
APPLICATION OF HARD —P ION THREE —POINT FUNCTIONS 20iS

,Aa.=—(k'+m, ') '(ba. +-kak. m ) (AS)

The field equations for the p field obtained from Kqs.
(2.1) read

pK"v v"a=S"a)

where, EI', is the p Proca operator and the relevant
part of S& is given by

a eabcI gvpAVOba c+~cpAPbb+ c5 2eabcetv

Xfp,~ q bH"". ,' h—,A—(a&bq", a"b—etc&,)5 (A.6)

The matrix element of Eq. (A4) thus becomes

&p2,qlv"s(o)
I pt)=.~"-(k)&p2 ql~ .(o) I pt), (A&)

where, Aa (k) is the p propagator,

We now make the peripheral approximation by
replacing the A& fields u& and B&', by their free out-
fields. They then annihilate the A~ in the out state
yielding

S=i(2sr)4it4(pt+k q
—ps)—NbN, egcmc '

X (&c,A —2ttca~ —Kc,A)ev"*(q)e„(k)
X (q"k" kq—g"").abs&prtrsrs

~
bob(o)

~
ptatrt). (A9)

We note that Eq. (A9) is gauge-invariant as 5 vanishes
when e„'(k) is replaced by k„. (This is in contrast to
the photoproduction of the pion where the peripheral
diagram itself is rtot gauge-invariant. ) The pion matrix
element of Eq. (A9) is defined in Ref. 21. The remainder
of the calculation of the cross section of Eq. (4.S) is
now straightforward.
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A general procedure is given for successively continuing the invariant amplitude to arbitrary regions of
the s plane when the partial-wave amplitude is given explicitly by the most general modi6ed Cheng repre-
sentation. The partial-wave expansion is summed in terms of elementary functions or integrals thereof,
and no dispersion or background integrals are required.

I. INTRODUCTION

A TTEMPTS to calculate strongly-interacting par-
ticle cross-sections self-consistently, require

knowledge of the invariant amplitude in unphysical re-
gions of the dynamical variables of energy squared (s)
and momentum transfer squared (t), since only in these
regions are the crossing relations nonempty. ' However,
if the invariant amplitude is defined in terms of a partial-
wave expansion over various orbital angular-momentum
states, as it usually is, such an expansion will in general
only converge in a finite region of the s-t plane, and the
problem therefore revolves around how one can make
analytic continuations of such an expansion.

In several previous reports, a representation for the
two-body, single-channel, partial-wave S-matrix ele-
ment was studied and found to withstand, quite well,
a number of tests to which it was subjected. ' ' It has
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also been written for multichannel reactions, although
no numerical comparisons have yet been made in this
case. ~ It should be noted that while a comparison of a
given conjectured partial-wave S-matrix with exact
potential-theory results is negative, in the sense that
a favorable comparison would clearly not necessarily
imply the representation to be a valid relativistic one,
an unfavorable comparison can at least be used to ex-
clude many representations, since intuitively we expect
any conjectured relativistic S-matrix element to also
be valid in a "correspondence principle" or nonrelati-
vistic limit.

Although the Regge method, ' of rewriting the partial-
wave expansion a,s a background integral plus pole
terms in the angular-momentum plane, provides an
analytic continuation of the invariant amplitude to all
t in principle, in practice if one wishes to satisfy the
crossing relations in threshold and intermediate regions
of the s-t plane, it. then becomes necessary to evaluate
the background integral explicitly-, and this is a formid-
able task because of the poor convergence properties of
this integral.

The purpose of this report is to show that it is pos-
sible, however, to avoid the above difficulties with the
background integral when one uses explicitly the modi-

' W. J. Abbe, P. Nath, anQ Y. N. Srivastava, Nuovo Cimento
49, 716 (1967).

s T. Regge, Nuovo Cimento 14, 951 (1959); 18, 947 (1960).
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fied Cheng representation for the partial-wave Smatrix.
In the next section we outline a general procedure

whereby the partial-wave expansion can be analytically
continued to successively larger regions of the s-t plane,
with any order being obtainable in principle. In Sec. III
we give the mathematical details and derive several rele-

vant formulas in the Appendix.

II. OUTLINE OF PROCEDURE

The modified Cheng representation for the partial-
wave S-matrix may be written in its most general form

as
--* exp L.(l —l) g]

lnS(!,v)=2i!i,(v) = P l

di'
-=i E .„

independent of the number of terms retained in the sum
over trajectories.

The partial-wave expansion then yields the scattering
amplitude

S(l,v) —1
(v'v)f(v, &) = Z (2!+1) Pi(s), (7)

1=0 2z

where s=cos8=1+t/2v, 0 being the c.m. scattering
angle and I, the momentum transfer squared. Now the
S matrix given by the representation (1) has the asymp-
totic behavior in the right-half l plane

S(l,v) ~ 1+O(e—'&/Qi).
Rel )—$

Since the Legendre function appearing in the expansion

(7) behaves as

ig' expL —(i—c+n) Q
P„ i(cosh(')o. (p')dp'

l)
(P

I 1+— O(e+'"/v'i),
$-woo

(9)

zg2+-
V~

where o(y') arises from the potential being written as

a superposition of Vukawas (10)-~&Res&~
l
Ima

l
&P,

g, (cosh~1)~(&1)d&1 (1) where cosht!=1+//2v, we see that the expansion (7)
converges for t(to=@' or, in terms of 8, 2v(cos8 —1)
(p' in the 8 plane this is the region

rV(r) =g' (r(p')e &'"dy', —

$ and g are defined by

(2)
which maps into the Lehmann ellipse' in the s plane:

(Res )' (Ims
— I+l

(cosh@ ksinht

cosh) = 1+(p'/2v)

cosh& = 1+(2p) 2/2v.

(3a)

(3b)

The parameters p and c arise from assuming that the

trajectories have the asymptotic form

zg
n„(v) —+ n+c+ P„ i—(cosh)') o (p') dp'

P ~OQ 2V~

n=i 23)

As discussed in Ref. 3, the threshold behavior of the

phase shift will still be v'+& if the trajectory parameters

p and c satisfy

p~&k c—
If the trajectories turn around, we expect p)0 and

therefore c(2.In potential theory, for a simple Yukawa

potential, p=-', and c=0.
Finally, in (1) i is the usual angular momentum and

v is the center-of-mass momentum squared; the n„(v)
are the Regge poles. The representation (1) has the

important feature that

S(l,v)S*(l,v) =1

However, the scattering amplitude f(v, s) in (7) may
be analytically continued to successively larger regions
in t by the following procedure; suppose we add and
subtract to the expansion (7) Jt'( terms of the exponential
expansion of the S matrix in powers of 2ibi(v)

(2ibi)'
(v')f(, )=—.Z (2t+1) LS()—1j—2&+

2z &™0 2I

(2iSi)~-
)+. + i Pi(&)+—Z (2~+1)

2z &

( (2ibi)' (2ibi) N)

XI 2ia, + +""+ lP, (s) (12a)
2! x! i

=&v Z (2~+1)fi (v)Pi(s)
l=0

1 co ( (228l) 2

+—g (2l+1)l 2H, +
2z l=o

(2ibg) )+ . +.
l

Pi�(s),

(12b)x! &

' H. Lehmaott, Ngovo Cimeitto 10, 579 (1958!.
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P = ~P-
2i

(2r'8g)' (2ili) ~
Xi2~+ + "+

2! 1V!

(iii) We avoid having to perform the diilicult back-
ground integral along the line Rel= —~.

(iv) The procedure can be carried out (in principle)
to any desired order.

The mathematical details will now be presented in
Sec. III.

and X=1, 2, 3, ~ . As we shall see explicitly in the
next section, when the phase shift 5~(v) is given by the
modified Cheng representation (1), the sums over t oi
successively higher powers (2i8&)N/E! in the second sum
of (12b) can be performed for all z to any order E, so
that the region of validity for f(i,z) is then determined
by the region of convergence oi the first sum of (12b);
namely, by

2r'a~(~) = expL(t —t)G &g' expL (t c+1)H
dl' ——

t—c+1

III. MATHEMATICAL DETAILS

The essential ideas can be illustrated by a one-trajec-
tory approximation of (1)

2 (2t+1)fi"(~)&~(z).
L~O

where

zg'
+

pP
Qi, (cosh)')o(ti')dtr, ', (21)

However, for successively higher values of X=1, 2, 3,
, the asymptotic behavior oi the Legendre function

(9) combined with the explicit behavior of the modified
Cheng representation from (1), then yields larger re-
gions of convergence for (14). For example, for X=1,

f.'= g' ~(t ')dt '.

We will require the generating function for Legendre
polynomials"

f N 1(p) ~ e—pit
$ ~OO

and (14) is valid for

t & t,=4p'+(ti'/v) .

1 00

=v2 g e-("+» E„(z)
(cosh@—z) '"

(16) the integral representation for the Q function"

(23)

For X=2,

f N 2(p) ~ e—pit
g -+Oo

~
—(&—~s)uj oo

Q~,(cosh') =- dy; (24)
V2 t (coshy —cosh&)'"

and (14) is valid for the addition formula for the Q functions"

t(tp=9ti'+ +-
P

(18)
Q .(y)e .(y.)= e .

etc. In this way it will be possible to work one's way
steadily into larger regions of the s-t plane.

There are a number of advantages to this procedure:

(i) Ii the partial-wave 5 matrix is exact, the imaginary
part of the amplitude across the t axis is exact in suc-
cessively larger regions of t, depending on the order of
the approximation. For example, 1m~f(i, t) is exact in

X(yiyp+(yr'-1)'"(yp'-1)'" co»V1dp, (23)

along with the following two sums which will be per-
formed explicitly in the Appendix. First,

U(c,zp, z) =—Q (2l+1)ei,(zp)Pi(z)
l=0

and

to(t(t j. for E= 1

to &t(t2 for Ã= 2

c$

So 8 So

t'coshy —zp) '"
e'~

i ~

—1 dy, (26a)
kcoshy —z )

etc.
(ii) One may attempt to satisfy the crossing relations

in threshold regions of the s-t plane where the represen-
tation (1) is believed to be most reliable. An iterative
procedure is suggested wherein one optimally satis6es
crossing in a small region, thereby using the parameters
thus obtained as input for the next iteration, and so on.

'o Higher TranscendenteI Fgnctions, Bateman Manuscript
Project, edited by A. Erddlyi (McGraw-Hill Book Co., New York,
1953), Vol. I, p. 154, Eq. (33)."Higher Transcendental Functions, Bateman Manuscript Proj-
ect, edited by A. Erdelyi (McGraw-Hill Book Co. , New York,
1953), Vol. I, p. 155, Eq. (4).

"V.DeAlfaro, T. Regge, and C. Rossetti, Nuovo Cimento 26,
1029 (1962).
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where so ——cosh', and second,

R(n, (,s) =—P (2l+1) Pi(s)
L=O l—n

~2o[M(i&2il 5

ig' exp[—(l—c+1)&j)
(Sum) i2 ———g (2l+1) —— IP ()

21 L=o V~ l—c+1

The second sum (j=2) for 1V=1 is easily performed
similarly:

+(2 +1)T(+1,~, ),
(cosh& —s) '"

where, in (26b), T(o.,t,s) is defined by

(26b) g2
R(c—1, f, s).

2p~
(33)

~tn-(l l2)] x

T'(~, t, s) =
V2 (cosh' —s) '

Finally, the third sum with X=1 is performed with the

dx, Ren& 1. (27) help of (26a);
12

Ren(m+2, m=O, 1, 2, (2g)

Although (27) is valid only for Reu(1, following a
standard procedure given in the Appendix, it can be
extended to

Q0

(Sum) i3 ———Q (2l+1)
2z &=o

fg2X—
VP

Qi, (cosh&')o(p')dp' Pi(s)

g2 00

U(c,cosh)', s)o (ii') dp',
2V~ ls

(34)

where cosh)' =1+(p, ') '/2v.
For Ã= 2, the expressions become more complicated,

but can be performed in the same way

1 - (2l+1) "«p[(l'—i)G
(Sum). i———Q dl'

2i &=o 2I l' —l1
(Sum) ~———P (2l+1)

2z L=o " exp[(l"—l) gj
dl" P,(s). (35)l"—l(2i bi) ' (2ibi) ~)

X 2ibt — - Pl s 9 Writing

The important point is that the right-hand sides of (26a)
and (26b) can be continued to Res)cosh). The sum

(26a) reduces to the usual pole (s,—s) ' when c=O; the

integral in (26a) converges for c&1 which will be ade-

quate for our purposes since we only require c(—,
' as dis-

cussed above.
Ke therefore want to show that the sums

for X=1, 2, 3, - can be performed for all s when the

phase shift 5i is defined by (21). Since there are three

separate terms in 2ib~, there will be 3 sums to perform

when E=1, 6 more when /=2, 10 more when E=3,
etc. , so we adopt a notation (Sum)~; where 1V refers to
the power of 2i8& and j is the term index. In other words

we write

3 6

(Sum)g ——P (Sum)i,+P (Sum)2,.+ . . (30)

For E=1 we have

00

(Sum)ii ———P (2l+1)
2z &=o

* exp[(l' —l) g]
X dl' P,(s).

l' —l

Using (26b), (31) may be written

(36)

Eq. (35) may be written

CX

(Sum) 2i ——— dl"
4i

exp[(l"—l') )jR(l', 2&,s)
dl'

l' —l"

exp[—(l" l') QR(l",2&—,s))

Defining the 5=2, j=2 term to be

1 ~ (2l+1)
(Stim)» ———P

2i &=o 2I

g' exp[—2(l—c+1)Q
X Pi(s) (3g)

p 2@ (l—c+1)'

and following a procedure similar to that for the (21)
sum, we have

(Sum) ii ————
2i

R(l', $,s)dl'.
g' (BR(x,2g, s)

(32) (Sum). .= —
l 2'(x)2&,s) l

. —(39)
4iv'& 4 Bx i. . .
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the integral P
(44) becomesgiven in (24)

m then becomes2 "diagonale remaining

dl/ dy'0'(P')
d„" (u') (~")dp

(Sum) 26=

(2l+1) (
(Sum) 23—

~~

2v2v a

[& (I/2) —I ] &/g(l
& t+7&

shy cosh& jgf

~~//) !p (s) . (40)Xg, ,(cosh( N&—'( j

r +=2 isfjnal sum fovalid «r all s.

(l—c+1)tj(] ) &/& (2+
(Sum)26=2! —.!~

2i ' '+'R

d (26 ) th1s beco~ith the heip o

2)

/ P, s (46)(„/)g, ,(cosh f )dPgQ O' P l

dp &(p )(Su111)23
4zv

ocedure a,s in deriv g 45) weft r following p
ave

( h(" h)'X!
(

(41)+sin ;nht/ coshp&s))l h

dp &(I3 )(Sulll) 26

v)2g( 1yc &+3& s
X y

(cosh' —cosh) )

// 2/ 2(2v cosh& —1+("1+(&t4ere, asa»e

e performedThe o6 iagona
foliows

l l(2l+1) *
expL(l' —l

(Sum) 24
——

(47)

dbabove were obtaine y))r;The expressions fo
f summation an

(34) (35) (37) (40),
n th th t 16 As is well known, t e

th""t'p'tDius c frm wt onverge uniform y w'

ve
variable. 13

as an example. WWe need to proLet us consider as a
that the series

2 a~ig' exp! —(l—c+1) j- g

exp L
—(2l—l'—c+1)Q

X Q (2l+1)
(l—l')(l —c+1)

AM PL ITUCPNTINUA pI- ANANAL Y TIC
~

re resentatio

into partial fractions (36,Again, using the split-up into par
Kq. (42) becomes

2 a+

(Sum)24 ———

with

&(l') = Q ut(l')
l~o

1 exp[(l' —l) Q
u3(l') =—(21+1)

2i

(48a.)

(48b)

expL(P —c'—+1)tj&(—1+c, 2(, s)

res ect to l' with 1'QL42, 62~j.niformly with respect toconverges uni o
If we tak

exp[—(l'—c+1)jjR(l', 2(,s)— then

1 ex/(Re —l)jj
M, =—(21+1)

2i
(49)

ZgX—
p2

' d ' & ( ). (44)QI, (cosh&') 0 (p') dp

l' —c+1

The next oG-diag onal sum is

1) ' expL(l' —l)Qt 1) (2l+1 — ' '—l
(Sum) = (2)!

(50)

F(l')dl'= Q u, (1/)dl, (51)
a

for example, R. Creightoaof this theorem, see for examp e,13 or"F a discussion of t is, p8 k in Advanceduc

Calculus (McGraw-Hill
'"""'" - 8-k '- Ad--~"R. Creigh ton 8
Book Co., New York, 1

!u, (l')! &~,
e b the %eierstrassand therefore yfol each l Q

comparison test'4
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since P~ 0"3f~ converges. In a similar manner, one
may justify the interchange of summation and integra-
tion in the remaining equations; however, the weight
function 0(p') must be chosen such that all those series
above involving it, converge uniformly with respect to
the integration variable p'.

A further requirement on the weight function 0(p')
must be imposed since we require the improper integrals
(34), (41), (45), and (47) to possess analytic continua-
tions in the variable z= cos8, and therefore by a similar
theorem to that of Ref. 13, the weight function 0(p')
must be chosen such that these integrals converge uni-
formly with respect to z."

While the demonstration so far has been made in a
one-trajectory approximation to the modi6ed Cheng
representation (1), it is clear that if more trajectories
are retained, similar expressions to those above result,
and one may formally continue the procedure. The rate
of convergence of the representation (1) in terms of tra-
jectories has been studied fairly extensively by now. ' '
In Refs. 2 and 6, the representation (1) was studied in
a one-trajectory approximation and shown to compare
favorably with the exact partial-wave Smatrix resulting
from a direct integration of the Schrodinger equation.
In Ref. 3 a very good comparison of the total scattering
amplitude in a one-trajectory approximation of (1) was
observed, in the physical region —1&z&1, where exact
results are known. Moreover, even a one-trajectory ap-
proximation of (1) contains contributions from all the
in6nitely many trajectories through the appearance of
the Q function in (1); the interested reader is referred to
Refs. 2 and 3 and others cited there for details of how
this mechanism arises.

These facts, combined with the further test of the
representation in m-E phenomenology in Ref. 4, and
the approximate calculation of the p-meson in Ref. 5,
where a procedure identical to that described here (with
X=1) was used, lead us to believe that the relatively
simple procedure for continuing the representation, as
presented above, may be valuable.

Following the procedure outlined above, we see that
it is always possible to continue analytically the partial-

wave expansion of any power of (2ib&) to all z, if the

phase shift is given explicitly by the modiied Cheng

representation (1). Sums involving higher products of

Q functions may always be reduced with (25) to a form

(26a). Other sums are reduced to (26b) and its deriva-

tives. The weight function 0 (y') must, however, be ap-

propriately chosen so that the series and improper inte-

grals noted above converge uniformly.

Finally, from Kqs. (32)—(34), we see that the sums

X=1 have a cut in z starting at

whereas the sums /=2 have cuts starting at

zq= cosh(2$) or t= tq=4p'+@4/v. (53)

Similarly, sums with larger values of S have cuts start-
ing correspondingly farther out in the z plane, and there-
fore if the phase shift 5& were exact, the discontinuity
across the t axis would be exact in the respective regions

tp&t&t~, /=1,
tp&t&4, Ã= 2,

(54)

etc., as noted above.

APPENDIX A

We wish to verify the formula

U(c,zo,z)=—P (2l+1)QE,(zo)Pi(z)
L=O

c

Zp —Z Zp —Z

(coshy —zo) '~'
—1 dy, (A1)

Ecoshy —z)

where zo
——cosh/. The procedure is essentially the same

that one follows in deriving the usual pole (zo—z) '
when c=0. We use the recurrence formula, valid for
both P„(z) and Q„(z)"

(2v+1)zP„(z)= (v+1)P„+i(z)+vP„ i(z) . (A2)

For v= /, we multiply (A2) by Q&,(zo) and obtain

(2I+1)zQ~-.(zo)Pi(z) = (~+1)Qi-.(«)P~+i(z)
+lQ(, (zp)P( g(z) . (A3)

For v= 1—c, P„(z) replaced by Q&,(zo) in (A2), we then
multiply by P&(z) and obtain

I
2(~ ~)+1)zoQ~ (zo)P&(z) (~ ~+1)Ql- +1(«)Pl(z)

+ (l—c)Q( g(zo)P((z) . (A4)

Subtracting respectively (A4) from (A3) and summing
on /, we have after some algebra

~(~)«,z) = — P LQ~ .gi(zo) —2zoQg .(zo)
Zp —Z &=P

+Q~- -~(«)lPi(z) (A5)

Using the integral representation for the Q function
(24) and the generating function for the P function (23),
(AS) may be written after a little more algebra as

e'& c
&(~ zo,z) =

Zp 8 Zp Z
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zo= cosh) or t=to=p2, (52) coshy —zo)'"
X —1 dy (A6)

coshy —z )
1~ R, Creighton Suck, in Advawced Calculus (Mcoraw-Hill

Book Co, , New York, 1956), p. 150, Theorem 27. ' See Ref. 10, p. 160, Fq. (2).
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with the integral in (A6) converging for c&1. When brackets in (31) by T(o/, f,s), we have
c=O, (A6) reduces to the usual result

g [a—(& /'2) l &

T(o/, g,s) = dS.
v2 t (coshx —s)'" (32)

(A7)U(O, se,s) = Q (2l+1)Q,(se)Pi(s) =
l~0 0

While (32) is now useful for all s, it is only valid for
However, for nonzero values of c, (A6) defines it as an Re{n)&1. However, from the generating fuiictjon for
analytic function of s for c&1. Legendre functions, (23), we may write

APPENDIX 8
In Ref. 17, we derived the formula

fn

h„(x,s) =- v2e-x/s p e nap (s)
(coshx —s) '"

&
—(l—a) $

E(a,g,s)= Q(21—+1) I'i(s)
l=o l—0.

~2e(a+1/2) j
+ (2o,+1)

(cosh& —s) '"
g(z) g(a+1/2) x

X Q-.-i+- dx, (31)
K2 t (coshx —s)'"

where coshr/(s) =s. Equation (Bl) is useful for Re(s))cosh) and arbitrary n. However, satisfaction of
the crossing relations will require E(n, g,s) for Re(s)
&—cosh/. A formula useful there as well may be ob-
tained by using the integral representation for the Q
function (24). Abbreviating the expression in square

'7 W. J. Abbe and Y. N. Srivastava, Nuovo Cimento 52A, 551
(1967). Equation (16) of this reference is incorrect and should be
replaced by our equation (B1).

=v2e-*/s Q e-"*p (s) (33)
n~tn+1

Equation (32) may therefore be written

00

T(o/, ),s) = 6(x,—s)e'~ &'/s)l*dx

g(a—n—I)$

&-(s) (34)
n-o O.—S—1

where now the integral in (34) converges for Re(rr)
&m+2, m= 0, 1, 2, , and in addition is also valid for
all s.

Therefore, we have the desired result, R(o/, P,z) in
(31) is defined for all s:

~2e(a+1/2)$

~(,r, )= +{2~+1)T(~y1,g, s), (35)
(cosh) —s) '"

where T(o/, P,z) is given in (B4).


