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Linear relativistic three-body equations for the scattering of a particle from a bound state or correlated
pair of the others are constructed by combining the quasiparticle or isobar idea with two- and three-body
unitarity as suggested by Blankenbecler and Sugar. After a partial-wave decomposition, the equations turn
out to be one-dimensional, and hence are easily solved numerically. Any exchange mechanism and any
number of isobars or separable two-body interactions can be included in the equations without violating
two- and three-body unitarity and Lorentz invariance. Higher integer-spin separable interactions or isobars
are included, in very close analogy to the nonrelativistic case. Applying the equation to the 7r-N system
with pseudoscalar coupling, that is, with only nucleon exchange and no m-~ interaction or ~-N inter-
mediate state, gives a (3,3) resonance but no other interesting structure. That is just what one would expect
from such a simple mechanism and encourages us to go on to richer input. Analyzing the answers as a
function of nucleon mass shows that the static-model expansion converges very slowly.

I. INTRODUCTION

HE pion-nucleon system is the "classical" domain
of strong-interaction physics. The discovery of

higher symmetries and the proliferation of hadrons
has shown that there is much more to strong interactions
than just pions and nucleons, but at low to moderate
energy they form a fairly well contained and experi-
mentally rich and well-explored system. The basic
form and strength of pion-nucleon coupling have been
known for some time. However, how the experimental
data emerge, if at all, from the basic features and the
extent to which m-~ interactions play a role remain
basically unanswered. Some of the strongest aspects of
the problem, the dominance of p waves and the existence
of a 3-3 resonance, have a qualitative explanation in the
static model of Chew and Low, ' but nothing that can
be called a genuine dynamical scheme has been success-
ful. In this paper, we present what we hope will be the
first tentative step toward such a scheme.

Up to pion kinetic energies of about 1 BeV, substan-
tial single-pion production in m-N collisions is a dom-

inant feature, but multipion production seems to be
far less important. Hence any dynamical scheme of
m.-2V scattering in this range must include the effects of
the S-m.-m states, that is, it must be at least a three-body
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theory. Recent advances in three-body theory of a
form. al and of a technical nature have led to significant
improvements in our ability to calculate. ' In this
paper, we apply that technology to the relativistic
problem. We show how tractable equations can be
obtained and how for the simplest version of the m-)V

problem sensible, but not yet very good, answers are
obtained.

There seem to be two avenues approaching dynamical
calculations —o8-shell and on-shell. The classic example
of the former is the Schrodinger equation or, equiv-
alently, the Lippmann-Schwinger equation in non-
relativistic quantum mechanics. Its most common
relativistic manifestation is the Bethe-Salpeter equation.
We shall present an alternative oG-shell form, which we
believe suits our problem better. The on-shell approach
is that of 5-matrix theory. It has had some limited
success in the two-body problem, but we know of no
tractable method for including the dynamical eRects
of higher-particle sectors in it. One feature of it, how-
ever, we do borrow. That is its emphasis on unitarity.
In discussing m-E elastic scattering and x production in
m.-S collisions in a domain where both are big, it is
essential that the constraints of unitarity on these
amplitudes be accurately imposed. This is, of course,
precisely what the Schrodinger equation or Lippmann-

' A review of these developments will be found in K. M. %'atson
and J. Nuttall, Topicsin Several Particle Dynamics (Holden-Day,
San Francisco, 1967); R. D. Amado, in Lectures on Theoretical
Physics, Brandeis Summer School, 1967 (unpublished).
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Schwinger equation manage to do (in spite of being
linear equations). The Bethe-Salpeter equation. in its
usual truncated form does not do so well with the
multiparticle states, ' and this is our main reason for
replacing it with one more of the Schrodinger or
Lippmann-Sch winger spirit. It turns out that this
replacement also reduces the dimensionality of the
equation, without violating Lorentz invariance, and
hence makes the technical problems of obtaining
numbers easier.

Our method for obtaining the relativistic equations
follows closely the method of Blankenbecler and Sugar
(BS)4 and also that of Freedman, Lovelace, and
Namyslowski (FLN). ' We want the amplitudes for
three-body scattering. We begin by assuming that the
two-body interaction is dominated by a bound state
or quasiparticle or isobar. This leads to a separable
two-body interaction. (The procedure is easily general-
ized to more than one bound state or isobar. ) We then
write down the amplitude for elastic scattering of one
particle from a bound state of the other two by analogy
with the equations of this type used in the nonrelativ-
istic problem. Except for Lorentz invariance, and for
certain assumptions about the variables that they
depend on, we do not specify the quantities entering
the equation. We wish to find them by imposing
unitarity. Unitarity will couple the elastic scattering
from the isobar, or bound state, to the breakup or
production amplitude. Again led by our nonrelativistic
experience, we postulate a form for that amplitude
that relates it back to the elastic bound-state amplitude.
Imposing unitarity then gives us the discontinuities of
the objects entering our equations in terms of known
things, like mass-shell 8 functions. Assuming that the
functions have no further discontinuities than those
required by unitarity, we write dispersion integrals for
those that are easily done, and obtain their form. This
procedure reduces the equations to three-vector equa-
tions that after partial-wave decomposition become one-
dimensional linear integral equations —and yet remain
Lorentz-invariant. The solutions, of course, also
automatically satisfy two- and three-body unitarity at
all energies. The amplitudes obtained do not have the
same (and presumably correct) left-hand cut. structure
as do the Bethe-Salpeter amplitudes, but they do take
better account of unitarity and particularly of the
multiparticle states. For m-E scattering from threshold
to 1 BeV we would guess that this is more important
than the left-hand cut that is very far away. We have
no objection to treating crossing and the left-hand

'For an interesting attempt to improve this in the Bethe-
Salpeter context, see M. J. Levine, J. Wright, and J. A. Tjon,
Phys. Rev, 157, 1416 (1967}.' R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966).

~D. Freedman, C. Lovelace, and J. Namyslowski, Nuovo
Cimento 43, 258 (1966). An exhaustive set of references will be
found here.

6 R. D. Amado, Phys. Rev. 132, 485 (1963).' R. Aaron, Phys. Rev. 151, 1293 (1966).

cut properly as well as unitarity; we simply do not
know how to do lt, .

Having constructed these equations, we apply them
to the m-.1' system. We begin with the simplest z-A
dynam&c~ that we can hwre —namely only E ~~ Ã=t-~
pseudoscalar coupling. There is no diA~culty in applying
the method to this case where one of the particles
()Y) is both the quasiparticle and one of the constituents.
In this simple theory the dynamical mechanism, or
Horn term, is nucleon exchange. Hence, the problem
we are solving is vr-g scattering with nucleon exchange
including the eBects of the z-E and m-x-lent intermediate
state, but with all m Einte-ractions in the nucleon (1,1)
channel and no m--m. interaction. This is a theory very
similar in spirit to the Chew-Low static model and it
gives very similar results. We find that for reasonable
choices of the parameters, the 3,3 phase shift resonates,
all other phase shifts are small, but almost always of
the sign indicated by experiment, and there is very little
inelasticity. These are sensible, if not yet good, answers.
They show that the theory is reasonable and yields
answers that seem to be what one would expect. They
are not yet good enough, but if such minimal assump-
tions about the mechanisms yielded all the answers,
we would be very surprised and very suspicious of the
theory. The next step, therefore, will be to enrich the
mechanisms. We plan to put in E-~ interactions in the
3,3 state and at least the x-x interaction through the p.
This will add considerably to the technical problems
involved in solving the equation, but should also greatly
improve agreement with experiment. It will also allow
us to study one of the most interesting questions in
this subject, namely, how does production go in the
presence of resonances between more than one final
pair, and how is the pair-resonance information dis-
tributed over the final state.

In Sec. II the derivation of the unitary scattering
equation is given for the case of three identical spinless
pa, rticles. The reader interested in only the 6nal answer
should look at Eq. (29), which is almost self-evident
by anal. ogy with nonrelativistic and static-model results.
In Sec. III we show how to include the case of higher
spin for the isobars. In keeping with our attempt to
follow the nonrelativistic form as closely as possible,
we show there that Lorentz-invariant descriptions of
higher spin can be given entirely in terms of three-
vectors and of I'~ 's of three vectors. That section is
largely technical in nature. Section IV shows how to
write the equations for the m-S system and presents
the numerical results. Some conclusions and plans for
the future are presented in Sec. V.

II. EQUATIONS

We now use the methods developed by Blankenbecler
and Sugar' to obtain a set of Lorentz-invariant, linear
integral equations that describe the scattering from a
bound state and breakup or production. Usually the



Bethe-Salpeter equations are taken to form such a set,
but in their usual truncated form (i.e., ladder approxi-
rnation) they do not satisfy unitarity at all energies,
since they always cont.ain some multiparticle contribu-
tions, but not all. We shall require that our equations
satisfy two- and three-body unitarity at all energies.
This requirement will yield, as an added bonus, three-
dimensional equations, hence greatly simplifying the
numerical problems, but will still preserve Lorentz
invariance.

Since unitarity will be our strongest tool, we first
review our notation for it. In the succeeding discussion,
we shall use the following expression of unitarity:

T~; Tr;t=—i g dQ T~„T„;t=iP dQ„Tr„tT„,, (1)

From direct comparison of Eq. (7) and Eq. (8) with p
on the energy shell, it is clear that the choice

where

G/, (s) =
2XZ {mI+m2)

dlscGp (s')
dS

S —S
(10)

discGq(s) =Gq(s+) —Gq(s ) .

The integral is easily done to yield

G/, (s+)—G/, (s )= i(2«r)'8+(k '—mP)g+(k '—m««) (9)

will give an integral equation that satisfies two-body
unitarity for all energies. To obtain a Green's function
G/, (s), we then write the dispersion relation

where

dQ„= (2 )48'(Pf—Q q;) g 2 &+(q —«/«P)
~ (2)

(2«r)'
with

(dg+(d«
Gp(s) = 8(k' —-', (up+-',(a«), (11)

G&y&«2 (My+CO«) —S

Tu«(~) = Vn«+
(2«r)4

d'k V~/, G/, (s)T/. «(s), (4)

where one usually writes

G, (s) = $(kP —mP) (kP—m2«)]
—", (5)

but we take G/, (s) arbitrary for the moment. The
variables are chosen so that

k&+k«= P, kx —k«= 2k, P= (W,0,0,0) . (6)

We take q on the energy shell and s= 8"' is the square
of the total energy in the c.m. system. V~, may be
thought of as the usual ladder potential, but, in fact,
any real symmetric V„, will do. Using the fact that
V„« is real and symmetric and. that T„(s«)=+T«„(s ),
we obtain from Eq. (4)

d'k T..(~+)LG.(~+)—G~(~ )jT"(~ ) P)
(2«r)4

If we allow only two-body intermediate states in th
unitarity relation, Eq. (1), we obtain a similar equation,
l.e.)

T~«(~+) —T.«(~ )=
(2«r)'

d4k T~/, (s+)

)& L(2«r)'5+(kP —mP)8+(k«' —m««) jT/. «(s-). (8)
8 J. D. Bjprken and S. D. Drell, Relativistic QNuntgm Mechanics

(McGraw-Hill Book Co., New York, 1964).

is m-body phase space. The tranition (T) matrix is
defined in terms of the S matrix by'

S,,=~,,+(2.) i~ (P, P,)T, -(3)
To demonstrate the BS4 techniques, we first apply
them to a two-body equation of the Bethe-Salpeter
type which we write in the form

(g = (Q~+«/«p)&/2 ~« —(fp+~ «)&/2 (12)

The remaining 8 function in Eq. (11) allows one to
evaluate the integral in Eq. (4) so that one ends up with
a three-dimensional integral equation, but since the
steps leading to it have been covariant, so is the equa-
tion. It need hardly be mentioned that the above
prescription for obtaining G/, (s) is not unique. In
particular, further cuts can be added to Gq(s). We have
taken the simplest choice within the constraints of
unitarity and Lorentz invariance. The final equation
that we obtain by substituting Eq. (11) in Eq. (4) is

T,(s) = V„,+
(2«l') 2(V yG) «

4)g G02

(13)

This equation may be thought of as the relativistic
analog of the Lippmann-Schwinger equation. It has
many faults. Some of them, like not treating crossing
correctly, it shares with the two-body Bethe-Salpeter
equation; others, like improper treatment of the left-
hand cuts, are special to it. Its main forte is that it
does not take into account only parts of the multiparticle
states, and hence does not violate unitarity. This seems
an obvious advantage in the scattering region. Even
below a multiparticle threshold the inconsistent treat-
ment of virtual states by the Bethe-Salpeter equation
may lead to incorrect results. Moreover, Eq. (13) has
the technical advantage of being only a three-dimen-
sional equation, and one with rather good convergence
properties at that.

We now use techniques similar to those described
above to obtain a set of relativistic three-body equa-
tions. Ke consider, for simplicity, the case of three
identical spinless particles and consider bound-state
scattering, that is, the elastic scattering of one particle
from a bound state of the other two. Just as in the
two-body case, we start by assuming a form for the
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equation, which we take as

&ply'(s) Iq&=&pl~(s) Iq&+
— d'k &pl~(s) I»

(2v)4

X r(~s)&klan'(s)l ql) (14)
with

o,= (P—k)'.

Equation (14) is a straightforward generalization of the
nonrelativistic three-body equation originally proposed
by one of us. ' Its essential ingredient is the assumption
that the two-body interaction proceeds via a quasi-
particle, or separable interaction, or, in the more usual
relativistic language, via an isobar. The function r(os)
is the propagator of that isobar. The external bound
states are also that isobar, so that the Born term 8 is
just particle exchange between the external isobars.
Equation (14) may be represented diagrammatically as
shown in Fig. 1, where the variables are also defined. To
use unitarity, we shall also need to know the production
(two-body ~ three-body) amplitude &p I T(s)

I qiqsqs&.
In this quasiparticle formulation it has the form'

3

&p I r(s) I q,q,q, )= p (p I r(s) I q.&s(~,.)v(p. '), (16)
v3i ~-i

where, for examPle, Pts= (qs —qs)', and where v is the
vertex for quasiparticle disassociation. S is a propagator
function whose relation to 7 will be determined. The
diagrammatic interpretation of Eq. (16) is given in
Fig. 2. With p and q on the bound-state energy shell,
FLN have shown by methods very similar to that
needed to get Eq. (7) that for equations of the form of
(14), the discontinuity of T satis6es the relation'

&pl 2'(s')
I q&

—
&pl 2'(s ) I q&

1
d'k &p I

7'(s')
I k&Lr (~s")—r (~s )j

(2v.)4

X&kl7'(s )lq&+ d'k d'k'&pl7'(s+)Ik&
(2v)s

x.( ")L&kl&(")Ik'& —&kl&(-) Ik'&j

x.( .-)(k'I T(s-)
I q).

Fio. 2. Diagrammatic representation oi Eq. (16).

using Eq. (16) for the breakup amplitude. This isobar
ansatz for the production is pivotal to the analysis,
since it relates the 2 —+ 3 amplitude back to the 2 —+ 2
and gives a closed set of equations. The unitarity rela-
tion gives

&p I
7'(s+)

I q) —(p I
T(s ) I q)

d'k &pl ~(+)l»&kl~(-) lq&(2-)
(2v.)4

Xb+(o,—p, ')6+(k'—re')+
(2a.)'

5'(P —ki —ks—ks)

X6+ (hi' m')b+ —(ks' m') 8+—(k s' m') d'k—id'ksd'k s

1 3

x—Z &ply'(s+) lk„&S( ..+) (p.')
3I n, m=s

Xv(p. )s(~,„-)&k„lT(s-) Iq&. (1s)

The first term is the contribution to unitarity of the
elastic bound. -state scattering, p is the bound-state
mass, and m is the mass of one of the identical particles.
From Eq. (17) the first term will clearly contribute to
the discontinuity of v-. The second term comes from the
breakup. It makes two kinds of contributions. Those for
which m=e will contribute to the discontinuity of 7,'
they come from cutting the propagator "bubble. "
Those for which m&e involve the exchange of a particle
between the bound states and contribute to the dis-
continuity of B. Comparison of Eqs. (18) and (1'7) gives
for the discontinuities,

r(~s')L(kl~(") Ik'& —(kl~(s ) Ik'&3r(~s )
—sv((p k 2kl)s)p(os+)(2v-)s$+(ks —re )g+(k' —m )
Xh+((P—k —k')' —ms)5(oi —)v((P—2k —k')') (19)

This equation is represented diagrammatically in Fig. 3.
To obtain an equation that satisfies two- and three-
body unitarity, we compare Eq. (17) with Eq. (1),

P-p P-q

Fio. 1. Diagrammatic representation of Eq. (14).

s R. Aaron and R. D. Amado, Phys. Rev. 150, 857 (1966). FH:. 3. Diagrammatic representation of Eq. (17).
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and then one easily finds that Eq. (26) is satisfied for
a form

r(g~+) —r(ga )
8+(k'—m')

= j(21r)2/+(k —m2)$+(gk —p )—1,

2 (21r)'

( g p2
D(g)=(g —~')I 1—

2 (27r)'
where

d'k v'

~, (28)
4o1. (o.—o) (o —p')' ~

y S(g4+)5(g1 ) d'p12 g'(4p11') (21r)'

XS+(p,'—m')8+(p, '—m'), (20)
where

r(o „)= 27rb+(k' m')$(—g,) .

From this and Eq. (19) we 6nd

(k~a(s-) ~k &
—(k~~(s-) ~k'&

= ia((P—k —2k')') 2mb+((P —k —k')' —m1)

y e((P—2k —k')') . (23)
Subject to the constraint

k+pl+ p2 )1 p12 2 (pi p2) (21)

From Eqs. (19) and (20) we see that the relation of
5(o) and. r(o) should be

(22)

'v (Cgy+4gg+4oyyg) v d'k

o.=4(k'+m')

and the argument of v' is appropriate to c.m. momentum
k. The factor cr—y' in front makes s have the 5-function
discontinuity imposed by two-body unitarity. If the
two-body state were not stable, there would be only the
continuum contribution to D from three-body unitarity
and there would be no zeros of D (or, what is the same
thing, no subtractions).

Putting together the pieces of Eqs. (22), (25), (27),
and (28) in Eq. (14) and changing T to —T to conform
with the static-model conventions, ~ we get, finally,

(p I T(s)
I V&

k2 —~2 k~2 ~2
7 (24)

~n+&I s (4gn+gig+gin+g) j (21r)

II =4dy, .+g1v+g1u+1',

4g„= (k+m')'".
(25)

In BS4 there is some discussion of the alternative
forms and additional ambiguities that arise when
imposing three-body unitarity. These are related to
the possible ways of choosing the energies for which
the discontinuities are taken. We have already made
these choices in Eq. (14). It is clear that all three
particles contribute equally to the discontinuity of 8;
hence its discontinuity is in the total-energy variable s,
whereas the discontinuity of r or S comes from the
pair interacting in r. Hence 5 depends on ok = (P—k)'.
Sy making this choice, we assure ourselves the correct
cluster-decomposition properties for the intermediate
states.

To obtain r we use Eqs. (20) and (22) to get

5(g1,+)—5(g1, )
$(g1,+)5(ga )= 24l'9+(o 4 p )+ 1 d P12 V (4P12 )

2 (2m. )4

X (2m)'8+(p, '—m')&'(p, '—m') . (26)

It is clear that the inverse of 5 will be more easily
obtained than 5 from Eq. (26), so that we write

S(o-)= —D '(g), (27)

which comes from the 6 function, we have factored off.
To obtain 8 from Eq. (23), we write a dispersion
relation in s and assume no cut contribution from v.

We obtain in the three-body c.m. system

(k t 8 (s) i
k') =v((P —k —2k')') Wg((P —2k —k')')/

(W s)&

a(~ +4g1,+4g +1)v (k~T(s) ~q&

(29)
~1~1(s—(4gs +4oq+4g„+4) '7 D(g1)

where we have suppressed the arguments of the vertex
function g, but they may be determined from Eqs. (14)
and (25). Equation (29) ends our quest. It is a linear,
three-dimensional, I.orentz-invariant integral equation
for the elastic scattering of one particle from the bound
state of two. Its solutions are constructed to satisfy
two- and three-body unitarity and to have no higher-
particle contributions at all. Furthermore, from a
knowledge of the solution of (29) one can construct the
production or breakup amplitude by using Eq. (16).
No new equations need be solved. It is clear that,
just as in the nonrelativistic case, if one wishes to put
in more bound states, separable interactions, or isobars,
one will just get a coupled set of such equations. As
discussed after Eq. (28), unstable quasiparticles are
handled on the same footing as stable ones. In sub-
sequent sections, we shall show how to include spin
and fermions, but effectively this will only change
numerators. The denominators, which are the real
seat of unitarity, will remain as in Eq. (29).

III. HIGHER INTEGER-SPIN QUASIPARTICLE

Implicit in our discussion of Sec. II was that the
quasiparticle or isobar had spin zero as did the particles
that made it. We now consider the case of higher
integer spin for the quasiparticle. Let us begin with
spin 1. (We obviously must relax the requirement that
the constituent particles be identical. ) The problem is
to find a separable interaction, or separable t matrix
that scatters only in p waves. This is in analogy with
the work of Sec. II which can be thought of as dehning
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a separable s-wave two-body t matrix for scattering
from relative four-momentum p to relative four-
momentum q with c.m. four-momentum E so that
s=IC'. This t matrix is of the form

Thus we have

with

P—Q= v„v„

v„=P—P KK/K, (K,+W).

(3g)

(39)

Therefore we have
K P=K Q=O. (33)

Hence
Pp= K'P/Ep Qp= K'Q/Ko.

P Q=PoQo —P Q
=K PQ K/Ep' —P Q.

(34)

This can be written

P.Q= —(p —o—~p ~ KK) ~ (Q —~—'Q ~ KK), (36)

with n determined so that Eqs. (35) and (36) agree.
This gives

(3&)u= Eo(Eo+ 14'), ll'= &s.

(PI 2'-."'(s)
I
q&= v(p')v(q')/D(s). (30)

From such a construction we read off p(Ps) as the vertex
for forming the s-wave quasiparticle. For higher spin
we need a corresponding expression and from it we
shall be able to read oA the higher-spin vertex. For
spin 1, or for pure p-wave scattering, the t matrix must
have the form in the two-body c.m. system,

&P I

T' "'(s)
I
q&= f(P') p qf(q')/D(s) (31)

The factor p q ensures pure p-wave scattering. To make
the theory relativistic, we must find the four-vector
dot product that reduces to y q in the c.m. system.
(This requirement is unique. ) To construct this, define
the four-vectors

P= p pKK/K', —Q = q qKK/K—'. (32)

Since in the c.m. system IC has only a fourth component,
P and Q reduce to p and q in, that frame. Therefore the
required Lorentz scalar is given by PQ, which —is
p q for K=O.

We shall show that PQ can b—e written as a three-
dimensional dot product in all frames. "This fact will

greatly simplify the spin analysis, since it will reduce
it to doing essentially what one does nonrelativistically,
but Lorentz invariance is maintained. The fact that
one can do this is related to the well-known fact that
these are only three independent components of spin 1.
In our terms the subsidiary condition takes the form
of the identity

f(P')I" *(.)I'-(.)f(q')
&Pl T "'"(s)lq&=&

D(s)
(41)

Since v„and v, reduce to y and q at K=0, this clearly
gives only / waves in the c.m. system; it remains only
to show that it is Lorentz-invariant. From the addition
theorem we have

P~(8~ io)= Q Y~„*(v„)I'~ (8o).
2)+1 m

(42)

We also have from Eq. (38) that 8~ i,=P Qvovo. It is
easily seen that vp v, = Pand vo v, =——Qs, so that
v„and vq are Lorentz scalars and therefore i„iq is
Lorentz-invariant.

Equation (41) allows us to construct the vertex
&q~ I'~K, lm& for two spinless particles of relative four-
momentum q and total momentum E forming a quasi-
particle or isobar or bound state of spin I,, with s
component m, viz. ,

&q I
I'I K,Im& = f~(q') I'~-*(~.) (43)

If the quantization axis is taken along E, then m is the
helicity. The vertex (43) can now be used. directly in
the Born term, D function, etc., in place of the scalar
vertex e used in Sec. II. The unitary arguments con-
nected with propagators, etc., given there remain, the
same. Thus the Born term corresponding to Eq. (25)
for a particle of moment k' incident on a spin-l' quasi-
particle with component m' and momentum I' —k'

going to a particle of momentum 0 and a spin-/ quasi-
particle with projection m and momentum I'—k is

The exPl esslon vs ' vq is a three-dimensional dot
product; it reduces to y q in the c.m. system, but is
Lorents ievaria-et. Thus we can write for Eq. (31)

&p~T„„o~(s)~q)= f(ps)v„v, f.(q')/D(s) (40)

in all frames.
The formalism described above for spin 1 is easily

generalized to spin /. The separable potential scattering
only in the lth wave is given by

&P—k, ~mII'IP —k —2k'&&&P —2k —k'II'IP —k' ~'m'&

&k, P k, lm
~

8 (s) I
k', P —k', l'm'& =—

ooo+o~ (W —s)

In the three-body c.m. system (P=O), one can project
the initial and Anal orbital angular momenta P p,

and Vp', for example, by multiplying by &Xp~k& and

'oA similar approach to higher spin has been given by C.
Zemach, Phys. Rev. 140, 397 (1965).

integrating over QI, . This will give the Born term in
the representation

&k,ky, lm
~
B(s)

~

k', Vp', 1'm'&. (45)

With Clebsch-Gordan coeKcients one can pass to a
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representation in which total J is specified:

8 will be diagonal in J and M and, of course, will not
depend on M. In the J representation, and assuming
that there is more than one quasiparticle isobar or
bound state present, but only one in each state I,
Eq. (29) can be written schematically as the following

set of coupled equations:

(k, W~Ir(s)Ik, Vtu)
d'k"

(k, »~
I
&(s) I

k" ~"t"J)(k",~"t"~
I
2'(s)

I
k'»'t'I)

X
2~1 "Dv (O'I )

(47)

E=k+p=k'+p'

and r and r' are spinor indices. For the moment we

suppress isotopic spin. We now insert a complete set of
positive energy sp-inors into Eq. (48). Including nega-
tive-energy states would not be commensurate with
our earlier treatment of unitarity, i.e., the negative-
energy intermediate states contain more than three
particles. We then get for Eq. (48)

b„,;(kp; k'p')
u, (p)7&u, (E)2Miu& (K)y~u; (P')

s—3E'
(49)

k

Fzo. 4. Direct-nucleon-pole'. -Feynman diagram for x-P s&@&P@ing.

IV. m-N SCATTERING

We now turn to the m-E problem. To do so, we must
include spin- —, particles in our formalism. There is no
essential difference from our previous spinless or
integer-spin discussion. The prescription is to rational-
ize all Feynman denominators appearing and use the
BS procedure discussed in Sec. II on the remaining
scalar propagators. The Dirac matrices appearing in
the numerators can be absorbed into the form factors
and the Dirac algebra can be done independently of the
BS procedure. In this first encounter with the m-E

system we shall only study the pseudoscalar coupling
of pions to nucleons and no x-x interaction. To obtain
the Ex+~2V vertices, consider the Feynman diagram
of Fig. 4 corresponding to the amplitude'

b„„,(kp; k'p') =u, (p)y,i(K M)-'y—gu;(P'), (48)

with s=E'. It is easy to see that in the two-body c.m.
system the amplitude defined above has only a I'~/2

projection. It is the "separable potential" for the
m-E system. As for the case of integer spin in Sec. III,
we now read oG from it the rules for m-X scattering in
our formalism:

(a) For a nucleon propagator we write

2Mi/(E' M—'), (50)

where E is the nucleon four-momentum and M is the
nucleon mass. Since (E2—Ms) ' is the usual propagator
for scalar particles, the work of Sec. II is changed for
the propagator only by the appending of 2Mi to every
nucleon line.

(b) At a vertex, shown schematically in Fig. 5,
we write

~ .(P+kh".(p) ((p-k) ), (»)
where y is the pion-nucleon coupling constant and e
is a scalar vertex or cutoff function. y' is related to the
usual pion-nucleon pseudovector coupling constant f' by

f'/kr =y'/ 4v8rM'= 0 0785. (52)

(We take units in which h=c= pion mass= 1 through-
out. ) The role of the vertex is to provide convergence

Fxo. 5. Diagrammatic representation of the m+1V ~~X vertex.

and to represent the structure of the ~E ~~X vertex.
It is related to the wave function of nonrelativistic
mechanics. v must be normalized so that it is 1 at the
nucleon pole, i.e., at (p+k)2=M2. Using the fact that
we always have mass-shell 8 functions in our equations,
so that p2=M2 and k2= 1, we obtain

(p —k)'= 2+2M' —s, s= (p+k)' (53)

Hence the normalization is w(2+M') = 1. In treating
the vertex it is convenient to introduce the quantities

t'= (t' —M')/(1+M' —2t),
t=-,'L(p —k)' —M' —1j. (54)

t' reduces to q' the relative three-momentum squared in
the c.m. system. When s=M', t'=(1/4M') —1. We
use two functional forms for the vertex: a Gaussian
form

ng((P —k)') = expL( —t' —1+1/4M')/2P'j (55)

and a Yamaguchi" form

pr((p —k)2) = (p2 —1+1/4M2)/(pm+ t") (56)

In each case P is a cutoff parameter.

"Y.Yamaguchi, Phys. Rev. 95, 1628 (1954).
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We are now in a position to write the equation for
m--E scattering, which is represented schematically in
Fig. 6, where momenta are also de6ned. This equation,
in analogy with Kq. (29), is

0.5

0.4

(k, r! T& &(s)!k', r')

= i(k, r!B&r& (s)!k', r')+Q

Z 03
d3/I

(2e)'

(k, r [B&r&(s)!q, r")(/I, r"!T&~& (s)!k', r')
X-

2/oeD (o'e)

0.2

0. 1

(57) ' 7 8 9 10 II 12 15 14 I5 I6 17

FzG. 7. %ave-function renormalization constant Z as a function
of the cutoG parameter I!3 for the two cutoK forms, Gaussian and
Yam aguchi.

The superscript T is the isotopic spin that can be & or ~.
The r's are spinor indices. First, we shall show how to
construct the Born term 8 and return later to the
propagator. We have From Eq. (61) it is straightforward to put B in the

standard form in the three-body c.m. system:

i(k,r!B'r& (s)!k', r') =X„'(E&r&(k,k', s)
+io"kXk'P & (k,k', s)jX„. (62)

(k, r!B&r&(s)!k', r')

=Q C~'t/((P —k —2k')')N, (P—k)y, u/(P —k —k')

XJ(k,k', s)ug(P —k —k')

Xvsu„(P —k') v((P—k' —2k)'), (58)
The propagator in Eq. (57) takes the form

o M'( — M'y'
where C& is an isotopic-spin factor, C3~2= 3, Cj)g= 3 ~

2&i 2%2

FIG. 6. Diagrammatic representation of Eq. (57).

where

dk p(k)
(63)

e (o —x) (M' —x)'

x= {Et+e& g)

These factors are obtained in this case just as in the
static-model calculation, ' for example, by Clebsch-
Gordan algebra. In the three-body c.m. system the
propagator J is defined by

2Mi (Ea+,+e&/,+e&,)
(59)J(k,q,s)=

E+ Ls (E+ +o& +e&e)'j
where

P N„(P—k)yeu/(P —k —k')N((P —k —k')y, N, (P—k')

with
=xt 8x„., (60)

0 0

kE&~/;+M E/, +M)

/
o" (k+k') o"k'

XI — !, (6I)
~&/,+/, +M E/, +M)

where the spinor normalizations are, for example,

N/, L(E/, +M)/2M jt/'. ——

—((k+q)2+M2 J/& e&~
—(k2+ I)t/2

We can perform the spin sum in Eq. (58) and reduce it
to an expression between two-spinors X. We get in the
three-body c.m. system

My' " dk p(k)Z=1—
2s' p (M' —x) '

(64)

This defines the nucleon wave-function renormalization
constant Z in the "bubble" approximation. For fixed
y' the constraint on Z is a condition on the cutoG. For
the forms given in Eqs. (55) and (56), this is a con-
straint on the parameter p. In Fig. 7 we plot Z versus p
for the Gaussian and Yamaguchi cuto6 forms. We shall
be working near Z=O, and in both cases we see that this
gives a p considerably larger than the masses in the
problem, which presumably is a good thing. We shaQ
fjnd that Z is a rather good reAection of the strength of
the interaction and the two forms seem to give about
the same answers for the same Z.

To solve Kq. (57) we make a partial-wave decomposi-
tion. Since the nucleon has spin —', and parity is con-
served, the orbital angular momentum is a good
quantum number, and hence it is convenient to do the

p(k) =k4o'Qx/E/e&/, (E/, +M) .
The argument of the vertex v corresponds to k being
the magnitude of the c.m. three-momentum of each of
the particles in the self-energy loop. It can be con-
structed from Eq. (54). The condition that the prop-
atator of Eq. (63) have no ghost zeros is
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analysis in an I-5 scheme as outlined in Sec. III
rather than using helicity. To do this we must de-
compose the Born term. We begin with the first term
of Eq. (62). Taking the spin matrix elements, we have

(k,r
~

E&r& (k,k', s)
~

k', r') = 5„,, E~'r& (k,k', s) . (65)

Since E is a scalar function, we can write

E&r& (k,k', s) =Q El'r& (k,k', s) Yl„(k)Yl„*(k'). (66)

Projecting the orbital angular momentum I with
component M, we have

(k,L~r
~

Ei '(k, k', s)
~

k', L'~'r')
8r, r'5L, L'$&&LM E,L '(kirk qs) ~ (67)

Now we use Clebsch-Gordan coefficients to construct a
state of definite J and obtain

(k,LJJtrIs
~

E&r& (k,k', s)
~

k',L'J'Ms')
= 8L L.bs s.EL'r& (k,k', s) . (68)

This is really trivial, but we present it to define notation
and procedure. Now we do the same for the F term.
The Racah algebra is more complicated, but the spirit
is the same. We obtain, finally,

(k, LJilIIs~ia". kxk'Fir&(k, k', s) ~k', L'J'3II~')

= 8J,s "a2i, ,li;"aL,L Q 6kk'F), 'r& (k,k',s) (2K+1)

X ~(10&,0~1~LO)
~

2(—1)L+-:-'W(LL11;1~)

X1F(-,'-,'LL; 1J), (69)

where Fz is defined like L~&, in Eq. (66), W is the usual
Racah coefficient, and (jlm1$2rN2j jlj2 jl+ 32 2&21+2&22) ls
a Clebsch-Gordan coeKcient. With the projection made,
the equation to be solved becomes

(k, I.J & T'r& (s) i
k', LJ)

q'dq= (k, LJ
i
B&r & (s) i

k', IJ)+
(22r)'

(k, LJ~B(s) )q, LJ)(q, IJ~T&'&(s)~k', IJ)
X (70)

2cu,D(0,)

where (k,LJ~B&r&(s) ~k', LJ) is just the sum of Eqs.
(68) and (69).

The integral equation (70) can now be turned into a
matrix equation by writing the integral as a sum. To
avoid difficulties introduced by singularities of the
kernel, we use the contour-deformation technique of
Hetherington and Schick."In this technique one makes
an analytic continuation of the equation onto a path
in the complex plane far from the kernel singularities,
obtains the amplitude along this path, and then uses
the equation with only the path of integration deformed
to obtain answers for real momenta. This last step
involves making some hopeful assumptions about
analytic properties of off-shell amplitudes that seem to
be correct but have not been proven.

We now present the results. The most striking
feature of the low-energy x-E system is the resonance
in the (3,3) channel; hence we begin there. Our cal-
culated phase shift for the (3,3) channel plotted
against the total c.m. energy is shown in Figs. 8(a) and

I80 I 80

l60 160

I40 I 40

I 20

g IOO

ce~ 80

Z=0.056
I20

~ 100

uP 80

L

60 60

20 20

I IOO I 300 I 500
W (MeV)

(a)

l700 I IOO I 500 I 500
W (MeV)

(b)

I 700

Fro. 8. The E&, z x-E phase shift plotted against total c.m. energy in MeV for various choices of Z,
(a) with a Gaussian cutoff, (b) with a Yamaguchi cutoB.

"J.H. Hetherington and L. H. Schick, Phys. Rev. 137, 8935 (1965).
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8(b). The first set refers to the Gaussian cutoff form
and the second to the Yamaguchi form. Various choices
of Z are shown, which via Fig. 7 can be converted to
the cutoff parameter P. Figure 8 shows that it is
certainly possible to get a resonance around the right
place (1238 MeV). On the other hand, the resonant
phase shift turns over too fast. This is a common
failing of most calculations that produce the (3,3). We
also see that the position and very existence of a
resonance is a sensitive function of Z, and hence of the
cutoff parameter, but rot of the cutoff form. This is
reassuring and indicates that existence of the resonance
depends strongly on the "strength of the force, " but
not critically on its detailed functional form. Note that
increasing the coupling past the point required for
resonance produces a (3,3) bound state. The inelasticity
in this channel, and in all other channels that we have
studied, is extremely small. rt $=—exp( —2 Im8) 7 is never
less than 0.95 and usually even closer to 1. This is not
too surprising. In a theory with Z near zero, the nucleon
is nearly a pure m-E bound state. The only way to
break this state up in the absence of a x-x interaction is
to knock the nucleon out from under the ~, but this is
difficult to do, since the nucleon is so massive. Introduc-
ing a m-x force and other channels will certainly
increase the inelasticity. What effect these additions
will have on the 3-3 elastic phase remains to be seen.

The other important phase shifts are shown in Figs.
9—11. They are calculated for Z=0.056, which gives a
reasonable (3,3) resonance, and for a Gaussian cutoff
form. Presumably the form of the cutoff is again not
important. The phase shifts are all small and uninterest-
ing. This is a reflection of the fact that the nucleon-
exchange Born term is only really large in the (3,3)

16 I I I

I
I I I
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I I I

I
I

I I I
I

I I I ~ T I
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-12
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FIG. 10. The D-wave ~-E phase shifts plotted against total
c.m. energy in MeV for Z=0.056 and Gaussian cutoG form.
(Note phase scale. )

channel. Experimentally there is considerable structure
in the P~ ~, D~, 3, and F3; channels. " For the other
phases we have generally the correct sign, although
certainly not the magnitude. The sign probably arises
from the fact that nucleon exchange is the longest-
range component of the ~-iV "force."We do not expect
the P~, ~ channel to come out right, since we have left
out the nucleon direct pole as well as other mechanisms.
In principle, the inclusion of the direct pole in a con-
sistent and unitary way does not constitute a problem.
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FIG. 9. The S- and I'-wave ~-S phase shifts plotted against
total c.m. energy in MeV for Z=0.056 and Gaussian cuto8 form.
(Note phase scale. )

FIG. 11. The F-wave ~-X phase shifts plotted against total
c.m. energy in MeV for Z=0.056 and Gaussian cutoff form.
(Note phase scale.}

"Cf. A Donnachie, R. G. Kirsopp, and C. Lovelace, Phys.
Letters 26B, 161 (1968).
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TmLE I. The (3,3) amplitude and phase shift as a function of
nucleon mass for meson energy co=2.5 and a Gaussian cutofF
form with P'=31.5.

M
(muon mass

units)

70
200
500

1000

ReT
—6.40—5.39—4.97—4.86—4.70

ImT
—10.3—11.4—11.8—11.9—11.9

a (deg)

58.3
64.8
67.1
67.7
68.5

As mentioned above, the inelasticity of all the channels
calculated comes out very small. It is clear from the
nature of the nucleon-exchange Born term that any
interesting behavior in any channel except (3,3) requires
more mechanisms. Whether the ones that we plan to
include will be enough remains to be seen.

Both in order to check our calculation against the
previous static calculation by one of us~ and to get
insight into the rate of convergence to the static result,
we calculated for one fixed set of parameters as a
function of the nucleon mass. First, note tha, t the
static answer is qualitatively different from the non-
static. As we saw, we can get a (3,3) resonance and can,
in fact, get a bound state with Z&0. In the static
calculation no value of Z gave a (3,3) resonance and it
was necessary to introduce more mechanisms to obtain
it. Presumably those same mechanisms will be attractive
in our nonstatic case and will allow us to reduce the
coupling and to keep the resonance fixed. We see then
that the introduction of recoil somehow increases the
"force."An investigation of the rate of convergence of
the static model is shown in Table I.There we show the
real and imaginary parts of the T matrix, and the phase
shift for the (3,3) channel with meson energy a=2.5
and a Gaussian cutoff for P=5.61.This gives Z=O for the
static limit and Z slightly greater than zero for finite
but very large M. We see that the convergence is
amazingly slow. The usual notion is that the static
limit is good to order (meson mass)/(nucleon mass).
This number is 1.4% for M= 70, yet the static answers
diRer by more than that.

V. DISCUSSION

We have seen that by combining the isobar or quasi-
particle idea with unitarity and Lorentz invariance, it
is possible to construct a set of linear integral equations
in one variable for the partial waves in the scattering
of one particle from a correlated pair or bound state.
The equation treats two- and three-body unitarity
fully and does not contain any partial contributions

from higher multiparticle sectors. In tha. t sense it is a
kind of relativistic Lippmann-Schwinger equation. It
may be that this treatment of the many-particIe states
is preferable to the more usual Bethe-Salpeter equation
with trunca. ted kernel in which some parts of the higher
multiparticle states appear but not others. Such a
treatment violates unitarity above the threshold for
these states. Even below these thresholds the incorrect
virtual effects of these states as given by the Bethe-
Salpeter equation may be misleading. In any case, the
fact that our equation can be reduced to one dimension
is certainly a technical advantage over the Bethe-
Salpeter equation.

Integral higher-spin quasiparticles are easily intro-
duced in the formalism in nearly precise analogy with
the nonrelativistic methods. Lorentz-invariant separa-
ble interactions scattering in only one partial wave are
constructed in terms of a certain three-vector and
V~ 's of that three-vector. That makes the partial-wave
decomposition of the three-body equations particularly
simple. The equations are easily extended and solved
for the m-1V system with pseudoscalar X+s-+~ X
coupling. They then become equations for m.-E scatter-
ing with nucleon exchange and x-~-E intermediate
states, but with no x-~ interactions and only a x-N
interaction in the nucleon or (1,1) channel. As one
would expect, this leads to a resonant (3,3) phase with
all other phases small. It also gives almost no inelastic-
ity. This is disappointing in terms of the rich and
complex physics of the actual m.-E system but reassuring
in terms of the meager physics of the input assumptions.
It gives us confidence that the equations respond in a
reasonable way to the input, and therefore we can
hope that by adding new mechanisms we can test the
consequences of them and hopefully even 6t the physics.
Among the most important missing features that we
hope to include are m.-m. interactions, at least in the p
channel and perhaps in the s wave, and the 7r-E*
intermediate states. That is, we hope to include a
7r+X+~Ã~ quasiparticle. In addition, in the (1,1)
channel we must put in the direct nucleon pole. These
added mechanisms should go a long way toward
improving the fit. They will certainly greatly increase
the inelasticity, and therefore we shall be able to study
z production. In particular, we shall be able to study
the effects on ~mE final states of both a ~-S and x-z
resonant Anal-state interaction. This subject of over-
lapping resonances is very poorly understood theoret-
ically and phenomenologically. We believe that any
light that a soluble unitary example can shed on the
question will be valuable, even if the theory may not
be good enough to account precisely for the data.


