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The T products listed above are covariant, i.e., they do not involve any c-number Schwinger terms. In general,
the T product of any three field operators are not necessarily free of noncovariant terms. We list below two T
products that involve such terms:

*"' ""(T(d (*)d' ( ) ".(o)))='".-~() ~(p) ~""(&) 'p '
&&L—mp'(q~+P~) —2) ~(q. kp~ —k P&)]—i"s.gp 'Lb" ob'oq'-~(q)+~'ob" op -~(p)], (A4)

degd'y e'&'e—'& o(T(p. (x)at's(y)s&, (0)))= is.s, A(P), t),""(k)g,LV'(q) (1/2F, )

X t
—2mpsg„g+ (q„pg q. Pg—„g)+(4—2) (p.kg„g —p„k))]—ie.s,bt'pbps(J mg2)

—t 6(p), (A5)

On the other hand, it is easily veri6ed that no c-number Schwinger terms appear in the T products of three cur-
rent operators.
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Some comparisons with experiment of the hard-pion three-point functions obtained from SU(2) &(SU(2)
current algebra are given. Available experimental data involving x, p, A1, and 0. mesons are examined. The
hard-pion current-algebra method is used to calculate the decays p -+ m+x, A& -+ x+p, and a -+ m.+x, and
the electromagnetic form factor of the pion. Peripheral processes such as m. +1V~ p+E are also examined
as a test of meson-vertex functions for spacelike momentum transfers. Here, to reproduce correctly the
momentum-transfer dependence at the nucleon vertex, a new extrapolation for the pionic nucleon form
factor is introduced, using the Goldberger-Treiman relation. The results of the above calculations are found
to be consistent with the present experimental situation. Current-algebra predictions for the y+E -+ A1+N
cross section and the decays A& ~ ~+7 and A1~ ~+a are given. A cross section of about 0.1 pb is ob-
tained for the A~ photoproduction, which is on the verge of being detectable.

Here, g, and g~ are the coupling strengths of the vector
current to the p meson and the axial-vector current to
the 3& meson, and Ii„ is the usual pion-decay ampli-
tude. 4 This result when supplemented by the second

steinberg sum rule'

I. INTRODUCTION

ECENTLY, it has become apparent that soft-pion
methods' may lead to erroneous results when

applied to processes involving energetic pions. Thus
the soft-pion method yields a width of approximately
800 MeV for the Ar —+ sr+p decay, ' in contrast to the
experimental width of =100 MeV. These considera-

tions, coupled with the desire to exploit more fully
the content of the current algebras, have motivated
interest in extending the analysis beyond the domain
of the soft-pion method. An important step in this
direction was erst taken by Weinberg, who used Ward
identities, SU(2)&&SU(2) algebra of currents, and the
hypothesis of meson dominance of vector and axail-
vector currents to obtain the sum rule'

(1 2)g&= gu

and the KSRF relation'

g,~2P.m,

yields the well-known. result mz ——V2mp which is borne
out experimentally. '

In the preceding paper, ' new techniques were de-
scribed to obtain current-algebra solutions to vertex

4 We define g~ by the relation

(Oi V„~(0) i pi k,bo)==gpbasNrc, (k),

where a, b=1, 2, 3 are SU(2) isotopic indices, e„'(k) is the p
polarization vector normalized by e„~et' '=8 ', and

&p —=L(2x)'2~23 '"
Similarly, g~ is de6ned from the A& matrix element (0 i A~, (0)

~
A &,

k,b,o) and F by (O~A„(0) ~s-,kb)=it g,zk„iV . Our currents are
normalized such that the experimental value of Ii is 94 MeV.

'K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,
255 (1966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071
(1966).

6 R. Arnowitt, M. H. Friedman, and P. Nath, preceding paper,
Phys. Rev. 174, 1999 (1968) (hereafter referred to as I). A brief
account of these results were given in R. Arnowitt, M. H. Pried-
man, and P. Nath, Phys. Rev. Letters 19, 1085 (196/).

g 2/m 2 (gA2/m~2) J P 2 (1.1)
* Research supported in part by the National Science Foun-

dation.' For a review of the soft-pion calculations, see R. F. Dashen,
in ProceedirIgs of the Thirteewth Ietermutioeal Coeferemce irI, High-
ErIergy Physics (University of California Press, Berkeley, 1967).

'The soft-pion analysis of the ~-p-A& vertex has been carried
out by several authors; see e.g., B.Renner, Phys. Letters 21, 453
(1966);D. Geffen, Phys. Rev. Letters 19, 770 (1967).

' S. Weinberg, Phys. Rev. Letters 18, 507 (1967). Extension of
these results to other vector and axial-vector currents are given
by T. Das, V. S. Mathur, and S. Okubo, ibid. 18, 761 (1967);
S. L. Glashow, H. J. Schweitzer, and S. Weinberg, ibid 19, 139.
(1967).
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functions involving the m, p, A~ and 0 mesons, using
also the assumption of single-meson saturation of
intermediate sums. ~ In this paper, we describe a com-
parison of the previously obtained hard-pion three-
point functions with experiment. The results of the
calculation are grouped in two separate sections.
Section III is devoted to the electromagnetic form factor
of the pion and a number of decay processes: p —+ 2x,
&i —+ 7r+p, Ai —+ s+q, o —&2s, and Ai~s+o.
In Sec. IV, we consider peripheral processes, such as
s+&~ p+A' and y+E-+At+/, which involve a
hard-pion vertex. %e begin, in Sec. II, with a review
of the formalism of Paper I needed for the discussion
in Secs. III and IV.

~3(7r'pA) g&abcg~g7f'm'pp bpc&pa I ~~7fxpppa pvb~ c
IJ vp,

+2ga pA&pacpbrb c+21svcpA cpaG bH pvc

+2)ivvpA&pacPvbH c+2)iapA&pacPvbG c

+gp p p&ps&v bG""c+2g pAA~ua&v bH""c

+~pAArbparbv bG c+ib p p pGpvaG bGA "c

+fjpAAGpvaH bHX"cj v

Z3(,) being given by
(2.1c)

3(a') 2go'7r7r Pa+A I 2~'cr7f7f'P aV IIa+~ 2goPP~ a~gag

yv 1+S~vppG aGpvaCr+SgvAAib arbpavr

1+S&vaaHp"aHpvsCr+&ca&CparbpaCrp

+~caArb aCppaCr+fSappepaG arrv

+IscAA&paH arrv+ Ave A cpapH acrv

+isaac cpa cp"scrv+ gca err +)'ccccrcracr" ~ (2 1d)

' Results equivalent to those of Ref. 6 (for the cv-p-A& system)
but using diferent techniques have also been obtained by H.
Schnitzer and S. steinberg, Phys. Rev. 164, 1828 (1967);by S. G.
Brown and G. B. West, Phys. Rev. Letters 19, 812 (1967); Phys.
Rev. 174, 1777 (1968).Results similar to those of Ref. 6 based on
chiral-invariant Lagrangians have been obtained by J. Schwinger,
Phys. Letters 248, 473 (1967); Phys. Rev. 165, 1714 (1968);
lectures at Brandeis Summer Institute, 1967 (unpublished); J.
Wess and B. Zumino, Phys. Rev. 163, 1727 (1967); B. W. Lee
and H. T. ¹eh,cfvfcf 166, 1507 (1.968).

II. CURRENT ALGEBRA AND
MESON DOMINANCE

It was demonstrated in I that the assumption of
meson dominance can be expressed concisely for three-
point functions in terms of an eRective Lagrangian
involving cubic interactions, which is to be subjected
to the requirements of current algebra. For the
(o,7r,p,A&) system, the Lagrangian was shown to take
the form

(2.1a)
where

S "ar)p'pa+ s (cp"acppa pic 'pa )
+!(~pe„m.'~'—) ,'(f)„e—„—rl„s„)—.G ".p

+aG aGpva s'tbsp &pa& a s (r)p&v r)v&p)aH a

+,'H p".H„„.—', m~'a„-.as. (2.1b)-

and Zr=Zs& pz&+Zs&, i, where Zr&»& is given by

Here, 0-, y„v&„u&, are the Heisenberg interpolating
fields for the 0-, m-, p, A& mesons, respectively, and m„
nz, m„nsA, are their corresponding physical masses.
Using Eqs. (2.1), the SU(2) multiplets of vector and
axial-vector currents are generated by the relations

P P —
g ply

~"a=g~+pa+F r)pcpa.
(2 2)

The currents obtained from Eq. (2.2) are then subject
to the following conditions: the conservation of the
vector current,

B„Vp (x)=0,
the partial conservation of the axial current,

f)„Ap.(x)=m.'F 9.(x),
and the current coimnutation relations

~(*-y)[V.(*),V"(y»=' ..V.(*)6 ( -y)
+c-No. S.T. ,

8 (x'—y') [V', (x),A"b (y)7=i,b,A", (x)8'(x—y)
+c-No. S.T. ,

8(xs y')[A—' (x),Vpb(y)j=t'e. b,Ap. (x)b'(x y)—
+c-No. S.T. ,

8(x' ys)[—A', (x),APb(y)j=is, b.VP. (x)84(x y)—
+c-No. S.T.

(2.3)

(2.4)

(2.5)

The last terms in Eqs. (2.5) stand for c-number
Schwinger terms.

Consistent with our requirement that the e6ective
Lagrangian Eq. (2.1) is to be used for calculating three-
point processes, the condition of single-meson satu-
ration requires that Eqs. (2.3)—(2.5) be satisfied only
up to first order in the coupling constants. For the
O.-independent coupling constants, the following rela-
tions were derived in I:

(2.6)

where X~ (which has the physical interpretation of
being the anomalous magnetic moment of the A~
meson) is given by

~A= gp~p ~pAA p

and the three parameters x, y, s are

(2 &)

x=v2mp/tN—~, y=—gg/gp, s= gp/(V2tibpF ). (2.8)—
The condition that the current commutation relations
Eqs. (2.5) have no q-number Schwinger terms implies
that x, y, and s obey the 6rst Weinberg sum rule

[Eq. (1.1)j;
x'y s' —2s'+1= 0. (2 9)

Thus, only two of the parameters x, y, 3 are independent.

gppp gpAA g~~p ™pgp
—1

g pz= m&s), p&=rep'(F—x'ys') ',
= xsysss-,'y„y2(1—ss)

F K pz= —y(1 — 'Xxz), 2F p pz=y y', —
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TABLE r. Pp (p -+ ~+w decay width), 1'z~ (A& —+ ~+p decay width), Pz, „(A&~ ~+& decay width), and r. (the electromagnetic
charge radius oi the pion), calculated for various values of Xg (the anomalous moment of the Aq meson).

r, (Mev)
r». (MeV)
~,~~ (MeV)
v. (F)

0,7

96
129

0.028
0.57

0.6

102
116

0.050
0.58

0.5

108
104

0.078
0.59

0.4

114
93
0.11
0.60

0.3

121
83
0.15
0.61

0.2

127
73
0.20
0.62

134
63
0.25
0.62

For the O.-dependent coupling constants, the following
relations were obtained:

where

C~pu= G=I"~~~ ~

F gp
——(m s)j,s

—nz 'Xt),

F,X, = —(At+As),

F.g,pp= (x'ys)-'2nzps(X, —)„),
V25$PjMg 7l.&= X QSPt7+g )

(2.10)

XgÃ3 ——1. (2.12)

III. FORM FACTORS AND DECAYS

We now proceed to compute the p —+ s+m and
A i —+ or+ p decay widths. Using the effective Lagrangian
of Sec. II to first order (as required by the single-
particle saturation assumption), one Gnds in a straight-
forward fashion

I =~ '(96~F s)-~L(1——,').)'+»(1——.') ~)
&& (1—-'Xg)7(1—451 'm, ')si' (3.1)

I"g, =2 'I'm '(1536vrF ') '{(8+12X~+5Xg')
—kg'nz 'm '+(8—12K/+5K/')8nl 'm '}

)& (1—6ns~'ns, '+ vs~'mp 4)'l'(1+ 28), (3.2)

where we have used the experimental result @=1,
eliminated y(=—gz/g, ) by the Weinberg sum rule LEq.
(2.9)7, and allowed for a correction to the KSRF
condition Eq. (3) by setting

(3.3)

Terms of 0(8') have been neglected. . From Eqs. (3.1)
and (3.2) one sees that changes in the widths due to
deviations from the I&SRF condition are proportional
to 28, and thus a 10%%uo correction to this condition can
lead to =10—20% correction to I', (depending on the
value of X~) and =20%%uo change in I'g, . It is thus
necessary to iirst investigate the validity of Eq. (1.3)

This analysis is carried out in R. Arnowitt, M. H, Friedman,
P. Nath, and R. Suitor, Phys. Rev. (to be published) (hereafter
referred to as III).

~i= (gA'mA )4mA y
4= (go~A )~ran).

(2.11)
Xs=—Xi+F.p,.

It is possible to extend the results of I to S-point
functions. ' Equations (2.6)—(2.11) remain valid and
one further constraint arises:

(i.e., s=1). As has recently been observed by several

authors, Eq. (1.3) is not a current-algebra result. ' 7 ' "
On the other hand, Eq. (1.3) can be tested experi-
mentally from the p' —+ l++l lepton decay since the
decay amplitude is directly proportional to g, ." Thus
s can be expressed directly in terms of the lepton-pair
branching ratio 8, by

s'=Bpr p 1 2 1—4

One difficulty associated with the experimental deter-
mination of s in this manner is the uncertainty involved
in the experimental value of the p width. Since the p

is generally produced in the presence of nucleons, the
final-state interactions appear to broaden the resonance.
An attempt to correct for this effect has been made by
Roos,"leading to the result F,= 128&5 MeV. All such

complications, however, are absent in an e+-e colliding-
beam production of the p. Indeed, recent data" yield
the apparently "low" value of F,=93&15 MeV. We
choose, for the present discussion, a midvalue of
I',= 111%17 Mev. The recent experimental deter-
mination of 8„from Novosibirsk"" gives

B,~(4.8+0.8)X10 '.
With this choice of I', and B„sis then determined to be

s= 1.G5&G.15 (3 5)

consistent with the KSRF relation a=1. For the sake
of simplicity, we shall therefore set a=1 in all our
succeeding discussions Lwhich then implies y=1 by
Eq. (2.9), since x=1 has already been assumed7.
Equations (3.1) and (3.2) then yield the result"

I'p ——141(1—ising)' Mev, (3.6)

s D. A. Germen, Phys. Rev. Letters 19, 770 (1967).
' A reexamination of the earlier derivations in Ref. 4 have

shown to lead to identities rather than a derivation of Eq. (3).
See R. Arnowitt, M. H. Friedman, and P. Nath, Nucl. Phys. BS,
115 (1968)."J.J. Sakurai, Phys. Rev. Letters 17, 1021 (1966).No assump-
tion of p dominance is necessary in this determination of g~.

"M. Roos, Nucl. Phys. B2, 615 (1967).
"V.L. Auslander, G. I. Budker, Ju. N. Pestov, V. A. Sidorov,

A. N. Skrinsky, and A. G. Khabakhpashev, Phys. Letters 25B,
433 (1967).

"This value of B~ is consistent with the recent analyses of
R. G. Parsons and R. Weinstein, Phys. Rev. Letters 20, 1314
(1968) and M. Davier (SLAC Report) on the photoproduced
p mesons (unpublished). These authors correct for the interference
due to lepton pairs from the co decay.

"Equations (3.6) and (3.7) have also been obtained by H.
Schnitzer and S. Weinberg and by S. G. Brown and G. W. West,
Ref. 7.
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Fg,.=6.85(8+12Xg+5Xg') MeV. (3.7)

I', and I"g, are listed in Table I for a range of values
of X~. One sees that the experimental value of
F,= 111+17MeV is obtained with the choice

Xg ——0.4&0.3. (3.8)

The experimental value for I'g, is more uncertain.
The most recent survey" lists F~ = 80&35 MeV.
Equation (3.8) is consistent with this value, if we
assume that the major mode of decay of the A & is small.
A discussion of other possible decay modes of the A~ is
given below.

We next consider the pion electromagnetic form
factors obtained by examining the vertex (zrq

~

VI'„~ zrp).
This process necessarily involves the coupling of an
off-shell p to two on-shell pions in contrast to the
p —+ 2~ decay where all the particles involved are on
their respective mass shells. It thus tests the soundness
of interpolating current-algebra conditions off the
particle-mass shells. Replacing V& by IE„vf' and using
Eq. (2.1), we obtain for the form factor, the result

f(k') =m '(k'+m ') '(1+-'Xgk'm ') (3 9)

The electromagnetic charge radius of the pion y, is
defined through the expansion

(3.10)

This yields for r, the value Q6(1—~X&)"'/m, . For
A.~ ——0.4, one finds r,=0.6 F to be compared with the
experimental value' of 0.8&0.1 F. Ke note that the
p-dominance model would. yield r, = (Q6)/m, , which
in this case appears to be a good approximation because
of the accidental smallness of 4Xg.

The decay Ai+ —+ zr++y may also be calculated
easily. Since the outgoing photon is a pure isovector,
it couples only to the p, which must be on the photon-
mass shell to conserve energy and momentum (Fig. 1).
Thus again, the p leg of the vertex is off the p-mass shell.
The decay widths for both the charged states are the
same and we find, for the partial width of Ai —& zr+y,
the result

(3.11)

where n (=e'/4ir) is the fine-structure constant.
The partial width F~ ~ is given in Table I for a range
of values of X~. While it appears doubtful that a direct
measurement of this decay mode is likely in the near
future, the process Ai —& y+zr is of theoretical interest
as the value of F& ~=0.3 MeV has been obtained by
Singh' from Compton-scattering sum rules. The results

"A. Rosenfeld et al. , Rev. Mod. Phys. 40, 77 (1968)."C. W. Akerlof, W. W. Ash, K. Berkelman, C. A. Lichtenstein,
A. Ramanauskas, and R. H. Siemann, Phys. Rev. 163, 1482
(1967).The error quoted is conceivably an underestimate due to
the theoretical diQiculty in extracting r, from electroproduction
data.

"V. Singh, Phys. Rev. Letters 19, 730 (1967).

FIG. 1. Feynman diagram for the decay AI ~ x+p.

where e,=m '/m, z. The decay width I' is thus deter-
mined by the coupling parameter X= (X,—Xz)+2c 4.
From the zrzr phase-shift analysis of Schlein and
Malamud, " one has m, =730 MeV, and for 52=1 we
obtain I' ~350 MeV consistent with the data. From the
analysis of Walker et al." m =930 MeV, and for
X2=0.9 we have F 650 MeV, also consistent with the
data.

The 3m Dalitz plot for the 3& decay does not allow
one to determine clearly what fraction of the A~ width
is due to the p+zr decay mode. " It is of interest,
therefore, to consider the partial widths due to other
possible decay modes. Using the Lagrangian of Eq.
(2.1), it is straightforward to calculate the Ai —& zr+a.
decay width. We find

= (24zrp z) iL(m/z —m z —m z)z

X(4m~') '—m 'm '-m~ —'j'"
X(4—4—g~p. ~)'. (3.13)

Since e,((1, one may reasonably approximate P&—X2

'9 P. E. Schlein, Phys. Rev. Letters 19, 1052 (1967); E.
Malamud and P. E. Schlein, ibid. 19, 1056 (1967).

W. D. Walker, J. Carroll, A. Gar6nkel, and B. Y. Oh, Phys.
Rev. Letters 18, 630 (1967).

of Table I show that the hard-pion current algebra
predicts a somewhat smaller decay width than do the
superconvergent dispersion relations. Agreement with
the calculation of Ref. 18 can be achieved if we set

0. On the other hand, the chiral symmetric Yang-
Mills limit would yield Xg ——1 and hence 1 g ~=0. Thus
the experimental observation of the Ai ~ zr+y decay
mode would determine the deviation from the Yang-
Mills limit (i.e., X~= 1).

Next, we proceed to consider the decays involving
the o- meson. There now appears to be growing evidence
for such an I=0=J resonance. The analysis of sr~
phase shifts from the pion-production data in the
reaction zr+E —+2zr+E by Schlein and Malamud"
and by Walker et al.20 indicate an I=O, 5-wave reso-
nance in the region between 700 MeV and 1 GeV. The
I=O o. decay proceeds through two modes o. —+x'x'
and o. —+ m.+x, the charged mode being suppressed by
a factor of —,

' over the neutral mode because of Bose
statistics. Thus, the total decay width F„on using
Eq. (2.1), is given by

35$.3
I'.= (1—4e.)"'L(P,i—Xz)+2e.kzg', (3.12)

zr(128)F '
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TABLE IL Comparison of the Amaldi-Selleri form factor P(q') with Z(q') obtained from the Goldberger-Treiman relation,
for a range of values of the momentum transfer.

F(q')
X(q')
t I'(q') —If (q') 7/~(q')

1.00
1.00
0

0.87
0.87
0

0.79
0.77
23%

0.72
0.69
42%

0.67
0.63
6.0%

0.63
0.57

0.60
0.53

12%

10

0.50
0.38

24%

by )i. The coupling constant fi, z is undetermined by pion-nucleon vertex" E(q'). To estimate E(q') we
the current algebra. The simplest assumption, fi, ~=0, note that K(0) appears in the partially conserved

yields, for the Schlein and Malamud" o meson, axial-vector current (PCAC) constant"

I'~, , 225 MeV (3.14) F.=m(G~/Gv) LgE(0)7
—', (4.1)

for the values m =730 MeV and. X'=1. For the a
meson of Walker et utt. ,

"one obtains

I'g, , 60 MeV (3.15)

for the values m =930 MeV and X'=0.9. Since the xp
decay mode of the A & already accounts for most of the
experimental value of the A~ width, the mo- mode
contribution for either Eq. (3.14) or (3.15) appears
to be too large. One may of course adjust g&p, , & to
suppress this mode. However, there exists, in addition,
a nonresonant A ~

—+ 3w direct decay mode whose ampli-
tude could conceivably destructively interfere with the
xo- decay amplitude due to the broadness of the 0.

resonance. To investigate this matter further, one must
use four-point functions and this requires the tech-

niques developed in III (Ref. 8). A detailed analysis
of the A& decay will be discussed elsewhere.

Iv. PIONIC FORM FACTOR OF THE NUCLEON
AND PERIPHERAL PROCESSES

FIG. 2. The Feynman diagram representing the
peripheral process ++X—+ p+X.

An application of the hard-pion vertex functions
arises naturally in peripheral processes and we consider
here two such processes whose meson vertices involve

the s., p, and Ai. The reactions we consider are ~+X—+

p+E and y+X~ At+%. We consider first the p-

production process. The peripheral diagram governing
this reaction is given in Fig. 2. The vr-x-p vertex

appearing there can be directly determined from the

Lagrangian of Eq. (2.1). Here, one of the pions is off

the mass shell. In addition, one needs to know the

where m is the nucleon mass, and G~/Gv (= 1.18) is
the ratio of the renormalized axial-vector and vector
coupling constants of P decay. Using the experimental
value of F„in Eq. (4.1), we find

E(0)=0.87. (4 2)

E(q') =
1+0.13(qs/~. s)

(4.3)

A phenomenological rr-X form factor F(qs) has previ-
ously been suggested by Amaldi and Selleri. '4'5 For
q'«10m ' on.e may approximate F(q') by

0.72
F(q') = 0.28+ (4 4,)

1+(1/4. 73)f(q'+m ')/m '7

In Table II, we compare the numerical values of the
form factors Eq. (4.3) and Eq. (4.4) over a range of
momentum transfers up to 10m '. The two form factors
are in agreement within 10% for q'&Sm s. Returning
to the peripheral process a.+E-+p+X, the differential
cross section in the universal form is given by

do s. g' res' '(1—ark„)'
( u,'—

dt ~ ~ 164 r ) m'm, '

xLq'+ (m, ~.)'7(q'+ (~,+~.)'7
Xq2112(qs)g 2(qs) (4 5)

"The pion-nucleon vertex E(q') is de6ned by the nucleon
matrix element of the pion Geld:

(pl v. (o) Ip')=&n&nI(p)v'r. ~(P')(q'+p') 'gff(q'),

where g'/4s- —14.7 is the pion-nucleon coupling constant, N(p) the
nucleon spinors and q'= (p' —p)'.

"M. L. Goldberger and S. B. Treiman, Phys. Rev. 111, 354
(1958);L. Wolfenstein, Nuovo Cimento 8, 882 (1958).

"One can also use a diferent extrapolation E(q') =0.87-0.13
{q~/m '). The pole extrapolation of Eq. (4.3) and thelinear extrap-
olation above yield essentially the same result for small mo-
mentum transfers.

'4 U. Amaldi and F. Selleri, Nuovo Cimento Bl, 360 (1964)."J.D. Jackson, Rev. Mod. Phys. 37, 484 (1965).

On the other hand, E(q') is normalized such that
E(—I s)=1, and hence a simple pole extrapolation
yield "

0.87
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TAnzz IIL Di&erential cross sections for y+fq ~ A~+fq. The second row is the universal form (independent of c.m. energy)
while in the third row dr/Ct is calculated for the c.m. energy of 4 GeV.

t (inm ')

kssdo/dt (in pb)
do/C2 (in pb/GeV2)

0.5

60.22
0.93

63.0
0.97

1.0

61.1
0.94

1.5

53.4
0.82

2.0

45.2
0.699

3.0

32.4
0.5

4.0

23.8
0.368

5.0

18.1
0.28

6.0

14.2
0.22

7.0

11.3
0.175

where kI. is the pion momentum in the laboratory frame,
q'=t= (p —p')' (see Fig. 2), and 0 (q')= (qs+222„2) '.
From the p-decay width, we obtain

1 t'2N 2~2

~
(1——;),)2= 2.16.

4~kg, i
(4.6)

Using Eqs. (4.3) and (4.6) in Eq. (4.5), one obtains

good agreement between theory and experiment over
a wide range of energies. "Here, current algebra gives
the same result as p dominance, even though one of the
pions if off the mass shell.

The success of the peripheral analysis, in treating p

production, leads one to attempt a similar analysis of
the photoproduction of A~. The A~' peripheral photo-
production is forbidden by isospin invariance and the
allowed processes are

y+p ~ Ar++n,

y+2t~A2 +P. (4.7)

The peripheral diagrams for these processes are given
in Fig. 3.We note that these diagrams are automatically
gauge-invariant and the 6-parity invariance implies
that only the isovector part of the photon contributes.
A brief discussion of the calculations of the photo-
production process is given in the Appendix. We quote
the result here in the universal form

Here, kI, is the photon momentum in the laboratory
frame and t= p'= (pr —p2)'. We compare the result of
Eq. (4.8) with the corresponding expression for the
prOCeSS 2r+/2/ +p+/t'/ giVen by Eq. (—4.5). FOr t«222, 2,

k egp

FIG. 3. The Feynman diagram representing the peripheral process
for the photoproduction of AI from nucleons; y+E ~ A I+X.

( do) g' (1—)g)2
/

kL,
'—

/

dti &~ g~~ 42r 222 tÃ~

X (p2+222A2)2p21t2(p2)g 2(ps) (4 8)

we get

(kr,sdo/dt), ~ g,~ mps) ' (1—&~)'
(4.9)

(krsdo/dt). ~„,~ g, i (1——,') ~)'

For )&~22, Eq. (4.9) gives for the right-hand side
~0.4X10 '. In Table III, we give (der/dt)~~ x,x at
4-GeV c.m. energy for momentum transfers up to
7222 2. The universal form (krsdo/dt)~~ g,~ is also

given. A rough estimate of the total cross section

&» z» at 4-GeV c.m. energy yields =0.1 p,b, which

is )ust the margin of the statistical errors in the present
photoproduction experiments. However, it is possible
that in more detailed analyses of the data for the
reaction y+p -+ 222r+2r 2r+ such a process may be ob-
served. " Equation (4.9) would then represent an

interesting test of the hard-pion current-algebra
analysis.

V. CONCLUSIONS

We should like to discuss briefly some of the achieve-
ments and limitations of the hard-pion current-algebra
method for the determination of vertex functions in-

volving x, p, A&, and 0- mesons. As was discussed in I,
the equal-time SU'(2)XSU(2) current-algebra com-
mutation relations, conserved vector current (CVC),
PCAC, and the hypothesis of single-particle saturation
of intermediate sums in T products put a number of
constraints on the meson coupling constants. However,
not all the constants are determined. Thus, of the eleven
interactions involving the m, p, and A~ mesons, two of
the constants (tt», and tt, ~~) are totally unconstrained.
These constants, however, do not enter into any of the
calculations of this pa,per. Qf the remaining nine, six
are determined in terms of two of the three parameters
&, y, s [Eq. (2.8)j and two more involve also the ninth
constant Xz (the existence of many undetermined
parameters that are found in chiral-symmetric
I agrangians~ is due in part to the fact that while the
current commutation relations are chirally symmetric
they are not su%.cient to impose chiral invariance on
the Lagrangian). If one uses the experimental values,
x=1, y~2'~1, there then remains only one undeter-
mined parameter P ~ appearing in all the x, p, A ~ vertex
functions considered here. The value of P~ is perhaps
best determined from the experimental value of the p
width and one 6nds X~=0.4&0.3. The largeness of the
error quoted is due in part to the present uncertainty

'6 We would like to thank Dr. Marvin Gettner for discussions
concerning experimental aspects of this problem.
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TABLE IV. The range over which the hard-pion vertices have been examined. in this paper.
Various criteria which test the "hardness" of a given process are listed.

Process

p + 21T'

A1 —& XP

A I ~ ql-P

Electromagnetic form factor of ~
0 ~ 2'

A1~ Z-o.

7r+X —+ p+2V

y+X —& A 1+%

Hardness
of the pion
measured in
pion energy

v~rr —2 mp~lE~~2mp
A~~ pm'

L: =-,-'m,

Er/ 2 mp

E„&»n„

Particles
off the

mass shell

ql) p

Two largest
(mom. trans. )'
across vertex

m+ ) mp

mg
& mp

—mg', —m'

—mg —m~
—m 2 &10m.2

—mg', &10m.'

Amount of
separation

off the
mass shell

~p '=mp'
mp'

~;I&10m.2

&. '&10m~', ap- ——mp

in the p width, and in part to the fact that Xg does not
enter too sensitively in the meson vertices. Clearly,
A, ~ will become better determined as the colliding-beam
determination of the p width improves. The above
value of Xg appears to be consistent with the present
data concerning the A r —+ or+ p partial width, the
charge radius of the pion, and the peripheral p pro-
duction in rr+cV —+ p+E. In addition, predictions of
the photodecay of A~ and the peripheral production
y+lV~ dr+A' were obtained. The latter appears to
be on the verge of being observed, and, while the former
is too small to be seen, it is interesting to note that the
hard-pion techniques predict a partial width for the
decay A ~

—+ r+y somewhat smaller than that obtained
from the superconvergent dispersion relations. " In
general, we might note that at present Xg is constrained
by the fact tha, t too small a value will give too large a
p width (if one believes in the coUiding-beam values"
for I',) and too large a value would give too large an
Aq ~ w+p partial width (see Table I). At present, no
experimental determination of pppp and ppp& exists.
One can set them equal to zero without disturbing the
above discussion. An alternative would be to try to
choose them so that these interactions cancel the
logarithmic infini ties in the electromagnetic mass
differences of the p a,nd the A~ mesons. A discussion
of this possibility will be given elsewhere.

For the fourteen coupling constants involving the 0.

meson, four constants (iX„„X,~~, g„„and X„,) are
totally unconstrained. Again, these constants, which
are "orthogonal" to the current-algebra conditions, do
not enter into a,ny of the considerations of this paper.
Seven of the remaining ten constants can be determined
in terms of the three constants X~, X2, and p, „~ LEqs.
(2.11) and (2.12)j. The decay o ~ n.+rr was found to
depend on the combtnatton X= X~—X.+2m~'m~ 'X2,

~n, d the e~perirnental da, t's'" '" ir)dicates X'=1 The
constant p„,.4 enteis directly into tJ'le

decaying

--+ 7r10,
and the possibiiity that this mode may be suppressed
would be a strong constraint fixing this constant.

An important test of the vertex functions resides in
their validity for a wide range of momentuni transfers
at meson vertices. Several dif/erent criteria can be used

for this purpose. In Table IV we examine all the
processes considered in this paper from the point of
view of the difI'erent aspects of the hard-pion calcu-
lation they test. These include the hardness of the
process measured in pion kinetic energy, amount of
separati. on from the mass shell, particles oQ the mass
shell, nature of momentum transfers involved (space-
like or timelike), and the magnitudes of such momentum
transfers.

In summary, we find that the computed vertex
functions are consistent with the present experimental
situation, and are good for momentum transfers up to
1 GeV. Further refined experimental data are needed
to test the hard-pion current-algebra predictions more
accurately.

APPENDIX

Ke give here a brief description of the peripheral
calculation of the process

y+Ã ~Ar+X. (Ai)

=ieiV& d'x e' '(p&r2o2, qoo'I j (x) I p&r&o&)

&& e„(k), (A2)

where ej "(x) is the electromagnetic current and e„'(k)
is the photon's polarization vector of helicity 0-, defined
by

0 p ~ a~~yar gooe (A3)

To lowest order in the electromagnetic coupling, one
may evaluate the matrix element of Eq. (A2) in the
limit e.--~ 0. Thus only the isovector part of the electro-
magnetic current contributes (by G-parity invariance)
and one may replace j& by V&&——gp&3. Thus,

5= i 'V~ (2n )'h'(p~+ k . q p2) eg, ——
&&(p2rgo2) qao Io"g(0)

I
pgrgcrg)e„"(k). (A4)

A convenient way of proceeding is to first contract the
photon. In the notation of Fig. 3, one has

S= (p2r2o2', qG0' ou—t
I
pyryo''y' ko' in)
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,Aa.=—(k'+m, ') '(ba. +-kak. m ) (AS)

The field equations for the p field obtained from Kqs.
(2.1) read

pK"v v"a=S"a)

where, EI', is the p Proca operator and the relevant
part of S& is given by

a eabcI gvpAVOba c+~cpAPbb+ c5 2eabcetv

Xfp,~ q bH"". ,' h—,A—(a&bq", a"b—etc&,)5 (A.6)

The matrix element of Eq. (A4) thus becomes

&p2,qlv"s(o)
I pt)=.~"-(k)&p2 ql~ .(o) I pt), (A&)

where, Aa (k) is the p propagator,

We now make the peripheral approximation by
replacing the A& fields u& and B&', by their free out-
fields. They then annihilate the A~ in the out state
yielding

S=i(2sr)4it4(pt+k q
—ps)—NbN, egcmc '

X (&c,A —2ttca~ —Kc,A)ev"*(q)e„(k)
X (q"k" kq—g"").abs&prtrsrs

~
bob(o)

~
ptatrt). (A9)

We note that Eq. (A9) is gauge-invariant as 5 vanishes
when e„'(k) is replaced by k„. (This is in contrast to
the photoproduction of the pion where the peripheral
diagram itself is rtot gauge-invariant. ) The pion matrix
element of Eq. (A9) is defined in Ref. 21. The remainder
of the calculation of the cross section of Eq. (4.S) is
now straightforward.
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Analytic Continuation of an Amplitude*
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A general procedure is given for successively continuing the invariant amplitude to arbitrary regions of
the s plane when the partial-wave amplitude is given explicitly by the most general modi6ed Cheng repre-
sentation. The partial-wave expansion is summed in terms of elementary functions or integrals thereof,
and no dispersion or background integrals are required.

I. INTRODUCTION

A TTEMPTS to calculate strongly-interacting par-
ticle cross-sections self-consistently, require

knowledge of the invariant amplitude in unphysical re-
gions of the dynamical variables of energy squared (s)
and momentum transfer squared (t), since only in these
regions are the crossing relations nonempty. ' However,
if the invariant amplitude is defined in terms of a partial-
wave expansion over various orbital angular-momentum
states, as it usually is, such an expansion will in general
only converge in a finite region of the s-t plane, and the
problem therefore revolves around how one can make
analytic continuations of such an expansion.

In several previous reports, a representation for the
two-body, single-channel, partial-wave S-matrix ele-
ment was studied and found to withstand, quite well,
a number of tests to which it was subjected. ' ' It has

*This work was partially supported by a grant from Research
Corporation.' G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394
(1961).

~ W. J. Abbe, P. Kaus, P. Nath, and Y. N. Srivastava, Phys.
Rev. 140, 81595 (1965).

'W. J. Abbe, P. Kaus, P. Nath, and Y. N. Srivastava, Phys.
Rev. 141, 1513 (1966).

4 W. J. Abbe, P. Nath and Y. N. Srivastava, Nuovo Cimento
45, 6?5 (1966).' W. J. Abbe, P. Kaus, P. Nath, and Y. N. Srivastava, Phys.
Rev. 154, 1515 (1967).' W. J. Abbe and G. A. Gary, Phys. Rev. 16Q, 1510 (1967).

also been written for multichannel reactions, although
no numerical comparisons have yet been made in this
case. ~ It should be noted that while a comparison of a
given conjectured partial-wave S-matrix with exact
potential-theory results is negative, in the sense that
a favorable comparison would clearly not necessarily
imply the representation to be a valid relativistic one,
an unfavorable comparison can at least be used to ex-
clude many representations, since intuitively we expect
any conjectured relativistic S-matrix element to also
be valid in a "correspondence principle" or nonrelati-
vistic limit.

Although the Regge method, ' of rewriting the partial-
wave expansion a,s a background integral plus pole
terms in the angular-momentum plane, provides an
analytic continuation of the invariant amplitude to all
t in principle, in practice if one wishes to satisfy the
crossing relations in threshold and intermediate regions
of the s-t plane, it. then becomes necessary to evaluate
the background integral explicitly-, and this is a formid-
able task because of the poor convergence properties of
this integral.

The purpose of this report is to show that it is pos-
sible, however, to avoid the above difficulties with the
background integral when one uses explicitly the modi-

' W. J. Abbe, P. Nath, anQ Y. N. Srivastava, Nuovo Cimento
49, 716 (1967).

s T. Regge, Nuovo Cimento 14, 951 (1959); 18, 947 (1960).


