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Hard-pion techniques are presented for calculating vertex functions involving =, p, 41, and ¢ mesons.
The development of the method involves the following assumptions: (a) saturation of intermediate sums by
single mesons, (b) chiral SU(2) XSU (2) algebra commutation relations, (c) conservation of vector current,

and (d) partial conservation of axial-vector current.

I. INTRODUCTION

EVERAL years ago, Gell-Mann' suggested that
“quark-type” equal-time commutation relations for
the vector and axial-vector currents of weak-inter-
action theory serve as a basis for calculations involving
strongly interacting systems. Combined with the as-
sumptions of a conserved vector current (CVC) and a
partially conserved axial-vector current (PCAC), this
idea has yielded numerous successful predictions in the
soft-pion approximation.? However, it has become
increasingly clear that to treat processes such as
p— 2w, Ay — 37, and K* — K-+, the pion must be
kept on its mass shell, since its kinetic energy is not
small. In addition to this difficulty, one is necessarily
uncomfortable with the soft-pion assumption, since its
basis is not clear. There is also a serious lack of unique-
ness in the process of continuing the pion momentum
off its mass shell, since the mass shell is not a domain
but a point.?

In this paper, we shall investigate a method for
treating 7" products of three current operators that is
not subject to the restrictions imposed by the assump-
tion of soft pions.*® It is based upon the ideas Weinberg®
introduced in his treatment of the vacuum expectation
value of the T product of two currents (two-point
functions). In summary, the procedure to be employed
consists of the following devices. One assumes: (1) that
the T products to be evaluated may be expressed in

* Research supported in part by the National Science Founda-
tion.

I M. Gell-Mann, Physics 1, 63 (1964).

2 A summary of soft-pion current-algebra calculations is given
in the talk by R. F. Dashen, in Proceedings of the VIII Interna-
tional Conference on High-Energy Nuclear Physics (University of
California Press, Berkeley, 1967).
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Weinberg [Phys. Rev. 164, 1828 (1967)] and by S. G. Brown and
G. W. West [Phys. Rev. Letters 19, 812 (1967) ; and Phys. Rev.
168, 1605 (1968)7]. Similar results, but using different physical
assumptions, have been obtained by J. Schwinger [Phys. Letters
24B, 473 (1967)7, J. Wess and B. Zumino [Phys. Rev. 163, 1727
(1967)] and B. Lee and H. T. Nieh [4bid. 166, 1507 (1968)]
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sion-relation techniques.

¢ S. Weinberg, Phys. Rev. Letters 18, 507 (1967).
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terms of matrix elements of the currents between single-
particle states, i.e., that the sum over intermediate
states is saturated by single 7, p, and A4 particles; (2)
that the resulting particle vertex functions may be
approximated by a polynomial in the momenta of the
single particles involved; (3) that the currents appear-
ing in the T products satisfy the equal-time commuta-
tion relations of Gell-Mann,! PCAC, and CVC. In this
paper, we shall limit our considerations to the chiral
SU(2)XSU (2) algebra.

In order to carry out the above program it is found
convenient to introduce an effective Lagrangian as a
calculational device. This Lagrangian is displayed and
the rules for its use given. All pertinent three-point
functions are then evaluated and listed in the Appendix.
In the following paper” we use the techniques developed
here to calculate a number of physically interesting
processes.

II. DYNAMICAL ASSUMPTIONS
AND BASIC METHOD

We start by considering the following example of a
three-point function:

Ferd(2,,8)= (0| T(A%(x) V¥:(2) A% (5))]0) . (2.1)

Here, A#, and V#, are the axial-vector and vector
currents. The indices ¢, b, and ¢ are SU(2) isotopic
indices. F**# may be expanded into its six time order-
ings. For the moment we restrict our attention to the
one corresponding to x°>2°>4°. Thus, upon using
closure, we obtain

Ferb(x,y,2) =3 (0] A% (x)|n)

X {n| VEo(2)|m)(m| A% ()] 0). (2.2)

We now assume that the sum over intermediate states
is saturated by single 7-, p-, and A;-particle states. The
validity of this approximation will, of course, depend
upon the eventual comparison of our results with
experiment.” However, we note at this time that this
single-meson-saturation assumption is basically a
generalization of the p-dominance hypothesis for the
vector current. It also produces results in agreement

7R. Arnowitt, M. H. Friedman, and P. Nath, following paper,
Phys. Rev. 174, 2008 (1968).
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Fic. 1. (a) Diagram representing the time ordering x°>39> 10
in the three-point function (0|7 (4% (x) V#.(2)A48;(y))|0) for the
case of = or A, intermediate states. The circles (@) represent the
vacuum-to-one-particle matrix elements of the current, while the
solid triangles (A) represent the one-particle matrix elements.
(b) Diagram for the time ordering x9>9°>2% with a 7 or 4, for
the first intermediate state and a p for the second. (c) Diagram
with time ordering of (a) for a two-body intermediate state where
7 (or Ay) is a “spectator.” This diagram is the crossed diagram
of (b).

with the soft-pion calculations when the latter are
valid, and thus provides a basis for the justification of
the “gentleness” hypothesis. Returning to Eq. (2.2),
the only single-particle states that can enter into the
intermediate sums are the = and A4, states. The con-
tribution from the = states alone yields

Forb(xy,2)= 3 | @qdq(0]A%|rq1a1)

a1, a2
X (m,q11| V¥ wgaa:){mgaaz| AP|0)  (2.3)

with additional terms obtained when |#) or |m), or
both, refer to A4, states.

We next consider Eq. (2.1) when 3°>x9>2% This
gives

Fers=3 (0| ABs|n)(n| A% |m)(m| V=] 0). (2.4)

n,m

Again, assuming single-particle dominance, the state
|#) may be either a = or an A, state, while |m) must
be a p meson. This may be represented diagrammatically
as in Figs. 1(a) and 1(b).

Figure 1(b) represents a time-ordered Heitler dia-
gram. Figure 1(c) is another Heitler diagram which is
a part of the same Feynman diagram as is Fig. 1(b).
It is clear that if we are to maintain Lorentz covariance
(and hence, crossing) it is necessary that it also be
included. This is accomplished by returning to Eq.
(2.2) and including all two-particle intermediate states
where, however, one of the particles is a ‘“spectator,”
i.e., there is no sum over its momentum. In order to see
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this, we examine the following additional contribution
from Eq. (2.2):

FapB— z
a1,a2,a3

X {rq181,0p105| V¥, | mqaa2)(mqeas| A83]0).  (2.5)

Upon using the usual Lehman-Symanzik-Zimmermann
(L. S. Z.) reduction, the matrix element of the vector
current becomes

&Pq1dq2d%q5(0| A% | 7q181,pp103)

(rg1a1,0p103] V¥, (3) | wgaas2)
= 8 (q1— q2)6a1a2(pp1as| V.| 0)

N @)V () / diadiy enm—ianK K,

XAop18s| T(@as (%) @ar () V4:(2))[0).  (2.62)

Here, N.(g) are the Bose normalization factors,® while
K,=—0.2+m.2 The second term on the right-hand
side of Eq. (2.6) contains all the dynamical effects of
the two-particle intermediate state, whereas the first
term has the same content as the one-particle states.
We shall therefore retain only the latter, in keeping
with the assumption of single-particle dominance, and
make the approximation

(rq1a1,pp103| V¥o(2) | 7q2a2)
283 (q1—G2)dasaa{pp10s]| Ve (2)|0). (2.6b)

When this replacement is made in Eq. (2.5), we obtain
the Heitler diagram corresponding to Fig. 1(c).

The various one-particle-to-vacuum matrix elements
of the currents that are encountered in the above ex-
pansions serve to define the coupling strengths of these
currents to the particles. Thus F,, g4, and g, are de-
fined by the equations

(0] 4#5(0) | mgb)=ig“N x3asF x , (2.7a)
(0| A#4(0)| A1gba)y="08,sN aga a¢*°(q), (2.7b)
(0] V£,(0) | pgba) = 825N, pe**(q) - (2.7¢0)

In Egs. (2.7), a€*® and ,e*” are the polarization vectors
of helicity ¢ normalized by e**¢,* = §°°".

The other types of matrix elements arising in the
above expansion of the T product are the one-particle-
to-one-particle elements of V¥, and A#,, as well as the
vacuum-to-two-particle matrix elements. This latter is
determined by the former through the demands of
crossing symmetry. Single-particle dominance sug-
gests that the vector current links to the particles
through the p meson while the axial-vector current
links through the = and 4; mesons. In fact, without
any loss of generality, we may write

(Bg1a| V#:(0)| Cg:b)
= ifachBNC pA“)\(k)I‘BpC(gbg?) (283')

8 We normalize states so that N.(g)=[2w,(27)3]12, where
Wg = (qz'l"mrz)”z-
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and
(Bg:a| A#:(0)| Cqsb)=i€asoN N c[4AM\(B)T 5ac*(q1,2)
+ AR prc*(g1,¢2)], (2.8b)
where ;A%\, 4A#%,, and A are the p, 41, and 7 propagators
AR (E)= (B+m2)~ o+ kelam, %), (2.9)
204\(k)= (R*+m a?)~ (8" +kelama~2),  (2.9b)
A(k)= (k24-m,2)~1. (2.9¢)

In these propagators, the masses are those of the
physical particles. In Egs. (2.8) the labels B and C are
particle labels (m, p, or 4;) and take on any values
allowed by G parity, while the momentum transfer
k* is ¢1*—gy*. Expressions (2.8) involve no loss of
generality, since ,A#\, 1A%, and §#, A are nonsingular
matrices and thus these equations may be viewed as
defining relations for the particle vertex functions
T ch)‘, etc.

We now assume that the particle vertices can be ap-
proximated by a polynomial in the momentum transfer,
k2. Thus, since we have already extracted the particle
poles, it is reasonable to assume that the factors
I'p,c*, etc., are relatively smooth functions for £2 not
too large. [In applications,” the approximation appears
successful for k2 up to the order of (1 GeV)2.] Thus, for
the m-p-r vertex we write

Trprt(g1,02) = (@1 4¢2*) (1 t-aok?+ - - ), (2.10)

with similar expressions for the other vertex functions.
Equations (2.9) and (2.10) may now be inserted into
Egs. (2.8), and the resultant forms for the matrix
elements of Egs. (2.7) and (2.8) inserted back into the
expansion of the 7 products. Thus one obtains ex-
pressions for the latter which are covariant and crossing-
symmetric. They are given in terms of unknown parame-
ters ai, ay, etc.

We next subject the T products to the restrictions
imposed by the current algebra. We will see that this
in part determines the parameters a1, as, etc. The com-
mutation relations to be satisfied by the current den-
sities are those of chiral SU(2)XSU(2):

8(x0—y)[Va(),V4(y)]

=1eapcV*o(%)84(x—y)+c-No. S.T., (2.11a)
80—y [V 0(x),4#5(y)]

=1eapcA"e(2)04(x—y)+¢-No. S.T., (2.11b)
3(a0—y")[4%(=), V¥ (y) ]

=1ieape A ()8 (¥—y)+c-No. S.T., (2.11c)
8(x0—y")[4%(x),4#5(y)]

=1teascV#o(x)8*(x—y)4c-No. S.T., (2.11d)

where “c-No. S.T.” stands for c¢-number Schwinger
terms. We consider the vacuum-one-particle matrix
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elements of Egs. (2.11). For example, from Eq. (2.11a)
one has

8(x0—y°)(0[ [V (), V#5(y) ]| p,ke)
= ieabdﬁ“(x—y)(O[ V"d(x) lp,ke) . (212)

Since the V#, may be used as an interpolating field for
the p meson, contracting down that particle shows that
the left-hand side is proportional to three-point func-
tions. (Similarly, A#, may be used as an interpolating
field for the = and A4; mesons, and so the same is true
for all the vacuum-one-particle matrix elements.) We
therefore invoke single-meson saturation in the left-
hand side of Eq. (2.12) to obtain

8(a"—3") 2 [(0] A% ()| n)(n| AP (¥)| pep)
—0[ 4% ) [n)n| A% ()| pcp)]
=ieanad (x—y){0| VPa(x) | pcp),

where the states |#) are single-particle states of
or A, mesons. Upon inserting our previous evaluation
for the matrix elements appearing in Eq. (2.13), we
obtain an algebraic constraint upon the unknown
parameters ai, as, etc., appearing in our expansion of
the vertex functions [e.g., Eq. (2.10)]. Equations
analogous to Eq. (2.13) may be obtained from the
remaining commutation relations of Eq. (2.11) with
the resulting algebraic system of equations relating the
parameters.

The last requirements are those of PCAC and CVC:

0, A#(x) =F ymspq(%), (2.14a)
8,VHa(x)=0, (2.14b)

where Eq. (2.14a) may be viewed as the defining equa-
tion for ¢u(x). One may use ¢q(x) as an interpolating
field for the pion field. The vacuum-one-particle
matrix elements of Egs. (2.14) are automatically
satisfied by Egs. (2.7). The one-meson-one-meson matrix
elements of A#, and V*, are to be used in constructing
the T products, and hence must satisfy Eqgs. (2.14).
Thus from Egs. (2.14b) and (2.8a) one learns that

kT g,cM(g1,92) =0. (2.15)

In Eq. (2.8b) two vertex functions have been defined
and so we are free to specify one in the most convenient
fashion without loss of generality. Let us therefore
define I'g ¢ by

'ifachBNC ,A(k) PBwC"(QI;Q2)
=F(Bgia|9*¢.|Cgs:b), (2.16)

where ¢, is given by Eq. (2.14a). The significance of
this choice resides in the fact that I'g,¢* then will
represent the spin-zero part of the axial-vector current
vertex function on the pion mass shell. We may thus
write

(2.13)

PBWC“= _ka”waC(q1yq2) ) (2'17)
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where fprc is the vertex function of the pion field as
defined by Eq. (2.14a). From Egs. (2.8b) and (2.14a),
we now obtain

Brc(q1,q2) = Fama®) T pac(qr,g2). (2.18)

Thus, Egs. (2.13), (2.15), and (2.18) yield a set of
algebraic equations that restrict the allowed values of
the unknown coupling constants appearing in the ex-
pansion of the vertex functions. In principle, these
equations can be solved, thus determining the matrix
elements of the vector and axial-vector currents.
Finally, one uses the latter for computing the T
products with which we started.

While the program described above will allow the
calculation of the 7" products of three vector and axial-
vector currents obeying the current-algebra constraints,
it is somewhat tedious to actually calculate three-point
functions in this fashion, and we proceed next to in-
troduce an “effective Lagrangian” as a convenient
calculational tool to simplify the analysis.

III. EFFECTIVE LAGRANGIAN

In order to generate the matrix elements of Eqs. (2.7)
and (2.8), it is convenient to introduce a set of in-field
operators? @.(x), 7,(x), and @*,(x), which correspond
to m, p, and Ay particles, respectively. We now note
that Egs. (2.7) are reproduced if V#, and A*, are
replaced by

(3.1a)
(3.1b)

Similarly, Egs. (2.8) may be reproduced if one replaces
A#, and V&, by bilinear operators in the in-fields. Thus
if, in Eq. (2.8a), we consider B and C to be w-mesons,
then the matrix element is correctly reproduced [with
T™,,. expanded as in Eq. (2.10)] if V*, is replaced by

V“a“—> gpﬁﬂa )

A”a — gAa:ua""'Fwa#@a-

Ve, — /d4 pAM)\(x—y) €abe
X[o1z—axO+ -+ J@a ()3 @6 (y) -

Similarly, in Eq. (2.8b), B== and C=p, the matrix
element is correctly generated by setting 4#, to

(3.2a)

Ak () = eane / 0y b (5 ) [BiBa )P )+ -]

+A@—N1@ T+ 1} (3.2b)

The omitted terms are those additional bilinear struc-
tures necessary to reproduce correctly all the matrix
elements corresponding to Egs. (2.8) (i.e., when B and
C range over their allowed values). The form of V#,
and A#,in Egs. (3.1) and (3.2) automatically guarantees
crossing symmetry and hence may also be used for
evaluating the vacuum-to-two-particle matrix elements.

9 One may of course, employ out-field operators instead.
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If we now add the results of Eqgs. (3.1) to those of
Egs. (3.2), we note that we have an expansion of the
currents in terms of in-field operators for particles.
Thus one has that the phenomenological expressions

Ve ()>2g, 0% () + €ane / d*y A%\ (x—y)

X[ar—aeO+ - J@a(y)* @ () + -+ (3.32)
and
Ak (x)2g a8, (x)+F 0% pa (x)
+ Eabc/d“y{AA“x(x—-—y)[ﬂ@uﬁ)‘b-{—~ -]
+A@—)[v18d4+ -+ (3.3b)

will correctly reproduce all the matrix elements needed
to calculate the three-point functions in the single-
meson-saturation approximation. (In relation to the
order in which we are working, we need not concern
ourselves with the difference between these expansions
and a normal-ordered expansion.)

One may next rephrase this result by noting that
Egs. (3.3) would automatically arise upon solving a set
of coupled Heisenberg equations of motion, provided
we appropriately truncated the solutions. Thus, let
v#.(x), a*.(x), and ¢.(x) be a set of p, 41, and = Heisen-
berg field operators obeying

pPEA() 7 e(%)
=g, Leap ar—aa O+ - - - Joa(®) 94 op(x)4-- -+, (3.4a)
AP”x(x)a*c(x)
= ga Yeave Broa(@)v#p(2) 4 ]+ -+, (3.4D)
er(x>‘Pv(x)
=F teap vioau(@)vro(@)+- - ]+, (3.40)

where ,P*, and 4P*, are the p and A; Proca operators
L,Pu=(— O+m,?)é"+ 9#0r] and K= — O+m,*. Then
the desired expressions for the currents follow, if we set

Veo(x) = gpvte() (3.3a)
and
Aﬂc(x)z gAa“c(x)‘i“Fwa#‘Pc(x) ) <3Sb)

provided we will carry out the solutions of Egs. (3.4)
in an in-field expansion to first order only in the coupling
constants a;, B:, and ;.

One now sees that the T products of currents, e.g.,
Eq. (2.1), may be expressed in terms of 7" products of
Heisenberg particle fields by using Eqgs. (3.4). Further-
more, we arrive at the Fundamental result that the
single-particle saturation condition is equivalent to
evaluating these T products by using the equation of
motion (3.3) and evaluating to first order in the cou-
pling constants a;, 8, and v;, etc.

Our next task is to satisfy the commutation relations
Eqgs. (2.11), but only to within the demands of single-
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particle saturation as expressed by Eq. (2.13). We note
that this is equivalent to using the expressions given by
Egs. (3.3), but evaluating the commutators only to
first order in a;, B;, and +;, while the right-hand side
of Egs. (2.11) are to be evaluated to zeroth order in
these parameters. However, the currents of Eq. (3.3)
are not in general even local-field operators whose
commutators vanish for spacelike separations. This is
due to the presence of the nonlocal propagators
4A#(x—1v), etc. The locality condition on the current
will be satisfied if one requires that the Heisenberg
fields appearing there (v#4,, a*,, and ¢,), in fact be, local-
field operators. The simplest way of guaranteeing this
(and probably the only way) is to require that the
equations of motion, Eqgs. (3.4), satisfied by them be
obtained from a local-field Lagrangian. Since the
source terms that appear or the right-hand side of
these equations are bilinear in the fields, the inter-
action Lagrangian must be cubic. We therefore con-
struct the following effective Lagrangian as a device for
generating Egs. (3.4).

L=LortLoptLoatL3)mpa s
where the free-particle Lagrangian is given by

£01r+£0p+£0/1 = ﬁouaap.‘Pa'f' %(ﬂo"aﬂaua'— 77'1'7r2 Saaz)
- %Gwa(ay‘vva_ avvua)'*_%G"Valea
- %mp%yavna_ %H #o( 0ulya— avaua)
+%H“vanm_ %mA2ayaapa

and the interaction Lagrangian is

(3.6a)

(3.6b)

L@yrpa= F€abel 28rmp 0" 50 VpatNrnpPuaprtG¥e
12870 400 000" e 2ty 4 0aGH b H et 2N 1p 40 w0yt HP
+ 28 4800 0r8G? o EopptuatutG H et 28, 4 4Vuao b H e
N 44000 8G et 1oppGruvdG M 6GAPe

F 1o 4 4G H s H M .

We have here chosen to use a “first-order” formalism
for later convenience, where (¢u,¢), (Gu,v.), and
(H w,a,) are to be varied independently to yield first-
order, coupled differential equations. Thus (¢os,¢a),
(Goiay?ia), and (H;a,a:q) are the canonically conjugate
pairs of variables for the m, p, and A4, fields, respectively.
The coupling constants grr, Arrp, €tc., are totally
arbitrary at this point of the analysis and can be related
to the as;, Bi, and v; that appeared earlier [e.g., in
Egs. (3.3)]. The above £ gyxpa is the most general cubic
interaction not containing explicit derivatives of the
m, p, and A, fields in the first-order formalism. This is
tantamount to having fixed the number of derivatives
that are allowed on the right-hand side of Egs. (3.4),
and hence the amount of momentum transfer allowed
in the vertex functions of Egs. (2.8). Whether the trunca-
tion of the expansion of the vertex functions in powers of
the momentum transfer to this order is correct or not,
is a question that must be answered by comparison
with experiment. It should be emphasized that the

(3.6¢)
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Lagrangian that has been introduced is a purely cal-
culational device.

One may now employ this Lagrangian to compute a
T product of currents such as appears in Eq. (2.1),
using the defining relations Egs. (3.5) for the currents.
Furthermore, the condition of single-particle satura-
tion requires that we carry out this computation only
to first order in the coupling constants. Thus first-order
perturbation theory is the total domain of validity of
the Lagrangian.

We note that up to this point the only symmetries
that have been imposed on &£, and hence on the T
products, is the conservation of isotopic spin and G
parity. We are now in a position to determine the
constraints imposed on the values of the coupling con-
stants by the current algebra, i.e., current commutation
relations (CCR), CVC, and PCAC. It is these
physical conditions alone that will govern the amount
of chiral SU(2)XSU(2) symmetry remaining in
the T products of the currents. We will impose no
chiral SU(2)XSU(2) symmetry requirements on the
Lagrangian itself.

IV. CURRENT-ALGEBRA CONSTRAINTS
ON THE COUPLING CONSTANTS

We start by examining the requirements for satisfy-
ing the conditions imposed by the commutation rela-
tions Eqgs. (2.11), but only to the order required by
single-particle saturation as given in Eq. (2.13). The
perturbation expansion of V#, and A*, in in-field
operators has been given in Egs. (3.3). We note that
the terms linear in these operators are of zeroth order
in the coupling constants, while the quadratic terms
are of first order. Hence, the left-hand side of the com-
mutators in Egs. (2.11) need only be carried out to
first order in the coupling constants, while the right-
hand side is evaluated to zeroth order. This is completely
equivalent to Eq. (2.13). Rather than working directly
with the in-field expansions, it is more convenient to
express the currents in terms of the Heisenberg canoni-
cal variables by using the field equations. One then
evaluates the commutators to first order in the cou-
pling constants.

In order to satisfy the conditions of PCAC and CVC,
it is again more convenient to work with the Heisenberg
fields directly, rather than the matrix elements. From
Egs. (2.14b), (2.15), and (3.5a), we find that CVC means
that we are to require that

8,V 4 (%) =g,0,v%(x)=0 (4.1)

be satisfied only to first order in the coupling constants.
Similarly, from Egs. (2.14a), (2.18), and (3.5b) we
require that

8, A%:(%) = g40,0*(%)+FrOpc(x) =F emao.(x) (4.2)

or

gAaua"c(x) "‘qu(— D+ m1r2) (Pc(x) = 0 (4'3)
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also be satisfied only to first order in the coupling
constants. We note that Eq. (4.3) is totally equivalent
to Eq. (2.18).

The Lagrangian, Egs. (3.6), yields the following set
of field equations for the pion fields:

Qtg=0Fpat Eabc(gmrpv”bsoc_)\w#p@ka Ae,

FNrp a0 H M NrpaarsGM) ,  (4.4a)
- au ¢"a+ Mr® Pa= €q bc(gmrpvy.bﬁoﬂc"“ GrpAUubl¥ec
F 1mpaG?pH y0);  (4.4b)

for the p fields:

G’“a = (a”vva_ 61’7)“0,)_!‘ €q bc[gpppv” [
+)\pAAa”bavc+>\1r7rp oot 2l~‘1rpA epH",
- erA (a" b c— @ bﬂauc) - 3MpPPGV)‘ bG)\ e

- ﬂpAAH”)\bH)\”c] 3 (4.58.)
avG'wa'}" mpz‘v“a= €alu:(gppp'v)\ bG)\”c_}— gpAAa)\bH)‘”c
—8grmp® b€0“a+g1rp11 vt
FArpaornsl ") 5 (4.5b)

and for the 4, fields:
Hw,= (9*a’s— d"a*,)
+ eabcl:gpAA('vubavc_ s ba”c)

- 2I»hrpA ‘PbG'wc—)\pr ('Dﬂb‘P”c- 'Uvbﬂoﬂc)

+2p 4 AH* MG ], (4.6a)
O, H ¥ o+ 4%0% 0= €abe(gpa aOneH Mo\, 4 4005G M,
+ grpAv”b<Pc+ X-;r,;A(P)\ bG"u)‘c) . (4 6b)

The canonically conjugate pairs of variables are
(¢0a,€0a); (Goia,via), and (HOia,;aia)-

In order to satisfy Eq. (4.1) (CVC), we take the
divergence of both sides of Eq.f (4.5b). This yields

mpza;ﬂ)"a: fabc[gpr(au SOb)a“c—i—gpr [ b(ana”c)
+)\pr(6“ ‘P)\b)H“)‘c-i_)\rpAﬁp)\b(auH“)‘c)]
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to first order in the coupling constants. The vanishing
of 4,V*,=g,0,v%, thus requires
ZroatmaZNrpa=0. 4.8)

Similarly, to examine Eq. (4.3) (PCAC), we use
Egs. (4.4a), (4.4b), and (4.6b). Again, satisfaction to
first order in the coupling constants yields the three
equations

—3(ga/ma?)goaat5(ga/ma)\pas—F cpizya

+%F7r)\1rpA_%F1rx7rpA=07 (4'9)
—gAgpAA+ (gA/mAZ)mpz)\pAA"l_Fr(g'lrpA-l_mAZ}\'lrpA)
—Fm,Apu=0, (4.10)
(gA/mAZ)ngAﬂ (gAmpz/mAz)erA_ 2F1rg1r7rp
+Fom, N\ rrp,=0.  (4.11)

We next turn to the task of expressing the currents
in terms of the Heisenberg canonical variables in order
to carry out the CCR [Egs. (2.11)7]. Making use of the
fact that v, @i, and ¢, are canonical variables
(i=1,2,3), we find from Egs. (3.5) that 4% and V7,
are linear in the canonical variables. Thus,

Vig(x)=g,v%a(x) (4.12a)
and

Aia(x):gAaia(x)_{“erai‘Pa(x) . (412b)

The quantities ¢is, Gija, Hija, V0o, and @o, are con-
straint variables and may be eliminated by repeated
applications of Egs. (4.4a), (4.5a), (4.6a), (4.5b), and
(4.6b), respectively, which will result in their being
expressed as an infinite series in powers of the Heisen-
berg canonical variables. Since we are interested in
carrying out the commutation relations only to first
order in the coupling constants, we need carry out
these expansions only to that order. In particular, we
shall need to know %, and @%, and also the time
derivative 9%, In terms of the canonical variables.
Inserting these results into V0% =g,2° and A%=gaa’

or +F,3%,, we obtain, for the time components of the
M20 0% 0= €ave(gmpat M a\rpa) o230 (4.7)  currents,
0 gﬂ 0 gﬁ . . 8rpa . .
Va=—-;310’ a+——26abc gpppwa’oc‘l‘gpAAdinwc"l-gnp<Pb¢co+—-‘—2 b0 H A Nrpa (9:05) HY ), (4.13a)
My My ma

8

4 ) 84 ) &
Aoa = —“_aina_'_F-trﬂooa'i"_'fabc(gpAAvinzOc_l_ XpAAdibGioc—l‘
m,

m4® m 42

A

A ~ .
(8:G™) pt-Xrpa (6,-%)0"%)

2
P

&rm ) ) I )
—F, Eabc(—": (0:G™%) 0= Nrp (505) GO Nrpavin H 4 )\praiwac> . (4.13b)
My

Equation (4.13a) may be simplified by making use of Eq. (4.8). Thus

&

2
"y 3

Vo=

) 8o ) ) )
aiGwa+_—2eabc[gpppvibGtoc'*_gpAAain'LOc"‘gwwp DrPcO— >\1rpA ai(ﬁobﬂzoc)] .
m,

(4.14)
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Similarly, using Eqs. (4.8), (4.10), and (4.11), one finds

84
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. g4 . gA 3 Fr .
Ay=——0:H"+F %+ etzbc[<—;gpAA —F n)\pr)'Uin wc+'—;gpAAaiwac+“'—2g xp (0505) G,
My

ma? M4

It is easier to satisfy Eqs. (2.11) by first considering
the once-spatially-integrated commutation relations.
Having done this, we shall then go back and satisfy
Eq. (2.11) completely, by requiring that there be no
gnumber Schwinger terms. Thus we first investigate
the following equal-time commutation relations:

/ VOu(x)dx, V¥ (y) |=i€acVEe(y), (4.16a)
/ V0 ()@, APy (y) |=iearedbs(y), (4.16b)
B 7
fAOa (x)d%c, Ve (y) =1e€wcdb (y) y (4:.160)
L m
/A Oa (x)dsx;A Hp ()’) =1 €abe V“c (y) . (4 16d)

In examining these relations, we recall that the left-
hand side need only be evaluated to first order in the
coupling constants, the right-hand side to zeroth order.
We first consider Eq. (4.16a). This gives (for all u) the
condition

8oop = Mm%/ gy (4.17)
From Eq. (4.16b) one finds (for all u)

graa=m,?/g, (4.18)
and

Grrp="M"/ 8o (4.19)

Equation (4.16c) and the p=¢ components of Eq.
(4.16d) produce no new relations. From Eq. (4.16d),
for u=0, we find

g4t m? ga
L Fa=1.
g ma® g

Equations (4.8)-(4.11) and (4.17)-(4.20) constitute
eight equations restricting the values of the coupling
constants. They may be solved and all the remaining
constants (except pp, and p,44) evaluated in terms of
g4, 8oy Fry m,, ma, and the constant \,44, which is
undetermined. The latter is related to the anomalous
magnetic moment of the 4; meson A4 by

(4.20)

(4.21)

Noaa=m,"g; Na.

We note that u,,, and w,44 do not appear in our condi-

my

Exmp Arpd .
+(F, ~+ga )a.-(mawc)]. (4.15)

My m,?

tions, and in this sense are orthogonal to the current
algebra.

We now return to the CCR for the current densities
[Egs. (2.11)] and evaluate them with the requirement
that there be #o g-number Schwinger terms.? This gives
rise to only one additional condition: the first Weinberg
sum rule.b
(4.22)

The solution to this system of algebraic equations is
most clearly expressed in terms of the three parameters
%, ¥, and z which are defined as follows:

F1|-2 p— gp?mp-—Z_gA2mA—2 .

a=V2m,/ma, Y=ga/gp, #=go/VIMFr. (4.23)
The coupling constants are then found to be
8ooo= oA A= Zrrp="M"/8y,
ZrpA= _mA2>\7rpA = mp2 (wazyz2)_1;
Zohrmp=2"Y2223N 4+ 2(1—22), (4.24)

Fakrpa=—y(1—a*3\a),
2F pimpa=y—y~",
while the first Weinberg sum rule may be rewritten as
¥yt —2224-1=0. (4.25)

Using the result given in Eq. (4.24) permits one to
write the currents V*, and 4%, in a more transparent
form. Thus, we have

Vig= g%
and
Aty=gaa’s+Frd%, (4.26)
as before, while
V=g, 29:G0+ €apel isH L4 v6:GPA 0r000
+F,rgA_lai((prioc)] (427)

and

A%y= gAWLAM2 aiHioa—‘FonaO—l' eabC[Fﬂ'gp_l(ai‘pb)Gioc
4848520 G A goga WisH ). (4.28)

One may now proceed to compute the 7" products
of the currents using the effective Lagrangian with
the values of the coupling constants as given by

10 Note that one need not be concerned with the possible exist-
ence of “implicit” g-number Schwinger terms due to the singular
nature of the current operators. Any such Schwinger terms would
be dynamical in origin and hence of higher order in the correspond-
ing constants than the first and therefore are to be ignored. That
is to say, such Schwinger terms can only arise if one considers
two-particle and higher intermediate states.
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Egs. (4.21), (4.23), and (4.24). These are given in the
Appendix. We see that although g-number Schwinger
terms have been eliminated from the current com-
mutators they do arise in some of the 7" products, e.g.,
(0| T(p%a(x)aPs(y)v#6(2))|0) [just as Schwinger terms
appear in (0|7T(Veu(x)V"3(y))|0)]. However, all T
products involving three current operators are in fact
free of such terms.

In computing an actual physical process it is of
course not necessary to go through the intermediary
of the 7' product. One may now use the effective
Lagrangian directly.

V. ¢ MESON

In this section, we should like to anticipate the ex-
tensions that will be needed to calculate four- and
higher-point functions.!! The present data concerning
m-m scattering!? seem to indicate the existence of a
scalar, isotopic-spin-zero, positive-G-parity particle
somewhere between 700 MeV and 1 GeV, which we
will call the o meson. We should thus like to include it
in our system on the same footing as one includes the
m, p, and A: mesons. However, unlike these latter
particles neither the vector, nor the axial-vector cur-
rents act as an interpolating field for it. Thus, when one
considers the evaluation of the 7" product of three
currents by the use of single-particle saturation, the o
meson can never appear in an intermediate state. It is
for this reason that it has not entered into our con-
siderations up to this point.

However, if one evaluates the 7" product of four cur-
rents (or more) by single-particle saturation, the o
meson can now appear in an intermediate state. For
example, let

Febrr= 3. (0] 4%(x)[n)(n] AP(y) | m)
X (m| A7s(2)|0)(p| 47a()]0).

While neither the states |#) nor |p) may be the o
meson, the state |m) can include it. We should there-
fore like to introduce additional vertex functions when
considering the matrix elements of the currents between
two single-particle states. Thus, in Eqgs. (2.8) we should
like to allow the indices B and C to range over the o
meson as well as the m, p, and 4y mesons.

This modification will not cause any change in our
current-field identification as given by Egs. (3.5);
however, it does mean that additional terms have to be
added to our effective Lagrangian to simulate the new
vertex functions. We thus introduce an additional free-
field term £y, as well as a term describing the inter-
actions of this ¢ meson with the others, £),. Thus,

(5.1)

1 R. Arnowitt, M. H. Friedman, P. Nath, and R. Suitor, Phys.
Rev. (to be published).

2W. D. Walker, J. Carroll, A. Garfinkel, and B. Y. Oh, Phys.
Rev. Letters 18, 630 (1967); E. Malamud and P. E. Schlein,
Phys. Rev. Letters 19, 1056 (1967).
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introducing the Heisenberg fields ¢ and o#, we have

(5.2)

Loo=—0"duo+ %(‘T”Uu_m«r%z)

and

£ @)= %gvmrﬁaaﬁoaa"‘;— %Aarr‘Pﬂa(Ppao'"“ %gappv#avuao'
+i)\ appG”yaGyvaU+%gaAAa”aapao'—i“%)\vAAH’“'aHWa(T
+)\v7rA ‘Paa”ao';f'l" anrAa“aﬁpnao'_’_,uvppvua #aoy
+#ﬂAAauaH“Vaov+ MorA Soa,uHmao'v_,—IJ'dww ©aP’aly

+g¢a'00'0’0'+>\5¢q0’0"‘0'”.

(5.3)

The canonical conjugate pair of dynamical variables
are ¢ and oo, while the ¢; are constraint variables.

The variables ¢ and o# along with the coupling con-
stants appearing in Eq. (5.3) will now appear in the
equations of motion for the p, =, and 4; meson fields.
Thus these constants will be restricted by the require-
ments of CVC and PCAC. Furthermore, when the
time components of the currents are now expanded in
Heisenberg canonical variables, ¢ and ¢° will appear,
once again along with their coupling constants. Follow-
ing the same procedure as in Sec. IV, we find that six
relations emerge among ten of the fourteen coupling
constants of £).. They are

F‘lrgmnr: mu2()\3_ eo>\l) y
Fologn=— (>\1+)\2) )

Frgoaa= (2%y2)"22m2(\1—\,) , (5.4)
\/Z—mpp'tr‘:rd =—x%Y3Usa4,
8opp= 0= Mopp 5
where e,= (m./m,)? and
M=(gama™ora, Ao=(gama)Nx
2T 4 (5.5)

}\35)\1+F1rﬂa1r7r .

The quantities «, y, z have been defined in Eq. (4.23).
The remaining four constants As,,, Aoas, goos, and Nyoe
are totally unconstrained. The final result for the time
components of the currents is

V0a= Eabc(vbiGmc“i_abinc"l— <Pb§000)

+ ai(gpmp72Gma+F1rgAh16abc(Pb[Imc) (5.6)
and
A= gama?d:H*s—F r 0 oot €avo gogavinH
_l_gAgp_laibGiOc_l‘Frgp—] (aiﬂab)GiOc]
+F7rgA——l)\1§00a0'_)\3¢a0'0- (5.7)

We note that V0, differs from the usual isotopic current
density by a divergence, so that f'd3 V%(x) is the
total isotopic spin. The divergence in Eq. (5.6) arises
as a result of the demand that there be no g-number
Schwinger terms in current-density commutation
relations.
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VI. CONCLUSION

In the preceding sections, a hard-pion algebra method
has been described for calculating T products of three
vector (axial-vector) current operators. The analysis
was based on the assumptions of 7, p, and 4; meson
saturation of intermediate sums, the chiral SU(2)
XSU(2) current commutation relations, CVC, and
PCAC. The single-meson-saturation hypothesis im-
plied that 7" products could be calculated from an
effective Lagrangian, this Lagrangian to be used only
to first order in the coupling constants. It is to be
emphasized that @ priori the only symmetry conditions
imposed on the 7" products, and hence the Lagrangian,
were the conservation of isotopic spin and G parity.
The coupling constants were then determined by the
constraints imposed by the CCR, CVC, and PCAC.
This then leads to a final effective Lagrangian that in
fact is not symmetric under chiral SU(2)XSU(2)
transformations, with the breaking of the symmetry
occurring in several different ways, e.g., PCAC, ga
and g, unrelated, m4 and m, unrelated, etc.

In Sec. V, a ¢ meson was introduced and its couplings
to the m, p, and 4, system examined. The motivation
for this lies in the fact that such a resonance appears
to play an important role in -7 scattering.12-13
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The coupling constants that appear in the effective
Lagrangian fall into three categories: (1) those that
are determined by the current-algebra conditions (e.g.,
8ooo’ 8ovo), (2) those that are related but not completely
determined by the current algebra (e.g., Arrp, Mpas;
gonmy Nord, bora) and (3) finally there are the coupling
constants that do not enter into any of the current-
algebra conditions (e.g., uyp and As,,). The last set of
coupling constants appear tobe completely “orthogonal”
to the current-algebra conditions. It is thus tempting
simply to set them to zero, and this has in fact been due
for analogous structures found in other treatments.’
However, it may be that additional principles other
than the current-algebra conditions are needed to
evaluate these undetermined constants. It is also in-
teresting to note that the hard-pion current-algebra
analysis does 7ot determine the value of g,. Thus, the
KSRF relation

gp2 = 27%;)21;‘#2 (6. 1)

is not a consequence of the current-algebra constraints
on three-point functions. One can show!! that this is
also the case for N-point functions.?

In the following paper,” a comparison of the three-
point functions calculated here is made with experi-
ment. Existing data appear to be consistent with the
hard-pion SU(2) X SU(2) current-algebra conditions.

APPENDIX

We give below the result for the 7" product of three field operators. For the T product involving two 4, fields and

one p field, one finds

/ dindty eiv-se=iu( T (a% ()a% (3)0% (0)))

m,* my*
=1t eape pA* () 4,07 (D) 4,477 () (—[ (8orr—gs8r0) T+ (Pogrv— Prgor) H—Na (gwkx—kag»x)) , (A1)
8o

8o

where k=q—p, and ,A*(k), etc., are the p meson, etc., propagators and have no c-number Schwinger terms. For
the T product involving two pion fields and one p-meson field, we find

/ dixdty e e (T (pa(x) 00 (1)0%:(0))) = i€are xA(g)xA(p) ,A* (R)g,™

The T product involving three p-meson fields

XL=m2 (gt p)—3Na(g-kpr—FE-pgr)].  (A2)

/ dxd*y e me= V(T (v*4 (%)0% (¥)0#.(0))) = G €ave A (k) ,AM(p) ,AP7(q) (m,2/g,)

XLt —@gra)+ (D= pog )+ (grobr—kogn)].  (A3)

18 A summary of the theoretical analysis and discussion of z-m_scattering is given in R. Arnowitt, M. H. Friedman, P. Nath,
and R. Suitor, Phys. Rev. Letters 20, 475 (1968). A more detailed account is given in Ref. 11.
14 K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16, 255 (1966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071

(1966) ; J. J. Sakurai, Phys. Rev. Letters 17, 552 (1966).

15 A discussion as to why the KSRF relation cannot be derived from hard-pion current-algebra conditions can be found in R.
Arnowitt, M. H. Friedman, and P. Nath, Nucl. Phys. B5, 115 (1968).
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The T products listed above are covariant, i.e., they do not involve any c-number Schwinger terms. In general,
the T product of any three field operators are not necessarily free of noncovariant terms. We list below two T

products that involve such terms:

f d*vd'y e ¢~ 0¥ (T'(9 () 9P 04 (y)v*: (0))) = ieave xA(g) »A(P) A (k)gs™ P

X[=m (ga+p2) —3ha(g-kpr—F- pgr) 1— 1 €anegy [ 0%00*0g® A (g)+ 808*0p™ A (P)],

(A4)

/ dvdty e e~ V(T (pa(%)aPs(y)#:(0))) = ieave <A (D) A" (k) 4,47 (g) (1/2F )

X[=2m2gn+ (@pr—q° pgA)+ (Na—2) (- kgn— pokr) 1— 1 €apc0%00 0 (Fxma®) ™ zA(P).

(AS)

On the other hand, it is easily verified that no c-number Schwinger terms appear in the T products of three cur-

rent operators.
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Application of Hard-Pion Three-Point Functions™
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Some comparisons with experiment of the hard-pion three-point functions obtained from SU (2) XSU (2)
current algebra are given. Available experimental data involving , p, 41, and o mesons are examined. The
hard-pion current-algebra method is used to calculate the decays p — =+, A1 — w+p, and ¢ — 7+, and
the electromagnetic form factor of the pion. Peripheral processes such as =+N — p-NN are also examined
as a test of meson-vertex functions for spacelike momentum transfers. Here, to reproduce correctly the
momentum-transfer dependence at the nucleon vertex, a new extrapolation for the pionic nucleon form
factor is introduced, using the Goldberger-Treiman relation. The results of the above calculations are found
to be consistent with the present experimental situation. Current-algebra predictions for the y+N — 4;+N
cross section and the decays A1 — w+v and A, — 7-+o are given. A cross section of about 0.1 ub is ob-
tained for the 4; photoproduction, which is on the verge of being detectable.

I. INTRODUCTION

ECENTLY, it has become apparent that soft-pion

methods! may lead to erroneous results when
applied to processes involving energetic pions. Thus
the soft-pion method yields a width of approximately
800 MeV for the A; — n+p decay,? in contrast to the
experimental width of ~100 MeV. These considera-
tions, coupled with the desire to exploit more fully
the content of the current algebras, have motivated
interest in extending the analysis beyond the domain
of the soft-pion method. An important step in this
direction was first taken by Weinberg, who used Ward
identities, SU(2) X SU (2) algebra of currents, and the
hypothesis of meson dominance of vector and axail-
vector currents to obtain the sum rule?

8o/ m;*= (ga®/ma®)+F*. (1.1)

* Research supported in part by the National Science Foun-
dation.

1 For a review of the soft-pion calculations, see R. F. Dashen,
in Proceedings of the Thirteenth International Conference in High-
Energy Physics (University of California Press, Berkeley, 1967).

2 The soft-pion analysis of the mw-p-4; vertex has been carried
out by several authors; see e.g., B. Renner, Phys. Letters 21, 453
(1966) ; D. Geffen, Phys. Rev. Letters 19, 770 (1967).

3 S. Weinberg, Phys. Rev. Letters 18, 507 (1967). Extension of
these results to other vector and axial-vector currents are given
by T. Das, V. S. Mathur, and S. Okubo, sbid. 18, 761 (1967);
?. L;I)Glashow, H. J. Schnitzer, and S. Weinberg, #bid. 19, 139

1967).

Here, g, and g4 are the coupling strengths of the vector
current to the p meson and the axial-vector current to
the 4, meson, and F, is the usual pion-decay ampli-
tude.* This result when supplemented by the second
Weinberg sum rule?

g4=gp (1.2)

and the KSRF relation®
g~V2F m, (1.3)

yields the well-known result #4="V2m, which is borne
out experimentally.?

In the preceding paper,® new techniques were de-
scribed to obtain current-algebra solutions to vertex

4 We define g, by the relation
(Ol Via 0) [P; k;b:"'>5z‘,’p‘sablvpﬁu‘r (%),

where a, b=1, 2, 3 are SU(2) isotopic indices, €,°(k) is the p
polarization vector normalized by e,"*e*’ =877, and

N,=[(27)2wr] 12

Similarly, ga is defined from the 4 matrix element (0] 4 ,q(0)|41;
kbo) and Fr by (0]4,4(0)|7,kb)=3F ek, N~ Our currents are
normalized such that the experimental value of F, is 94 MeV.

5 K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,
%55 (%966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071

1966).

6 R. Arnowitt, M. H. Friedman, and P. Nath, preceding paper,
Phys. Rev. 174, 1999 (1968) (hereafter referred to as I). A brief
account of these results were given in R. Arnowitt, M. H. Fried-
man, and P. Nath, Phys. Rev. Letters 19, 1085 (1967).



