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Hard-pion techniques are presented for calculating vertex functions involving ~, p, A&, and o mesons.
The development of the method involves the following assumptions: (a) saturation of intermediate sums by
single mesons, (b) chiral SU(2) XSU(2) algebra commutation relations, (c) conservation of vector current,
and (d) partial conservation of axial-vector current.

I. INTRODUCTION

S EVERAL years ago, Gell-Mann' suggested that
"quark-type" equal-time commutation relations for

the vector and axial-vector currents of weak-inter-
action theory serve as a basis for calculations involving
strongly interacting systems. Combined with the as-
sumptions of a conserved vector current (CVC) and a
partially conserved axial-vector current (PCAC), this
idea has yielded numerous successful predictions in the
soft-pion approximation. ' However, it has become
increasingly clear that to treat processes such as

p ~ 2sr, Ar —+ 3w, and E*—+ E+s-, the pion must be
kept on its mass shell, since its kinetic energy is not
small. In addition to this di%culty, one is necessarily
uncomfortable with the soft-pion assumption, since its
basis is not clear. There is also a serious lack of unique-
ness in the process of continuing the pion momentum
off its mass shell, since the mass shell is not a domain
but a point. '

In this paper, we shall investigate a method for
treating T products of three current operators that is
not subject to the restrictions imposed by the assump-
tion of soft pions. ' '" It is based upon the ideas Weinberg'
introduced in his treatment of the vacuum expectation
value of the T product of two currents (two-point
functions). In summary, the procedure to be employed
consists of the following devices. One assumes: (1) that
the T products to be evaluated may be expressed in
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terms of matrix elements of the currents between single-
particle states, i.e., that the sum over intermedi, ate
states is saturated by single sr, p, and At particles; (2)
that the resulting particle vertex functions may be
approximated by a polynomial in the momenta of the
single particles involved; (3) that the currents appear-
ing in the T products satisfy the equal-time commuta-
tion relations of Gell-Mann, ' PCAC, and CVC. In this
paper, we shall limit our considerations to the chiral
SU(2) &&SU(2) algebra.

In order to carry out the above program it is found
convenient to introduce an eRective Lagrangian as a
calculational device. This Lagrangian is displayed and
the rules for its use given. All pertinent three-point
functions are then evaluated and listed in the Appendix.
In the following paper7 we use the techniques developed
here to calculate a number of physically interesting
processes.

II. DYNAMICAL ASSUMPTIONS
AND BASIC METHOD

We start by considering the following example of a
three-point function:

F s(xy s)—= (0~ T(A .(x)Vo. (s)Ass(y)) ~0). (2.1)

Here, 2& and V& are the axial-vector and vector
currents. The indices a, b, and c are SU(2) isotopic
indices. Ii » may be expanded into its six time order-
ings. For the moment we restrict our attention to the
one corresponding to x )s'&y'. Thus, upon using
closure, we obtain

F»(x,y, s) = g (O~A..(x)~rt)
'+

I m

X(rt~ V, (s) ~m)(rn~Ae&(y) ~0). (2.2)

We now assume that the sum over intermediate states
is saturated by single m-, p-, and 2&-particle states. The
validity of this approximation will, of course, depend
upon the eventual comparison of our results with
experiment. 7 However, we note at this time that this
single-meson-saturation assumption is basically a
generalization of the p-dominance hypothesis for the
vector current. It also produces results in agreement

7 R. Arnowitt, M. H. Friedman, and P. Nath, following paper,
Phys. Rev. 174, 2008 (1968).
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this, we examine the following additional contribution
from Eq. (2.2):

A

g y ~{~A

&{Al) ~~
wq

I

p N

J3 (b)
P(

(c)

Cg, C2, C3

dzqtd qsd qs&0 I A»
I rrqtat, pptas)

x &~grat, ppraz I
v".

I ~qzaz&&~qsas I
A's

I o& (2 5&

Upon using the usual Lehman-Symanzik-Zinunermann
(L. S. Z.) reduction, the matrix element of the vector
current becomes

( q, p IV".()I q

= b (q,—q,)ba,a,&pp,a, l v,
I o)

FIG. 1. (a) Diagram representing the time ordering z'&z'&y'
in the three-point function (0~ T(A» (x) V», (z)Azz(y)}~0) for the
case of z or A q intermediate states. The circles (~) represent the
vacuum-to-one-particle matrix elements of the current, while the
solid triangles (~) represent the one-particle matrix elements.
(b) Diagram for the time ordering x &y'&s with a x or A1 for
the erst intermediate state -and a p for the second. (c) Diagram
with time ordering of (a) for a two-body intermediate state where
7)- (or A1) is a "spectator. " This diagram is the crossed diagram
of (b).

with the soft-pion calculations when the latter are
valid, and thus provides a basis for the justification of
the "gentleness" hypothesis. Returning to Eq. (2.2),
the only single-particle states that can enter into the
intermediate sums are the m and A~ states. The con-
tribution from the x states alone yields

F I"s(x,y, s)= p d' qdt' qz&OIA. I7rqtat&
Cl i C2

}(&~,qtar I
v"

I ~qsaz&&~qsazl A'z
I O& (2.3)

with additional terms obtained when In) or Im), or
both, refer to A~ states.

We next consider Eq. (2.1) when y )xs)s. This
gives

z-»= Z &OIAs, l~&&~IA-. I~&(~l v, lo). (2.4)

Again, assuming single-particle dominance, the state
Ie& may be either a vr or an At state, while Im) must
be a p meson. This may be represented diagrammatically
as in Figs. 1(a) and 1(b).

Figure 1(b) represents a time-ordered Heitler dia-

gram. Figure 1(c) is another Heitler diagram which is
a part of the same Feynman diagram as is Fig. 1(b).
It is clear that if we are to maintain Lorentz covariance
(and hence, crossing) it is necessary that it also be
included. This is accomplished by returning to Eq.
(2.2) and including all two-particle intermediate states
where, however, one of the particles is a "spectator, "
i.e., there is no sum over its momentum. In order to see

—N. (q,)N. (q,) d4xd4y e'zz* 'z»K-E

&olA .(o) I~qb&=sq N, b.,F.,

&OIAz (0) I
Atqbo)= b, sN&gz ge" (g),

&ol v.(o)l pqb~)=b. ,N,g„e"(q)

(2.7a)

(2.7b)

(2.7c)

In Eqs. (2.7), ze&' and, ez' are the polarization vectors
of helicity 0. normalized by ~&"c„"=8

The other types of matrix elements arising in the
above expansion of the T product are the one-particle-
to-one-particle elements of Vt", and AI'„as well as the
vacuum. -to-two-particle matrix elements. This latter is
determined by the former through the demands of
crossing symmetry. Single-particle dominance sug-
gests that the vector current links to the particles
tllrough the p meson while the axial-vector current
links through the x and A~ mesons. In fact, without
any loss of generality, we Inay write

&Bqta I
V",(0) I Cqzb)

=is.s.NBNc, h"&,(k) I'B c(ql, qz) (2.8a)
' We normalize states so that X,(q)=$2wz(2z)') —~Is, rrhere

co~= (q'+m ')'",

}((pP,az
I r(s.,(x)s.,b) V .(s)) I

O). (2.6a)

Here, N (q) are the Bose normalization factors, s while

E,=—Cl,s+m '. The second term on the right-hand
side of Eq. (2.6) contains all the dynamical effects of
the two-particle intermediate state, whereas the first
term has the same content as the one-particle states.
We shall therefore retain only the latter, in keeping
with the assumption of single-particle dominance, and
make the approximation

&s qtat, pptas I
Vs.(s) I sqsaz)
=bs(e —tl)4...&pP a IV".(s)Io& (26b)

When this replacement is made in Eq. (2.5), we obtain
the Heitler diagram corresponding to Fig. 1(c).

The various one-particle-to-vacuum matrix elemeg. ts
of the currents that are encountered in the above ex-
pansions serve to define the coupling strengths of these
currents to the particles. Thus F, g~, and g, are de-
fined by the equations
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(Bqia I
A&.(0) I Cqgb) = z~~i,.&aiVcLA+ X(k) I'BAc (qiyq2)

+.a(k)r...(q„q,)j, (2.8b)

where, hl"~, gA&~, and 6 are the p, Ay, and x propagators

4"y(k) = (k'+m ') '(8"i+k&k) m ') (2.9a)

gh&), (k) = (k'+m~') '(b&y+k"kimg '), (2.9b)

.h(k) = (k'+m, ')-'. (2.9c)

8(x'—y')I V'.(x) V~&(y)j
=ic,i„v&,(x)P(x—y)+c-No. S.T. , (2.11a)

b(x' —y') LV'.(x),A~i, (y)]
=i&,i,.A&,(x)8'(x y)+c-No —S.T. , (2..11b)

8(x'—y')
I
A' (x),vl"i, (y)j

= i~, q,A&, (x)84(x y)+c No S.T—. , (2.-11c).

8(x'—y') [2' (x),A&i, (y)1
=is, i„v (x1)84(x y)+c-No—S.T. , (2..11d)

where "c-No. S.T." stands for c-number Schwinger
terms. We consider the vacuum-one-particle matrix

In these propagators, the masses are those of the
physical particles. In Eqs. (2.8) the labels J3 and C are
particle labels (ir, p, or Ai) and take on any values
allowed by G parity, while the momentum transfer
k& is qi"—qi&. Expressions (2.8) involve no loss of
generality, since, Ai"&, &Al'z, and bf"z 6 are nonsingular
matrices and thus these equations may be viewed as
defining relations for the particle vertex functions
F»q", etc.

We now assume that the particle vertices can be ap-
proximated by a polynomial in the momentum transfer,
k'. Thus, since we have already extracted the particle
poles, it is reasonable to assume that the factors
I'»&", etc., are relatively smooth functions for k' not
too large. I

In applications, i the approximation appears
successful for k' up to the order of (1 GeV)'.) Thus, for
the ~-p-x vertex we write

I'.p. (qi,q2) = (qi +q2&) (ni+n, k'+ ), (2.10)

with similar expressions for the other vertex functions.
Equations (2.9) and (2.10) may now be inserted into
Kqs. (2.8), and the resultant forms for the matrix
elements of Eqs. (2.7) and (2.8) inserted back into the
expansion of the T products. Thus one obtains ex-
pressions for the latter which are covariant and crossing-
symmetric. They are given in terms of unknown parame-
ters n~, 0,2, etc.

We next subject the T products to the restrictions
imposed by the current algebra. We will see that this
in part determines the parameters n~, n2, etc. The corn-
mutation relations to be satisGed by the current den-
sities are those of chiral SU(2) XSU(2):

where the states In& are single-particle states of ir
or A~ mesons. Upon inserting our previous evaluation
for the matrix elements appearing in Eq. (2.13), we
obtain an algebraic constraint upon the unknown
parameters n~, 0,2, etc., appearing in our expansion of
the vertex functions Le.g., Eq. (2.10)j. Equations
analogous to Eq. (2.13) may be obtained from the
remaining commutation relations of Kq. (2.11) with
the resulting algebraic system of equations relating the
parameters.

The last requirements are those of PCAC and CVC:

a„AI',(x)=F m.'y, (x),

B„v~.(x)=0,

(2.14a)

(2.14b)

where Eq. (2.14a) may be viewed as the defining equa-
tion for y, (x). One may use p, (x) as an interpolating
Geld for the pion Geld. The vacuum-one-particle
matrix elements of Kqs. (2.14) are automatically
satisfiedby Eqs. (2.7).Theone-meson —one-mesonmatrix
elements of A&, and V& are to be used in constructing
the T products, and hence must satisfy Eqs. (2.14).
Thus from Eqs. (2.14b) and (2.8a) one learns that

41'a,c"(qi, q~) = 0 (2.15)

In Eq. (2.8b) two vertex functions have been defined
and so we are free to specify one in the most convenient
fashion without loss of generality. Let us therefore
define F& |.-~ by

ic,i„XaiVc ~h(k) I'a„c (qi,q2)

F.(aq,ala, ,—lcq, k&, (2.16)

where q, is given by Eq. (2.14a). The significance of
this choice resides in the fact that F~ ~i' then will
represent the spin-zero part of the axial-vector current
vertex function on the pion mass shell. We may thus
write

I'a~c" = —Fwk"fata(qi)q~) ~ (2.17)

elements of Eqs. (2.11).For example, from Eq. (2.11a)
one has

s(xo—yo)(ol Lv'. (x) v"~b)j I p, kc&

=is.ig84(x —y)(ol V&g(x)
I p, kc&. (2.12)

Since the V& may be used as an interpolating Geld for
the p meson, contracting down that particle shows that
the left-hand side is proportional to three-point func-
tions. (Similarly, A&, may be used as an interpolating
field for the x and Ai mesons, and so the same is true
for all the vacuum —one-particle matrix elements. ) We
therefore invoke single-meson saturation in the left-
hand side of Eq. (2.12) to obtain

~(x' —y') 2 C&olA' (*)l~&(~IA'~(y) I pcP&

—(ol Aa, (y) IN&( I
A'. (*)I p.p&j

=ic,M84(x y)(—ol Vaz(x) I pcP), (2.13)
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where fbi c is the vertex function of the pion field as
defined by Eq. (2.14a). From Eqs. (2.8b) and (2.14a),
we now obtain

fbi c(gl g2) = (F mz') 'k&,l &zz"(gi,q,) . (2.18)

Thus, Eqs. (2.13), (2.15), and (2.18) yield a set of
algebraic equations that restrict the allowed values of
the unknown coupling constants appearing in the ex-
pansion of the vertex functions. In principle, these
equations can be solved, thus determining the matrix
elements of the vector and axial-vector currents.
Finally, one uses the latter for computing the T
products with which we started.

While the program described above will allow the
calculation of the T products of three vector and axial-
vector currents obeying the current-algebra constraints,
it is somewhat tedious to actually calculate three-point
functions in this fashion, and we proceed next to in-

troduce an "effective Lagrangian" as a convenient
calculational tool to simplify the analysis.

III. EFFECTIVE LAGRANGIAN

In order to generate the matrix elements of Eqs. (2.7)
and (2.8), it is convenient to introduce a set of in-field

operators' p, (x), v& (x), and a&,(x), which correspond
to x, p, and A& particles, respectively. We now note
that Eqs. (2.7) are reproduced if V& and A&, are
replaced by

If we now add the results of Eqs. (3.1) to those of
Eqs. (3.2), we note that we have an expansion of the
currents in terms of in-held operators for particles.
Thus one has that the phenomenological expressions

V&, (x)=g,v~, (x)+ e.„d'y, A~&, (x—y)

and
+ ]9.(3)~"Pb b)+ . (3»)

A~, (x)=g„a~,(x)+-F.a~ p. (x)

+ ~ b. d Y{a~"&(x $,
)[—pi&8Ã b+

+ ~(x—))[ViP ~"b+ ])+ (3 3b)

will correctly reproduce all the matrix elements needed
to calculate the three-point functions in the single-
meson-saturation approximation. (In relation to the
order in which we are working, we need not concern
ourselves with the difference between these expansions
and a normal-ordered expansion. )

One may next rephrase this result by noting that
Eqs. (3.3) would automatically arise upon solving a set
of coupled Heisenberg equations of motion, provided
we appropriately truncated the solutions. Thus, let
v&, (x), a&,(x), and p, (x) be a, set of p, Ai, and ir Hei sen

berg field operators obeying

V"a~ gp&"a)

A~. ~ g&a~.+F.B~p.

(3.1a)

(3.1b)
,P~&,(x)i",(x)

=gp 4bc[ni n2c7+ ' ' ]A(x)~ 0'b(x)+ ' ' '
~ ( 4a)

Similarly, Eqs. (2.8) may be reproduced if one repla, ces
A& and V& by bilinear operators in the in-fields. Thus
if, in Eq. (2.8a), we consider 8 and C to be ir-mesons,
then the matrix element is correctly reproduced [with
I'", expanded as in Eq. (2.10)] if V&, is replaced by

V~, ~ d'y, h~&, (x—y) e.b,

X[ni—n2 +'' ]j.(y)&"pb(y). (3.2a)
V~, (x) = g,v~.(x) (3.5a,)

gP~i, (x)a",(x)
=gA '~.b.[019&.(x)i "b(x)+ ]+, (3 4b)

.K(x) q, (x)
=F.—~„„[»&.„(x).b(x)+ "]+", (3.4c)

where, I'&q and ~I'I"q are the p and A~ Proca operators

[,P&b= (—g+m, ')6"i+BI'Bb]and K= —g+m ' Then.
the desired expressions for the currents follow, if we set

Similarlv, in Eq. (2.8b), 8=7r and C=p, the matrix and

element is correctly generated by setting A&, to A~„(x)= g~a~. (x)+F.B~~,(x), (3.5b)

A" (*)~ ~.b. d'3{~~"b(x Y)luau. ()—)~"b(y)+

+A(x—y)[Vip. (y)i "b(y)+. ]). (3.2b)

The omitted terms are those additional bilinear struc-
tures necessary to reproduce correctly all the matrix
elements corresponding to Eqs. (2.8) (i.e. , when 8 and
C range over their allowed values). The form of U",
and A&, in Eqs. (3.1) and (3.2) automatically guarantees
crossing symmetry and hence may also be used for
evaluating the vacuum-to-two-particle matrix elements.

' One may of course, employ out-field operators instead.

provided we will carry out the solutions of Eqs. (3.4)
in an in-field expansion to first order only in the coupling
constants n, , P, , and y, .

One now sees that the T products of currents, e.g. ,

Eq. (2.1), may be expressed in terms of T products of
Heisenberg particle fields by using Eqs. (3.4). Further-
more, we arrive at the Fundamental result that the
single-particle saturation condition is equivalent to
evaluating these T products by using the equation of
motion (3.3) and evaluating to first order in the cou-

pling constants n, , P;, and y;, etc.
Our next task is to satisfy the commutation relations

Eqs. (2.11), but only to within the demands of single-
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particle saturation as expressed by Eq. (2.13).We note
that this is equivalent to using the expressions given by
Eqs. (3.3), but evaluating the conirnutators only to
first order in n;, P,, and y;, while the right-hand side
of Eqs. (2.11) are to be evaluated to zeroth order in
these parameters. However, the currents of Eq. (3.3)
are not in general even local-field operators whose
commutators vanish for spacelike separations. This is
due to the presence of the nonlocal propagators
Ah»(x —y), etc. The locality condition on the current
will be satisfied if one requires that the Heisenberg
fields appearing there (op„ap„and q,), in fact be, local-
field operators. The simplest way of guaranteeing this
(and probably the only way) is to require that the
equations of motion, Eqs. (3.4), satis6ed by them be
obtained from a local-field Lagrangian. Since the
source terms that appea, r or the right-hand side of
these equations are bilinear in the fields, the inter-
action Lagrangian must be cubic. We therefore con-
struct the following effective Lagrangian as a device for
generating Eqs. (3.4).

Lagrangian that has been introduced is a purely cal-
culational device.

One may now employ this Lagrangian to compute a
T product of currents such as appears in Eq. (2.1),
using the defining relations Eqs. (3.5) for the currents.
Furthermore, the condition of single-particle satura-
tion requires that we carry out this computation only
to erst order in the coupling constants. Thus first-order
perturba, tion theory is the total domain of validity of
the Lagrangian.

We note that up to this point the only symmetries
that have been imposed on 2, and hence on the T
products, is the conservation of isotopic spin and 6
parity. We are now in a position to determine the
constraints imposed on the values of the coupling con-
stants by the current algebra, i.e., current conunutation
relations (CCR), CPC, and PCAC. It is these
physical conditions alone that will govern the amount
of chir al SU(2) )&SU(2) syrrunetry remaining in

the T products of the currents. We will impose no
chiral SU(2))&SU(2) synunetry requirements on the

Lagrangian itself.

where the free-particle Lagrangian is given by

~Ov+~Op+~OA= P"a~pPa+ O(V'"a%pa tlc 0'a )
a(~p&va ~v&pa)+ AG" aGpva

2plp vpaopa —~Hp" (8 a —8 a )
+'IH»JI . 'mA'-aaa—a -. (3.6b)

and the interaction Lagrangian is

=I@(O)vpA= OOabcpgcvpg"bV'c&pa+~cv pppapvbG""c

+2gcpA&paPb+ c+2PvvpAV'aG bHpvc+2~cpA& pagvbH c

+2 PtapA&paPvbG""a+gppp&pa&vbG""c+2gpAA'OpaavbII""c

+~pAA+pa&vbG c+IJpppGpvaG bGb c

+ppAAGpvaH bHx c] (3 fic)

We have here chosen to use a "first-order" formalism
for later convenience, where (pp, y), (G»,vp), and
(II„„,op) are to be varied independently to yield first-
order, coupled differential equations. Thus (&po„y ),
(Go;„e,,), and (Ho;„a,,) are the canonically conjugate
pairs of variables for the ~, p, and A ~ fields, respectively.
The coupling constants g„„) „etc., are totally
arbitrary at this point of the ana, lysis and can be related
to the n, , P;, and y; that appeared earlier Pe.g. , in

Eqs. (3.3)j.The above 2 to& „A is the most general cubic
interaction not containing explicit derivatives of the
x, p, and A~ fields in the first-order formalism. This is
tantamount to having fixed the number of derivatives
that are allowed on the right-hand side of Eqs. (3.4),
and hence the amount of momentum transfer allowed
in the vertex functions of Eqs. (2.8).Whether the trunca-
tion of the expansion of the vertex functions in powers of
the momentum transfer to this order is correct or not,
is a question that must be answered by comparison
with experiment. It should be emphasized that the

B„Vp,(x) =g,a„vp, (x)=0 (4.1)

be satisfied only to first order in the coupling constants.
Similarly, from Eqs. (2.14a), (2.18), and (3.5b) we

require that

a„Ap.(x) =gAa„ap, (x)+Il.gq, (x)=P.pub. 'Op, (x) (4.2)

or

gAB„ap,(x) I'.( ~+m. ') o .(x)=—0 (4.3)

IV. CURRENT-ALGEBRA CONSTRAINTS
ON THE COUPLING CONSTANTS

We start by examining the requirements for satisfy-

ing the conditions imposed by the commutation rela-
tions Eqs. (2.11), but only to the order required by
single-particle saturation as given in Eq. (2.13). The
perturbation expansion of V& and A& in in-field

operators has been given in Eqs. (3.3). We note that
the terms linear in these operators are of zeroth order
in the coupling constants, while the quadratic terms
are of first order. Hence, the left-hand side of the com-
mutators in Eqs. (2.11) need only be carried out to
first order in the coupling constants, while theright-
hand side is evaluated to zeroth order. This is completely
equivalent to Eq. (2.13). Rather than working directly
with the in-field expansions, it is more convenient to
express the currents in terms of the Heisenberg canoni-

cal variables by using the field equations. One then
evaluates the commutators to first order in the cou-

pling constants.
In order to satisfy the conditions of PCAC and CVC,

it is again more convenient to work with the Heisenberg
fields directly, rather than the matrix elements. From
Eqs. (2.14b), (2.15), and (3.5a), we find that CVC means
that we are to require that
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PP«p ~»V a &abc(gepA+i)«A P1epA) q)«b(b c (4 &)

also be satis6ed only to first order in the coupling
constants. We note that Eq. (4.3) is totally equivalent
to Eq. (2.18).

The Lagrangian, Eqs. (3.6), yields the following set
of fi.eld equations for the pion fields:

q»a= G)»q) +0.«.(g pv»bqp. &—pqb G"",
+).,»Av««H" »,+K„Aa««G"»,), (4.4a)

~»q1"a+iP«e q)a= &abc(geepV»bq)"c ge»AV»b&"c

+li.»AG""«H»-) (4 '4b)

for the p fields:

G»",= (8»v", 8"v—» )+0 b„[gppc.v»bv".

+X»AA(b»b(b"c+~«pV'»bq) a+2' »Aq)«H» c

4»A�

—(&»bq)"e («"bq)—»c)
3m » » »—G""«G)»c

p,AAH""«H—) ".j, (4 5a)

~.G»".+m, 'v». =..«.(g„,v.«G"».+g;A~«u"»,
gpq bq—".+g »Aq b&».

+X,Aq ),«H»".); (4.5b)
and for the A~ fields:

H " = (8 («" —())"(«)

+0 «.[g,AA(V" b(b", V"b(«»—.)
—2) .,Aq»G»". —&.,A(v»bq". —v" bq ".)

+2m»A AH»" «G«".j, (4.6a)

~»H""a+ ppiA +"a= &abe(g»AAV««H "e+~pAA&)1«G "c

+g.pAV" bq e+&.»Aq««G»";) (4.6b)

The canonically conjugate pairs of variables are
(qpoa3 q)a)1 (Goia3 Via)1 and (Hoi»3(«ia) ~

In order to satisfy Eq. (4.1) (CVC), we take the
divergence of both sides of Eq.~ (4.5b). This yields

ihip ~ "»Va&abc[gepA(il»q)b)(b c+gepAq1«(~»(b" e)

+X A(8 qbb)H»«+X „Aq), b(G) H»«)j
ol

to first order in the coupling constants. The vanishing
of B„VI" =gpss„eI' thus requires

gepA+PNA l) epA (4.8)

and

U' (x)=g,v' (x)

A'. (x) =gAa'. (x)+F.B'qp. (x).

(4.12a)

(4.12b)

The quantities gian Gjjap IIijay &Oa& and oa are con-
straint variables and may be eliminated by repeated
applica, tions of Eqs. (4.4a), (4.5a), (4.6a), (4.5b), and
(4.6b), respectively, which will result in their being
expressed as an infinite series in powers of the Heisen-
berg canonical variables. Since we are interestedin
carrying out the conijnutation relations only to first
order in the coupling constants, we need carry out
these expansions only to that order. In particular, we
shall need to know v', and u „and also the time
derivative 8 y in terms of the canonical variables.
Inserting these results into V gpss and L4 gAQ'

+F Boq)„we obtain, for the time components of the

current.

ts,

Similarly, to examine Eq. (4.3) (PCAC), we use
Eqs. (4.4a), (4.4b), and (4.6b). Again, satisfaction to
first order in the coupling constants yields the three
equations

O(gA/piiA )g AA+0(gA/)O«A )lb AA F )bb pA

+,'F ), p-A ',F $—,.»-A=O, (4.9)

gAg AA+ (gA/i)bA )ip« ~ AA+F (g A+i)bA ~ A)
—F.m, of.,A=0, (4.10)

(gA/plA')g. ,A (gA~, '/pp«A )~ A 2F g

+F m»03), p
——0. (4.11)

We next turn to the task of expressing the currents
in terms of the Heisenberg canonical variables in order
to carry out the CCR [Eqs. (2.11)j.Making use of the
fact that e;„a;„and q are canonical variables
(i=1,2, 3), we find from Eqs. (3.5) that A', and U'
are linear in the canonical variables. Thus,

gp ., gp f g~pAcG".+ .~.
l 3..pcG'".+3.~~c;&".+3.,p~p. + Ac'&".+&;~(c'p03P'.),m, ' ni, ' mA

(4.13a)

gA gA ( g~AA3;&".+P.p'.+ c.
l 3.~~"'dP".+&,~~ccG".+ (3;G'"~}c.+3.,~(C'p~)G".)mA

gm'n'pP. c; (3;G'3)C.—X„,(C;c,)G'.+—X.,„v@P'".+X„~c;,G".). (4.13b)
mp 2

Equation (4.13a) may be simplified by making use of Eq. (4.8). Thus

gp
U a ~ iG a+ &a«c[gpppVi«G c+ g p AA(ii«H c+g cap q«q0~11ce»iA(G)Hqc«c) j ~

mp
2

mp 2
(4.14)
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Similarly, using Eqs. (4.8), (4.10), and (4.11), one finds

ga / ga ) ga "c
a ~~~ a+'cP a+&abc l gpAA "c~cpA l&ib+ c+ gp»~ibG c+ gccp(~iamb)G c

SEA keg' Bgp 7Sp

+I"-,+g", I'(~bG".) . (4»)
m, ' m, ')

It is easier to satisfy Eqs. (2.11) by first considering
the once-spatially-integrated commutation relations.
Having done this, we shall then go back and satisfy
Eq. (2.11) coinpletely, by requiring that there be No

g-number Schwinger terms. Thus we first investigate
the following equal-time con@nutation relations:

tions, and in this sense are orthogonal to the current
algebra.

We now return to the CCR for the current densities
$Eqs. (2.11)$ and evaluate them with the requireinent
that there be no g-number Schwinger terms. "This gives
rise to only one additional condition: the first Weinberg
sum rule. '

V'. (x)d'x, Upb(y) =i'.b, Vp, (y), (4.16a) g ~p gA2,(~A 2 (4.22)

V', (x)d'x, A"b(y) =is.b,Ap, (y), (4.16b)

The solution to this system of algebraic equations is
most clearly expressed in terms of the three parameters
x, y, and s which are defined as follows:

x=—&2mplm", y=—g"/g» z—=gp/%2m+'. (4.23)

Ao()d3 V () A () (416) Thecouplingconstantsarethenfoundtobe

A', (x)d'x, APb(y) =is.b, VP, (y). (4.16d)

In examining these relations, we recall that the left-
hand side need only be evaluated to first order in the
coupling constants, the right-hand side to zeroth order.
We first consider Eq. (4.16a). This gives (for all p) the
condition

gppp
——gp» ——g, p

——mp'/gp)

g.,~= —nzg9...g=m, '(F.x'yz')-',

g y =xiy'z' —'yg+2(1 —z')

F.K.,&= —y(1—x'-,'Xp),

2~ & pA=y y

(4.24)

x'y'z' —2z'+1=0. (4.25)

while the first Weinberg sum rule may be rewritten as

2/fyppp=~p, I,p.

From Eq. (4.16b) one finds (for all p)

gp»™plgp

(4.17)

(4.18)

Using the result given in Eq. (4.24) permits one to
write the currents V& and A&, in a more transparent
form. Thus, we have

2/gm~p=~p /gp ~ A a= gA&'a+~a"a (4.26)

Equation (4.16c) and the p, =i components of Eq.
(4.16cl) produce no new relations. From Eq. (4.16d),
for @=0,we find

gA SSp gA——Ii X„pA=|.
Cp ~A fp

(4.20)

A,pgg mp gp
—I (421)

Ke note that pppp and ppAA do not appear in our condi-

Equations (4.8)—(4.11) and (4.17)—(4.20) constitute
eight equations restricting the values of the coupling
constants. They may be solved and all the remaining
constants (except yppp and pp») evaluated in terins of

gA gp P 5$p Os' and the constant ) pAA, which is
undetermined. The latter is related to the anomalous
magnetic moment of the A& meson X& by

as before, while

V a gp~p ~iG a+&abc/'ib~ c+'biG c+gbgco
+~-g ''(~ ~".)3 (427)

Aa gAmA ~iE a ~cga0+&abcPcgp (~iamb)G c

+g"gp '"bG" +gpg~ ";A",g. (4.28)

One may now proceed to compute the T products
of the currents using the effective Lagrangian with
the values of the coupling constants as given by

'0 Note that one need not be concerned with the possible exist-
ence of "implicit" q-number Schwinger terms due to the singular
nature of the current operators. Any such Schwinger terms ~ould
be dynamical in origin and hence of higher order in the correspond-
ing constants than the first and therefore are to be ignored. That
is to say, such Schwinger terms can only arise if one considers
two-particle and higher intermediate states.
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Eqs. (4.21), (4.23), and (4.24). These are given in the
Appendix. We see that although q-number Schwinger
terms have been eliminated from the current com-
mutators they do arise in some of the T products, e.g. ,
(Ol T(p (x)uob(y)np, (s))l0& Ljust as Schwinger terms
appear in (0 l

T(Vp, (x) V"b(y)) l 0)$. However, all 2'

products involving three current operators are in fact
free of such terms.

In computing an actual physical process it is of
course not necessary to go through the intermediary
of the T product. One may now use the effective
Lagrangian directly.

V. ~ MESON

In this section, we should like to anticipate the ex-
tensions that will be needed to calculate four- and
higher-point functions. "The present data concerning
m-m scattering" seem to indicate the existence of a
scalar, isotopic-spin-zero, positive-6-parity particle
somewhere between 200 Mev and 1 GeV, which we
will call the cr meson. We should thus like to include it
in our system on the same footing as one includes the
x, p, and A1 mesons. However, unlike these latter
particles neither the vector, nor the axial-vector cur-
rents act as an interpolating Geld for it. Thus, when one
considers the evaluation of the T product of three
currents by the use of single-particle saturation, the 0-

meson can never appear in an intermediate state. It is
for this reason that it has not entered into our con-
siderations up to this point.

However, if one evaluates the T product of four cur-
rents (or more) by single-particle saturation, the 0.

meson can now appear in an intermediate state. For
example, let

I' oi'"= g (0 l
A .(x)[N)(Tbl Rob(y)

l
TTb&

X(~ Is, (s) 1 0&(pl 4 .(~) l 0&. (5.l)

While neither the states ln& nor
l p& may be the 0.

meson, the sta, te lm& can include it. We should there-
fore like to introduce additional vertex functions when
considering the matrix elements of the currents between
two single-particle states. Thus, in Eqs. (2.8) we should
like to allow the indices 8 and C to range over the g

meson as well as the z, p, and Ay mesons.
This modiGcation will not cause any change in our

current-field identification as given by Eqs. (3.5);
however, it does mean that additional terms have to be
added to our effective Lagrangian to simulate the new
vertex functions. We thus introduce an additional free-
Geld term Zo as well as a term describing the inter-
actions of this 0- meson with the others, Z(3) . Thus,

"R.Arnowitt, M. H. Friedman, P. Nath, and R. Suitor, Phys.
Rev. (to be published).

"W. D. Walker, J. Carroll, A. Garfinkel, and B.Y. Oh, Phys.
Rev. Letters 18, 630 (1967); K. Malamud and P. E. Schlein,
Phys. Rev. Letters 19, 1056 (j.967).

introducing the Heisenberg Gelds o- and o I', we have

vQbc= oPBp(T+ 2(0' Pop Talc 0 ) (5.2)

F g. =ns. '(Xa—e.Xi),
&.x...= —p„+z,),
&.g, AA (x'ys) —'2m, '(Xi—X,),

%2TTbpIA A x JsgcAA2

g~pp
=0= IJ ~pp )

where o,= (m /m, )' and

(5.4)

l~i= (gATTTA )l~ A ~2= (gATTbA )li

Xb—=Xi+8 P,
(5.5)

The quantities x, y, s have been defined in Eq. (4.23).
The remaining four constants )l pp P pp g and
are totally unconstrained. The Gnal result for the time
components of the currents is

V a= &abc(0biG c+Obi+ c+ Pbgcb)

+B,(gpTTbp 'G".+Ii gA 'P.,b, ybH'0, )
—

(5.6)

and

a gAmA ~r'+ a +a V'a0+&abc[gpgA Or'b+

+gAg, 'O, bG",+I'.g, '(&;q b)G"'.]
+~rrgA ~1POaO ~8rPa00 ~ (5 7)

We note that V differs from the usual isotopic current
density by a divergence, so that J'd'x V' (x) is the
total isotopic spin. The divergence in Eq. (5.6) arises
as a result of the demand that there be no g-number
Schwinger terms in current-density commutation
relations.

=1(3)0' ggamm'PagagM gi'brim P aPIAa&M ggOPp& a&ya&

+alivppG copra&+ 2gcAA+ a&paO+ clicAA+" a+pyaO
rrrr

licrrA&Pa& aCTp+krrrAO agpaO+PvppOpaG aOy

+IAvAA&pcB aCTv+PvvA Nap+ aTTv+Pcvv Pal aOv

+gvccOOO+'XcccOO'pO' (5 3)

The canonical conjugate pair of dynamical variables
are a. and O.o, while the 0.; are constraint variables.

The variables cr and O.I" along with the coupling con-
stants appearing in Eq. (5.3) will now appear in the
equations of motion for the p, x, and A~ meson Gelds.
Thus these constants will be restricted by the require-
ments of CVC and PCAC. Furthermore, when the
time components of the currents are now expanded in
Heisenberg canonical variables, 0. and 0' will appear,
once again along with their coupling constants. Follow-
ing the same procedure as in Sec. IV, we find that six
relations emerge among ten of the fourteen coupling
constants of Z(3),. They are
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VI. CONCLUSION

In the preceding sections, a hard-pion algebra method
has been described for calculating T products of three
vector (axial-vector) current operators. The analysis
was based on the assumptions of x, p, and A~ meson
saturation of intermediate sums, the chiral SU(2)
XSU(2) current commutation relations, CVC, and
PCAC. The single-meson-saturation hypothesis im-
plied that T products could be calculated from an
effective Lagrangian, this Lagrangian to be used only
to first order in the coupling constants. It is to be
emphasized that a priori the only symmetry conditions
imposed on the T products, and hence the Lagrangian,
were the conservation of isotopic spin and 6 parity.
The coupling constants were then determined by the
constraints imposed by the CCR, CVC, and PCAC.
This then leads to a final effective Lagrangian that in
fact is not symmetric under chiral SU(2)XSU(2)
transformations, with the breaking of the symmetry
occurring in several different ways, e.g. , PCAC, g~
and gp unrelated, m~ and mp unrelated, etc.

In Sec. V, a 0- meson was introduced and its couplings
to the ~, p, and A& system examined. The motivation
for this lies in the fact that such a resonance appears
to play an important role in +-x scattering. ""

The coupling constants that appear in the effective
Lagrangian fall into three categories: (1) those that
are determined by the current-algebra conditions (e.g.,
g»p,

' g,»), (2) those that are related but not completely
determined by the current algebra (e.g., )(, „X,zz,'
g, , X ~, )a, ~) and (3) finally there are the coupling
constants that do not enter into any of the current-
algebra conditions (e.g., )b(p» and )t,»). The last set of
coupling constants appear to be completely "orthogonal"
to the current-algebra conditions. It is thus tempting
simply to set them to zero. and this has in fact been due
for analogous structures found in other treatments. '
However, it may be that additional principles other
than the current-algebra conditions are needed to
evaluate these undetermined constants. It is also in-
teresting to note that the hard-pion current-algebra
analysis does not determine the value of gp. Thus, the
KSRF relation'4

(6.1)

is not a consequence of the current-algebra constraints
on three-point functions. One can show" that this is
also the case for X-point functions. '"'

In the following paper, 7 a comparison of the three-
point functions calculated here is made with experi-
ment. Existing data appear to be consistent with the
hard-pion SU(2) XSU(2) current-algebra conditions.

APPENDIX

+le give below the result for the T product of three field operators. For the T product involving two A & fields and
one p field, one finds

d4xd4y e"*e ""(T(a,(x)rb~b(y)v', (0)))

where k=—q
—p, and, D&"(0), etc. , are the p meson, etc., propagators and have no c-number Schwinger terms. For

the T product involving two pion fields and one p-meson field, we find

d'xd'y e'& 'e—'&'(T(((.(x) pb(y)v&„. (0)))= is.b, .D(q).A(p) pa&" (k)gp
'

The T product involving three p-meson fields

X$—m, '(qb+pb) ——,')(~(q kp, —p pqb)j. (A2)

d4xd4y e'& 'e "&(T(v .—(x)veb(y)v&, (0)))=ie.b. pD""(k) pA" (P) pAe (q)(ns, '/gp)

X j(a-q.—q,g..)+ (P.gb.—P.g.b)+ (g,.&b—k.g„,)j. (A3)

"A summary of the theoretical analysis and discussion of x-~ scattering is given in R. Arnowitt, M. H. Friedman, P,
and R. Suitor, Phys. Rev. Letters 20, 475 (1968). A more detailed account is given in Ref. 11.

K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16, 255 (1966); Riazuddin and Fayyazuddin, Phys. Rev. ]47, 107]
i1966); J. J. Sakurai, Phys. Rev. Letters 17, 552 i1966).

»A discussion as to why the KSRF relation cannot be derived from hard-pion current-algebra conditions can be found jn. R.
Arnowjtt, M. H. Friedman, and P. Nath, Nucl. Phys. 85, 115 (1968).
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The T products listed above are covariant, i.e., they do not involve any c-number Schwinger terms. In general,
the T product of any three field operators are not necessarily free of noncovariant terms. We list below two T
products that involve such terms:

*"' ""(T(d (*)d' ( ) ".(o)))='".-~() ~(p) ~""(&) 'p '
&&L—mp'(q~+P~) —2) ~(q. kp~ —k P&)]—i"s.gp 'Lb" ob'oq'-~(q)+~'ob" op -~(p)], (A4)

degd'y e'&'e—'& o(T(p. (x)at's(y)s&, (0)))= is.s, A(P), t),""(k)g,LV'(q) (1/2F, )

X t
—2mpsg„g+ (q„pg q. Pg—„g)+(4—2) (p.kg„g —p„k))]—ie.s,bt'pbps(J mg2)

—t 6(p), (A5)

On the other hand, it is easily veri6ed that no c-number Schwinger terms appear in the T products of three cur-
rent operators.
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Some comparisons with experiment of the hard-pion three-point functions obtained from SU(2) &(SU(2)
current algebra are given. Available experimental data involving x, p, A1, and 0. mesons are examined. The
hard-pion current-algebra method is used to calculate the decays p -+ m+x, A& -+ x+p, and a -+ m.+x, and
the electromagnetic form factor of the pion. Peripheral processes such as m. +1V~ p+E are also examined
as a test of meson-vertex functions for spacelike momentum transfers. Here, to reproduce correctly the
momentum-transfer dependence at the nucleon vertex, a new extrapolation for the pionic nucleon form
factor is introduced, using the Goldberger-Treiman relation. The results of the above calculations are found
to be consistent with the present experimental situation. Current-algebra predictions for the y+E -+ A1+N
cross section and the decays A& ~ ~+7 and A1~ ~+a are given. A cross section of about 0.1 pb is ob-
tained for the A~ photoproduction, which is on the verge of being detectable.

Here, g, and g~ are the coupling strengths of the vector
current to the p meson and the axial-vector current to
the 3& meson, and Ii„ is the usual pion-decay ampli-
tude. 4 This result when supplemented by the second

steinberg sum rule'

I. INTRODUCTION

ECENTLY, it has become apparent that soft-pion
methods' may lead to erroneous results when

applied to processes involving energetic pions. Thus
the soft-pion method yields a width of approximately
800 MeV for the Ar —+ sr+p decay, ' in contrast to the
experimental width of =100 MeV. These considera-

tions, coupled with the desire to exploit more fully
the content of the current algebras, have motivated
interest in extending the analysis beyond the domain
of the soft-pion method. An important step in this
direction was erst taken by Weinberg, who used Ward
identities, SU(2)&&SU(2) algebra of currents, and the
hypothesis of meson dominance of vector and axail-
vector currents to obtain the sum rule'

(1 2)g&= gu

and the KSRF relation'

g,~2P.m,

yields the well-known. result mz ——V2mp which is borne
out experimentally. '

In the preceding paper, ' new techniques were de-
scribed to obtain current-algebra solutions to vertex

4 We define g~ by the relation

(Oi V„~(0) i pi k,bo)==gpbasNrc, (k),

where a, b=1, 2, 3 are SU(2) isotopic indices, e„'(k) is the p
polarization vector normalized by e„~et' '=8 ', and

&p —=L(2x)'2~23 '"
Similarly, g~ is de6ned from the A& matrix element (0 i A~, (0)

~
A &,

k,b,o) and F by (O~A„(0) ~s-,kb)=it g,zk„iV . Our currents are
normalized such that the experimental value of Ii is 94 MeV.

'K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,
255 (1966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071
(1966).

6 R. Arnowitt, M. H. Friedman, and P. Nath, preceding paper,
Phys. Rev. 174, 1999 (1968) (hereafter referred to as I). A brief
account of these results were given in R. Arnowitt, M. H. Pried-
man, and P. Nath, Phys. Rev. Letters 19, 1085 (196/).

g 2/m 2 (gA2/m~2) J P 2 (1.1)
* Research supported in part by the National Science Foun-

dation.' For a review of the soft-pion calculations, see R. F. Dashen,
in ProceedirIgs of the Thirteewth Ietermutioeal Coeferemce irI, High-
ErIergy Physics (University of California Press, Berkeley, 1967).

'The soft-pion analysis of the ~-p-A& vertex has been carried
out by several authors; see e.g., B.Renner, Phys. Letters 21, 453
(1966);D. Geffen, Phys. Rev. Letters 19, 770 (1967).

' S. Weinberg, Phys. Rev. Letters 18, 507 (1967). Extension of
these results to other vector and axial-vector currents are given
by T. Das, V. S. Mathur, and S. Okubo, ibid. 18, 761 (1967);
S. L. Glashow, H. J. Schweitzer, and S. Weinberg, ibid 19, 139.
(1967).


