour integral:

(1—22)2H+2dz

Gz(x,y,p) =

—_— I)H-l f
2435 J (14-p2) (o4 2)[(1—22) (z—x) (1—y2) (z—) T+

(B18)

where the integral is around the unit circle. The integrand has a simple pole at 2= —p and poles of order [41 at
z=ux, v all inside the circle, plus similar reciprocal poles outside. In (B18) we change variables by

z+p
14p3 ’

u=

u—p
z= , (B19)
1—up

which maps the disk conformally onto itself with the pole at 2= —p going over to a pole at #=0 (and z=—1/p

to #=c0). Then (B18) becomes

— 1)1

Gu(x,y,0)= (1—p?)2H#t

2 2l+3i

du(l_ u2)2l+2

X ,
fu{[(1+xp)—u(p+x)][(1+xp)u—(x+p)][(1+yp)—u00+y)][(1+yp)u—(y-f-p)]}’“

(1_p2)2l+1 < x_'_,p
4

y+p
Gl(x,y,l)): G ) ) 0>
C(A+xp)(1+yp) ]2 N\1+ap  1+4yp

Thus we get finally [inserting K; from (19b)] from (B17)

7 (2+INF(=1, 1; 1425 (a+p) (y+p)/ (1+20) (1-+30))

(B20)

Gl(xyy)p) = 22l+1\ ! /

(B21a)

(1—xy)**(1+xp)(1+p)
T (2 1\(=p?) F(=1, 14+1;1+2; — (etp) 0+p)/ (1—p*) (1 —2y))

Gz(x,y,p) = 221+1\ ! /

This, coupled with (B12) and (B13), gives a generat-
ing function for 4;. It is obvious from (B12) and (B21)
that the coefficients (nkl|n'—1) in the polynomial
Ay(nn',p) are rational multiples of NniVa:. Therefore
Ay(nn',p)? is a polynomial with rational coefficients.
This is very important because it allows one to perform
many sums in Sec. V exactly.

It is worth remarking that (B21) and (B12) provide
a three-variable generating function for a class of
6-j coefficients through (B6) and (B4).

. (B21b)

L(A+xp)(1+yp)(1—xy) ]!

We can also use (B21) to prove some interesting
identities. For an illustration, set p=1 in (B21a). The
hypergeometric function at 1 can be evaluated and is,
in our case, (/41)/(2/+1). From this we deduce

™ Cptt(cosa)Cr 1 (cose) sin%a da
/1; 14-cosa
r (20)! min(n,m)+ 2141
(___1 n+m(

om e 241

), (B22)
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which appears to be a new identity for Gegenbauer

functions. As its counterpart (B23) can be expressed
in terms of 4;(n,n,1) as

n
A1) =—— (= 1)
2141

((n<2— 12)(n<2~2%)- - '(n<2——l"’))”2 (B23)

m>2—12)(n>2—2%)- - - (n>2—1?)

(where the square root is one if /=0), with #«=min(n,n"),
ns=max(n,n’). That is,

RJ%;Z( 1)%<k-n_n/>+t’%(n’_% se=1) %k’
k={n—n’| $n—1) 3n'—-1) 1

_ —1 /(ﬂ<+l)(ﬂ<+l—1) . (n<—l)
U1\ (s D (s 1= 1) - - (15— 1)

)1/2 (B24)

and, for n=n', Ai(nn1)=n/(2l41), so that

"il(__l)k—n—f-l—l 5—1) %(n—l) k}=_1_ (B25)
#=0 in—1) 3m—1) 1) 2041

These are identities of the Racah-Elliot type,

APPENDIX C: GENERATING FUNCTIONS
FOR MATRICES

Let A,m, Bnm be matrices, #, m=0, 1, 2, ---. We
define generating functions for An» and Bun:

Awy)= 3 Aumry”,

(cy)
B(x:y)= f Bmx™y™,

n,m=0
where %, y are complex variables. We assume the series

were well behaved for all #,y in the unit disk |x] <1,
|| <1. Consider the contour integral

1 d 1
Clas)=— f - ;y—A(x ;)B(y,Z) ©2)

(on the circle |y| =1, y*=1/y). If we insert (C1), we get

]
> AwmBumaxns™

n,m,n’ ,m’'=0
1 dy , .
X— j[ —y 7y (C3)
y

2w

C(x,2)=
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The latter integral is just 2mid,/m, so that C(x) yields

Cte)= 3 [ 5 AumBum 2™ .

am’=0 m=0

(C4)

Therefore C(x,2) is the generating function for the
product matrix AB. Thus (C2) is the formula for
multiplying matrices with their generating functions.

Similarly, for a matrix times a vector and the scalar
product of two vectors,

1
Av generated by —
2wt

1 dy
A(x, *)v@)—, (c5)
lyl=1 y y

1 1 dy
U v=—o u(—)v(y)— .
2 =1 \y/ -y

(Co)

APPENDIX D: DIPOLE TRANSITION
AND GORDON’S FORMULA

The pole in the integrands of (127) occur at (7o>n)

pron=(no—n)/ (no+n). (D1)

Using (32) and (35) this corresponds to a photon energy

b 11
knon':_‘—ﬂnun:?(za)zm _;__2 ) (Dz)

m n Mo

which is just the energy difference £,,— E, correspond-
ing to a transition. Referring to (25), we see that the
residue at this pole (the imaginary part of the level
shift) is

ImAE(nolo’WLo)= "‘%Cl Z kr_;_on ’ Vaon [ 2, (D3)
Now w o ) N
Vo= k"o”rﬂon ) (D4)
by taking matrix elements of
~i[r,H:|=p/m=v, (DS)
and so
ImAE(nolomo) = ’—%Ol Z knons [ Ynon I 2, (D6)

In the notation of Bethe and Salpeter'® we can identify

ImAE (noly — nlo—1) = — Zakngn® | Rugty" 0| 2

Xlo/ (2lot-1),

ImAE(nodo — nlo+1)= —3okngn? | Ruge™o*t[2
X (lo+1)/(2+1), (D8)

(D7)

where we have separated the individual dipole
transitions.
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Using (127) and (30) we correspondingly pick out

2Z%Pm 2no(no—mn)
ImAE(nolo b nlo— 1) =—- 402
3 mtlt1 (no+n)?
X [Wlo =) (pnon)non]2 (D9a)
and
2 Z%m ly+1 2no(no—n)
ImAE(nolg g nlo+ 1) =—— 4ny?
3 ne* 2h+1 (no+n)?
X [Wlo<+)(l’non)non:|2 ’ (ng)

ao(n+mno— 1) (4nno) o+ (no—

0(4) SYMMETRY AND LAMB SHIFT
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and so
]Rnazo"l"i‘] _ 1 / nng )3
Zam ne''*(no—n) \n+no
X[ W™ (ougn)non| - (D10)

The dimensional quantity 1/Zam is the atomic radius
ao; the absolute value signs in (D10) arise because we
have only equations relating the squares of R and W.
We thus arrive at, via (129) and (130),

n) n+no—2l—4

16l0[(’ﬂ0+lo) Y(ﬂo_ lo"“ 1) '(n+lo’— 1) '(n—— lo) !]1/2(%+no)"+"°

4nn

n—lo ﬂ+1’1«0 2
)(|:( )( )F(lo—f—l—no, lo—l—l—n;l——n——no;( ) >
n (n+n0)2 No—Mn

(X

This is essentially: Gordon’s formula!®*® through not in
the same form as published there. (D11) can be con-
verted to Gordon’s form via the identity

n;2lp;1—2), (D12)

which can be proved by equating coefficients of powers
of 2, and the continguous functions relations.!!

F(lo—mn, l—

no; 1—n—n0;3)=

XF (lo—

o, lo—

APPENDIX E: CONVERGENCE OF SERIES

To prove the convergence of (127), we use the
asymptotic relation (as #—)

F(lo+1—"ﬂ, lo+ l—no; 1"%"“%0, x)

~F(lot1—~m0, —n0; —70; )= (1—x)»~0=1, (E1)
from which
Wlo(_) (P)non

— (ntno—1) lpm=no=t(1—p%)no
2[%0(%0"‘ lo) !(no— lo— 1) X(ﬂ‘i—lo'— 1) '(ﬂ-“ lo) !]1/2
(E2a)

and
Wﬂ0(+) (p)"l)ﬂ

+ (ntno—1) lpr=roti(1—p?)ne

T A a(not-10) (= Io— 1) (-l 1) (n— lo—2) (]2
(E2b)

16 W. Gordon, Ann. Physik. (5) 2, 1031 (1929).

No—mn 2 %o+n 2
) F(lo——no, lo—mn; l—n-—no;( ) ):I . (D11
no+n No—n

Now the integrals (127),

Lt= / dp p(1+p>(p+"_"°)_1[Wf—“<p)non32, (E3)

0 n-+mnq

can be written using the observation

n—1"ng 2n4
1+P=<P } >—|L (E4)
n+ne/ ntng
as
0
~-K,*, (E5)
n—+no
where
1
. f 0o oW 0@ (o) T (E6a)
0

1 n—no\~!
Kﬂi:/‘ dp P(P+ ) [Wit(p)ngn I?.  (EG6D)
0 ntng

Comparing (E6b) and - (E3) we see that, smce
14-p>1, we have K,£<I,%, and so

2%0
LE< T+ I.*,

n+%o

that is,

n+7to
VACH
n—1mno

I,*<

(E7)
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Thus the series (127) will converge if

Tt

5

n>n0 "Ny

< o0, (E8)

But the integrals J,*, lacking the denominator,
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reduce to
1 (n—no—1)1(2n,)!
/ pPin=1(1— p?)2rodp= o (E9)
0 2(n~+no)!

apart from outside factorials. Application of Stirling’s

are much more tractable than the 7,. In fact,
for n large, we deduce from (E2) that the J,*

formula then shows that the series in (E8) converges
like 1/73.
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Many-Level Formula for Scattering from Extremely Strong
Square Potentials*

S. TaNt
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A version of the many-level formula for scattering is introduced, considering the potential strength as
the fundamental variable. It is applied to extremely strong square potentials. Under such circumstances,
we must deal with a sum over a large number of nonresonant terms. The mathematical technique developed
here will be directly applicable in the discussion of a singular potential scattering. Furthermore, McVoy,
Heller, and Bolsterli have pointed out that a deep square well and a high barrier produce similar scattering
amplitudes, in spite of the difference in sign. This intriguing effect is analyzed in the light of the many-level
formula. We can understand it clearly in terms of the dominance of the orthogonality effect. It refers to
such an effect as is a consequence of the fact that the wave function is orthogonal to any normalizable
function introduced within the range of the square potential, which occurs if the potential strength tends to
infinity. In the case of attraction, the depth of the square well must be outside the “width of a resonance”
in order that this effect may dominate. We may define the relative probability of encountering a resonance
with the ratio of the width of a resonance to the distance between two adjacent resonances. It tends to

zero as the depth increases without limit.

1. INTRODUCTION

F there is no strong singularity or long-range tail, any
interaction (generalized potential) can be expanded

in a series whose individual term is in separable form
and associated with a particular form factor. An
individual form factor is defined as an eigenfunction of
the kernel of the partial-wave Lippmann-Schwinger
equation, and is labeled by the number of nodes, ie.,
“the radial quantum number.” Taking into account
multiple scattering effects, the 7' matrix will be given in
the form of a sum over contributions from such form
factors. This form of the 7 matrix bears a similarity to
the many-level formula (Breit-Wigner formula)! in that

* Work supported by the Committee on Research of Marquette
University. A preliminary report of this work has been presented
[Bull. Am. Phys. Soc. 11, 370 (1966)].

1 An approach similar in form to the present one was develogned
earlier and independently by H. Feshbach, Ann. Phys. (N. Y. 5
357 (1958), 19, 287 (1962); further references are given there.
Duke and Wigner applied Wigner’s R-matrix theory to the
potential scattering from a square well; C. B. Duke and E. P.
Wigner, Rev. Mod. Phys. 36, 584 (1964). The Wigner R matrix is
essentially equal to the tangent of the phase shift, as measured
relative to the phase shift of a hard-core scattering (where the
radius of the hard core is equal to the radius of the internal region).
A summation over the number of nodes, which we call the “radial
quantum number,” was employed in their paper as in the present
paper; however, since it requires a substantial amount of work to
compare the two results, we do not attempt it in the present paper.

the poles and the residues of the I matrix are clearly
indicated, though the potential strength is used as the
variable instead of the energy. Therefore, an extended
use of such terms as “levels” and “widths” in referring
to contributions from individual form factors is
naturally suggested. The “many-level” formula enables
us to understand perfectly the analytic property of the
T matrix as a function of potential strength. The proofs
for these statements can be carried out with the use of
what we call the approach through the finite-rank
approximations, namely, by approximating a given
generalized potential with a converging sum of separable
potentials. This method was originally developed by
Weinberg? in a different form, and its merit was
emphatically demonstrated by Coester.® The present
author analyzed its mathematical aspects from the
physicist’s point of view and gave a rigorous proof.* It
is the purpose of this paper to study extremely strong
square potentials in order to shed light on scattering
from a singular potential. The method developed here

2 S. Weinberg, Phys. Rev. 131, 440 (1963); 130, 776 (1963) ; M.
Scadron and S. Weinberg, bid. 133, B1589 (1964); S. Weinberg,
J. Math. Phys. 5, 743 (1964); M. Scadron, S. Weinberg, and J.
Wright, Phys. Rev. 135, B202 (1964).

3 F. Coester, Phys. Rev. 133, B1516 (1964).

4S. Tani, Ann. Phys. (N. Y.) 37, 411; 37, 451 (1966); these
papers will be referred to as I in the following.



