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We have derived intermultiplet mass formulas by using an SU(3)ISSU(3) charge algebra (involving
time derivatives) and an approximation Lcalled the SU(3) approximation7 previously proposed. The
approximation assumes that the SU(3) charge operator Vrr [defined, for example, in a quark model, by
V»-= J'd' gx(x)y4(X4 —Q.e}q(a)/27 acts as an SU(3) generator even in broken symmetry in an appropriately
chosen ininite-momentum limit. We have obtained, besides the Gell-Mann —Okubo mass formulas including
erst-order mixing, intermultiplet mass formulas such as (i) m~+"—m, 0'=m~+' —m +'=m~~+' —mg, +'

(ii) m, ——m„&, (iii} f f' mixing -angle tt 30' from 2+ and 0 mass formulas, and (iv) SU(6)-type decuplet-
octet baryon quadratic mass formulas. A brief discussion is presented about the J~~= 1++ and 1+ meson
mass formulas.

I. INTRODUCTION

ECKNTLV, we have proposed an approximation"
Lcalled the SU(3) approximation] that seems

useful in discussing broken SU(3) symmetry. In this
paper, we wish to show that, combined with the use of a
chiral SU(3) SU(3) charge algebra, this approxima-
tion is also able to yield intermultiplet mass formulas
(in addition to the Gell-Mann-Okubo formulas) that
agree with experiment rather well.

II. 8U(3) APPROXIMATION

Our approximation concerns the matrix elements of
the operator Vrc, which is an SU(3) generator in the
symmetry limit. Let us illustrate our approximation
with a simple example. Consider a diagonal matrix
element of the operator Vrc )for example, we denote

Vtr-= —i d'x V4x (x)

d'x g(x)y4P, 4
—its) q(x)/2

in a quark model( responsible for the Zts decay,

&~o(It')
I V.x (o) I

lt+(p)) = (4popo')'"( —I/v2)

xI F,(q')(p+p')„gF (q )(p —p')„j,
where q= p —p'. The form factors of the diagonal matrix
elements of Vz, which are multiplied by moevueish-
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ittg Lin the SU(3) limit] kinematical factors, are called
the SU(3) form factors of V„x(x). In the SU(3) limit,
where q' is necessa, rily zero, the SU(3) form factor
F+(0) takes the SU(3) value of 1, whereas F (0)=0.
In the real world both F+(g') and F (q') are renor-
malized. However, according to the Ademollo-t atto
theorem, ' at zero momentum transfer (q'=0) F+(0)
is renormalized only in second order of the symmetry-
breaking interaction (whose strength will be symboli-
cally denoted by e in the following), whereas F (0)
receives a renormalization in the lowest order, i.e.,
F+(0)~1+O(e') and F (0)~0'(e). In order to explain
our SU(3) approximation and to introduce a necessary
modification of Ademollo-Gatto theorem when particle
mixing takes place, we recapitulate a proof of this
theorem in a simple example along the lines 6rst dis-
cussed by Fubini and co-workers. ' Consider a com-
mutator LV~+, Vtr-j= V o+V3V„D sandwiched between
the states &sr (q) I

and I7r (q)) with lql = ~.We insert
a complete set of intermediate states between the
factors V~+ and V~- and extract from them the
Eo state. For the form factors of &sr

I
Vrr-IE') and

&Eol Vz+I7r ) we use the expression given by (1)
modified by SU(2) symmetry. By noi. ing that the con-
tribution of the F form factor to the term &sr

I
Vtr-

I
Eo)

X &K'
I

Vrc
I
sr ) vanishes in the limit

I q I

= ~, we then
obtain F+(0)= 1+0(c'), where O(e') is proportional to
the expression

Ib)&bl v„-l~-)
I
V -lc)&cl V

I )

(where b and c are the appropriate intermediate states
other than the Eo state). The 0(e') term is clearly of

' M. Ademollo and R. Gatto, Phys. Rev. Letters 13, 264 (1964).
4 S. Fubini and G. Furlan, Physics (N. Y.} 1, 229 (1965); S.

Fubini, G. Furlan, and C. Rossetti, Nuovo Cimento 40, 1171
(1965); G. Furlan, F. Lannoy, C. Rossetti, and G. Segre, iNd. 40,
597 (1965).
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the order e', since Vrc is an SU(3) generator in the
symmetry limit. This is an. example of the Ademollo-
Gatto -theorem, We emphasize that this theorem holds
only for the SU(3) form factors of Vx in the zero-
momentum-transfer limit. Therefore the renormaliza-
tion of the SU(3) form factor of Vx seems to be
minimum at zero momentum transfer. Our approxima-
tion assumes that the renormalization of the SU(3)
form factors of Vrc at zero momentum transfer Lwhich
is at least of the order O(e')) is small and negligible
compared with other symmetry-breaking effects (which
appear in the masses and the physical coupling con-
stants) that we do take into account.

We have shown, "and would like to demonstrate
further, that broken SU(3) symmetry, particularly as
manifested by the mass splittings of SU(3) multiplets,
does not seem to contradict having an essentially zero
renormalization of the SU(3) form factors of the vector-
current V„x(x) at zero momentum transfer. In Eq. (1),
by letting

~ p ~

=
~

p'~ = ~, we can always deal with the
form factors at q'=0, even if m~/m . Therefore, in
the actual computation of the diagonal matrix element
of Vx, (&~ Vx~A), we always take an appropriate
infinite-momentum limit for the particles appearing in
the states A and 8 in such a way that we deal with the
SU(3) form factors of Vrc only at zero momentum
transfer. Our approximation, therefore, does rot impose
any restriction on the form factors )such as F (q')]
multiplied by kinematical factors that vanish in this
infinite-momentum limit. (We call this type of form
factor an unrestricted form factor. ) We can therefore
still discuss the Ii form factors in our approach. 5 For
form factors other than the unrestricted form factors,
our approximation uses the SU(3) value for the SU(3)
form factor (at zero momentum transfer) and neglects
other form factors' whose contribution is known to be
at least of order &'. Without contradicting the neglect
of the O(es) terms in the diagonal elements of Vx, we
neglect the nondiagonal elements of Vrc, (b

~
Vrc

~
A), in

the same infinite-momentum limit. In. the SU(3) limit,
(b~ Vrc~A)=0. This implies the existence of a relation
between the form factors of (b~ V„x(x)~A) that guar-

' Combined with the use of unsubtracted dispersion relations
for Ps and the spectral-function-like sum rules (Ref. I) (to fix the
scale) obtained by using our SU(3) approximation, the Ku-decay
form factors have been studied. We realize that our expression
for the F~(q')+F (q') evaluated at q'= —mxs coincides with the
soft-pion result, which holds only at q'= —mz2. S. Matsuda and
S. Oneda, Phys. Rev. 169, 1172 (j.968).' Sometimes there appear form factors multiplied by kinematical
factors that do not vanish in the infinite-momentum limit, but do
vanish in the SU(3) limit. (For example, consider (p~ Vx~E ).)
These may be called "restricted form factors. "Thus, in general,
the form factors of the diagonal matrix elements of Vx, (B

~
Vx

~

A ),
can be divided into three parts: SU(3), restricted, and unrestricted
form factors. Consider the equation (A(q)~)Vrc', Vx-]~A(q))= (A (q) ~

V 0+VIV„o I A (q) ), with
~ q ~

= ~ . The unrestricted form
factors will not contribute in the limit

~ q ~

= ~. In a way similar
to the discussion of Eq. (2) we obtain from the above equation
lim[~~ „(B(q') [ Vx)A(q))=ISU(3) formfactor]+[restrictedform
factorj) ~~~ =(2s-)'S'(q —q')ugl+O(c')g, where n is the SU(3)
value of (B]Vx~A). Therefore we see from the definition of the
restricted form factor that it is a quantity of order e'.

antees (b~ V&~A)=0 for any momentum transfer. In
broken SU(3) symmetry, our approximation requires
only that the renormalization of this relation at the
momentum transfer (usually at q'=0) corresponding to
our infinite-momentum limit is small, i.e., (b

~
Vrc

~
A) is

still 0 in that limit (effectively, say, to order e), although
(b~ Vz~ A) is formally of order c. In summary, we neglect
all the nondiagonal elements (b~ Vie~A) of the vector
charge Vrc (except for cases when there is a mixing
problem for the states under consideration, which &vill

be discussed below) only in the infinite-rnornentum
limit; which, in turn, enables us (effectively to order e)
to keep only the SU(3) form factor with the SU(3)
value (at zero momentum transfer) for the diagonal
elements of V~.

We now consider the cases where particle mixing takes
place. This is the first-order symmetry-breaking eRect,
which must be taken into account. We express the
physical states in terms of SU(3) states (with which the
physical states will coincide in the limit e ~ 0) to order
e whenever these states come into the matrix elements
of Vrc. We now show that the modified SU(3) form
factor of V~, defined after extracting the first-order
mixing eRect, also satisfies the Ademollo-Gatto theorem
at the zero-momentum-transfer limit. We illustrate
this procedure by considering the matrix element
(rt'(q')~ V&-~E+(q)) with ~q~ =~ and the effect of
g-X' mixing. I et us write, to order e, q= cose gs—sin9 q»

and X=cos8 rl i+ sin8 rls, where q ~ rls and X~ rt t when
e~ 0. Consider now the equation

lim (E+(q')
~
LV&+, V&-j ~E+(q))

lel

= h &E+(q')
~
V. +a3V„~E (q))

lcl

= 2(27r)'8'(q —q')
~ „,=„. (2)

On the left-hand side of Eq. (2), we extract, from the
complete set of intermediate states sandwiched be-
beween the factors V~+ and V~-, the X' state as well as
the m' and g' states. The contribution of all other states
is again of order e'. The m-' intermediate state gives a
contribution s (2s.)'5'(q —q') to order e from the
Ademollo-Gatto theorem. In the limit ~q~

—+oo, we
need consider only the SU(3) form factors of (r)

s
~
Vrc

~
E)

and (X'~ Vx~E). According to our SU(3) approxima-
tion, we have~

lim (~rts(q')
~
Vx-~E~(q))

Iaf

= lim cos8(rt, (q')
~
V -~E~(q))

lcl

= (2x)'5'(q —q') cos8 G+(0) ~,«=„

lim (X'(q')
I
Vx-I E'(q))

Ial

= lim sin8 (rts(q')
~
Vrc-~E+(q))

lel

= (2s.)'8'(q —q') sin8 G~(0) ( ~s~=„.
r In the limit

~ q~ = ~ the mass of the s8 does not enter in the
expression. As in the case with the nondiagonal element (b

~
Vx

~
A ),

we set (n, (q') [ Vx-(&+(q)) =O forllql = ~.
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By inserting these expressions in Eq. (2) we obtain

G+(0) = [SU(3) value]+0'(e'),

the SU(3) value being given by —g$. Therefore, if we
extract the mixing effect to order ~, the situation be-
comes similar to the cases without the possibility of
mixing discussed previously. Thus, if the possibility of
mixing arises, we write the physical states in terms of
the SU(3) states (to order «).

If we make this modification, we can summarize
our SU(3) approximation in the following way:
The operator Vrc acts as an SU(3) generator even in
broken symmetry in an appropriately chosen infinite-
momentum limit.

A direct and rather severe test of our approximation
will be provided by measuring the value of F+(0).
Present E,s decay experiments indicate that F+(0)=1
within 2-5/o. In view of the large mass difference in-
volved, the effect of symmetry breaking is expected to
be more appreciable in the vertex (s-l VrclE) than
in those involving higher-lying mu ltiplets such as

(pl VrrlE*) and (A~ Vglp). Therefore the above esti-
mate of F~(0) based on present experiments seems con-
sistent with our approximation. One may, however,
get the impression that the approximation could be
too radical to explain the observed broken symmetry.
This is certainly a valid question. Our attitude is that
one should try and see. We emphasize, however, that we
are making this approximation orally for the SU(3)
form factors of the matrix elements of Vz only at the
zero-momentum-transfer limit. We do not make any
assumption at finite momentum transfer. Our conjecture
is that SU(3) is broken in such a way that we may still
treat the operator Vx as an SU(3) generator in our
limit. It is interesting to see to what degree of accuracy
broken SU(3) symmetry permits us to make this
simplifying approximation.

We now illustrate some of the features of this ap-
proximation. Consider a charge commutator —A~+
= [Vrco,A +] inserted, for example, between the (p(q) l

and lA'(q)) states with lql = ~. We then use the

SU(3) approximation for Vlco. We then obtain a sum

rule such as

(3)

Here g~~ is, for example, the axial-vector coupling

Assuming a form of f+(q'), f+(q') =~E*'/(~a*'+q'), which is
in fact realized in the approach of Ref. 5 and is roughly in agree-
ment with experiment. N. Brene, M. Roos, and A. Sirlin (Nucl.
Phys. B6, 255 (1968)j obtained, from the present P(ft, s+)
and F (E&.3'), sine& =0.220~0,003 and 0.201&0.004, respectively,
by assuming f+(0) = 1. Comparison of the p decay and 0"P decay
gives sine&=0.2095&0.0086. Recently, using the Lagrangian
approach, together with the sum rules assured by field algebra,
S. L. Glashow and S. Weinberg LPhys. Rev. Letters 20, 224
(1968)] obtained f+(0)~0.85. In contrast, P. K. Mitter and L.
J. Swank /University of Maryland Technical Report No. 829
1968 (unpublished)) have recently found that f+(0)—1 by using a
similar approach.

constant (at zero momentum transfer) of the As —+

P+e +f decay. In this way we obtain a set of sum
rules that, in fact, coincide with those obtained by
eliminating the D/F ratio in Cabibbo's original exact
SU(3) analysis of semileptonic decays. ' This indicates
that the exact SU(3) sum rules can still be preserved,
to a good accuracy, even with broken symmetry to
the extent that our SU(3) approximation is justified.
(We have assumed here that there are no other states
that can mix with the E octet. ) We found, however,
that this is a rather exceptional case, and we usually
obtain with our SU(3) approximation results that
manifest more explicitly the effect of symmetry break-
ing. For example, let us consider the commutator
[Vrco,A -]=0 taken between the (e(q) l

and lZ+(q))
states with lql = eo. Using the SU(3) approximation
for Vzo and partially conserved axial-vector current
hypothesis (PCAC) for A —,we obtain a sum rule

(g-,')g~ ..-(1/2m~) —(g-,')g~. .-(1/(m +m ))
+g„„.-(1/2m, )=0. (4)

Here the coupling constants g are defined with a pion
off the mass shell (ng —+ 0) . In contrast, the pure-SU(3)
sum rule is given by

Thus the effect of symmetry breaking appears as a
factor involving the masses of the relevant particles. "
In this paper, we shall also rederive some of the other
examples that we have derived previously' ' by using a
somewhat more complicated procedure.

III. MODEL OF SYMMETRY BREAKING

We usually assume that the SU(3) symmetry-
breaking interaction transforms in the same way as
the I= V=O member of the SU(3) octet. If this is the
case, we shall have a commutation relation" such as
[Vrco, Vxo]=0. Insert this between the (Es(q)l and

l
E'(q)) states with

l q l
= ao. In this limit, because of our

SU(3) approximation, we need only to consider the
intermediate states x', g', and X'. We note that,
according to the procedure described in Sec. II, for
example,

»m (p(q')
~

Vx lE'(q)) = (2~)'6'(q —q')(g-,') cose
lai

9 N. Cabibbo, Phys. Rev. Letters 10, 531 (1963)."See Refs. 1 and 2. If we use our SU(3) approximation for the
charge-charge density commutators taken between a vacuum and
an appropriate state, then we obtain sum rules similar to the
spectral-function sum rules given, for example, by S. L. Glashow,
H. J. Schnitzer, and S. Weinberg, Phys. Rev. Letters 19, 137
(1967);T. Das, V. S. Mathur, and S. Okubo, ibid. 18, 761 (1967).
We do derive in our approach the first spectral-function sum rules,
but we are not led to the problematical second sum rules.

'This type of commutation relation was first utilized by
Fubini et ul. to derive the Gell-Mann —Okubo mass formulas. See
Ref. 4.
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lim &g(q')
I
Vx'IE

Equation (7) implies that, at
I q[ = ~,

LE,(q)- & *(q)]&E*(q)I
v

I p&&p I
A .-I (q))

—4&-(q) —&x(q) j&E*(q) I
A--IE&&E [ Vx'I ~(q) &

=o.
Then, compared with Eq. (8), we obtain

(2go2go )

LVlr~, A~ 3—LVrr+', Alt+ oj=0. (6)

In a quark model, for example, these commutation
relations will certainly hold if the symmetry breaking
is given, for example, by

ol
H'~ g(x)Xsg(x)

II' ~ g(x)y, )~sg(x) V,'(x)

(which may be regarded, for instance, as Ne'eman's
fifth interaction"), where V„(x) is a unitary singlet
vector meson that breaks SU(3) symmetry. We wish

to show that the combined use of the SU(3) approxima-
tion and these commutators leads to intermultiplet
mass formulas.

IV. DERIVATION OF INTERMULTIPLET
MASS FORMULAS

(A) Consider the following matrix elements of

[ Vrto(Vzo), A -]=0, taken between the E*'(q) and
7r+(q) states, with [q I

= eo, and use our SU(3)
approximation:

«*'(q)
I
Vx

I
p'&&p'I A--I ~+(q) &

—«*'(q)
I
A--IE'&

&&(E+[Viols+(q)&=0, (7)

«*'(q)[v
I
p'&&p'IA--I~+&q)) —«*'(q) IA--IE+&

x&E+IV
I

+(q)&=0. (8)

" K. Nishijima and J. Swank )Phys. Rev. 146, 1161 (1966)g
also discussed the consequences of this commutator. The differ-
ence of our approach from these works (Refs. 11 and 12) is that
we use the SU(3) approximation (instead of the pole approxima-
tion), which requires us to take an infinite-momentum limit.
Nishijima also obtained some of the SU(6)-type mass formulas
in his approach by using commutators similar to our Eq. (6)
/lecture notes at Tokyo Summer School, 1967 (unpublished)].
We thank Dr. L. J. Swank for informative discussions."Y. Ne'eman, Phys. Rev. 134, B1355 (1964).

By inserting these expressions, we obtain the sum rule

3m '—4m''+m '
sin'0=

3(mx' —m„')

This is a derivation" from our approach of the Gell-
Mann-Okubo mass formula including 6rst-order mixing.
The extension to other SU(3) multiplets is obvious (see
Ref. 2). We note that the spirit of our approximation is
not a mere pole approximation in the usual dispersion
approach. The in6nite-momentum limit is also required
by the approximation adopted. We now wish to ex-
tend this approach to include also the axial-vector
charge. In the following, our arguments are based on
the validity of the commutation relations

&.(q) —Ex'(q)
lim
'" " E-(q) —&rr(q)

m, '+mx~' mrr~
~ (9)

2mp mp

In the SU(3) limit, this ratio is unity. This relation has
been obtained previously by the present authors in a
slightly different way, and agrees with experiments if
the p width is around 130 MeV.

(B) By replacing the s.+ and E+ mesons in (7) and

(8) with the 2+ mesons, i.e., As+ (I= 1) and E**-(1400)
(I=-,') mesons, respectively, we obtain

&E*o«)
I
V lp'&&p'IA--IA+«)& —«*'(q) IA--IE**+&

X&E**+IVx IA,+(q))=O,

&~~*'(q)
I
Vx

I
p'&&p"

I
A--I As+(q)) —«*'(q)

I
A--IE**+&

&«E*"IV- IA.+(q)) = o.

With [ql = ~, we also obtain a similar relation,

mK~o2 m 02 mK+++2 mA +2

Corresponding experimental numbers give 0.20+0.11
=0.29&0.17, in GeV. ' This seems encouraging. If we
use PCAC for A in the latter of the above two equa-
tions, we obtain, instead of the SU(3) value of 1,

G~, +, -~o(m~ ' m ' m '=0) m+ m2 p

(1o)
2Grc~*+rr*- 0(mls**', mrs*', m '=-0) mx*~' —mz. +'

This sum rule has also been obtained previously by
the present authors' in a slightly more complicated
way, and can be tested by experiments. We now con-
sider the cases where the mixing eRect (~-g and ff')-
is known to exist.

' B. Sakita, Phys. Rev. 136, 81756 (1964};F. Gursey and L.
Radicati, Phys. Rev, Letters 13, 173 (1964). For complete refer-
ences, see A. Pais, Rev. Mod. Phys. 38, 215 (1966).For the quark-
model predictions, see, for example, R. J. Dalitz, in L&'lementary

Particle Physics (W. A. Benjamin, Inc. , New York, 1966), p. 56.
Complete references will be found there."A. H. Rosenfeld et at. , Rev. Mod. Phys. 40, 77 (1968}.

This gives mK*o' —mpo'=mK+' —m +'. This has been
obtained by assuming SU(6)-symmetry theory. '4 The
present experimental compilation"" indicates 0.20~0.11
=0.23, in GeV, 2 for this relation. If we use the PCAC
hypothesis for A in Eq. (8), we obtain the broken
SU(3) relation

2Glr" +rc -~o(mrs*' mx', m'= 0)

G + —.o(m ' m ' m '= 0)
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(C) Consider the similar equations,

&~ (q) I V~(Vx) I&* &«* IA--I&*'(q)&
—

&~ (il) I
A--

I
~'&&~'I Vx'(Vx ) I

&*'(q)&

—6;(a) IA.-lyo&&gaol V .(v ) IE*'(a)&=0,

with
I ql = ~. If we use PCAC for A„ the

( (q) IA--l~'(a)&and &~ (a) IA--I4(q)&« I el = ~ be-
come proportional to the ~0 —+ p +s.+ and &0 —& p +a+
couplings G,+ — and G~p+ —, respectively, which are
defined with a pion off the mass shell (m ~ 0). Ex-
perimentally, G,+ -))G~p+ —. Therefore let us first
neglect the contribution of the p terms. We note that
the p —+ p+~ decay is, in fact, forbidden in some models.
We then obtain m~+-2 —m -'= m~+ '—m ' which
implies

c=a+5,
where a, b, and t," are given by

(15)

a=sin& gr o o(my' m,—')(mr'+mx&* +4@sf 5$rr++ )
XP(v 6)rmr41 i-

b= —cos8 gr o o(mr ' m—')(mr '+mir~~'+4m' 'mx~+')

X L(V'6)mr. 'j-',
&=~~grr*"x'~ (~+** ~z ) ~

denoted e'). By applying PCAC for A, we obtain from
the equation involving the Vrro in Eq. (13)

(mlr ~~' m—r') a+ (mlr**' m—r') b

= (mx+' —m. +') (a+5), (14)

whereas, from the equation involving the V~o,

mp —m~0-2~ 2
From these equations we obtain(11

This is indeed very close to experiment" (0.599&0.099
=0.614&0.009 in Gev') and seems to be a very en-
couraging result of our approach. "If we include the g
term, we can use the above two equations to obtain an
estimate of P(g~ p+n). Write, to order e, ~=coicos8
+G08»no and 4= —~»ino+~8 cose, where a& ~ cubi and

P—+ co, in the limit e ~ 0. By using PCAC for A and our
SU(3) approximation for Vrr, we obtain from the above
two equations

G@+ — m -'—m'
@p p co

tan8.
G p+ — mp' —m„'

(12)

If we take 0=40 from the vector-meson mass formula,
this ratio 0.03. Thus P(P~ p+s.) is small, although
the question of how small it is is rather sensitive to the
difference m, ——m 0. Therefore we have shown from
our approach that the smallness (or forbiddenness) of
the rate P(g ~ p+m) is intimately connected with the
fact that m, m„. Namely, the smallness of F(@—+ p+~)
implies m,~m„, and vice versa, in our SU(3) approxi-
mation and our model of SU(3) breaking manifested
by the commutation relations (6).

(D) We next discuss f f' mixing. Con-sider the
equation (with Iql = ~)
(&**'(a)

I
Vi"(Vx ) I

j'&&5'I A.-
I
~+(il) &

+(&**'(q)
I
Vx (Vx')

l
f'&&I'I A--I +(q) &

= (E**'(q)
I
A.-l E+)(X+

I Vrro(Vrro) Is+(q) &. (13)

Since P(fo —+7r~)))P(f'0 —+7rm), we first ignore the f'
term in the above equations. We then obtain, by ap-
plying the same procedure, m~++0' —m~0'=m~+' —m +'.
Experimentally, this relation implies 0.44&0.19=0.23
in GeV. However, we can easily improve this dis-
crepancy (between 0.44 and 0.23, assuming that it is
real) by including the f fmixing (the mixin-g angle is

"We do not encounter the same trouble as S. L. Glashow,
H. J. Schnitzer, and S. Weinberg, Phys. Rev. Letters 19, 137
(1967),which was subsequently criticized by J.J. Sakurai, ibid. 19,
803 (1967).

gj ~'~'

g f7ro~o

1srr** —7ÃP stir +5$
= tan8'

Isis+@ Ãsf' %sir +Bi~
(16)

If we use 0'~30', ' determined from the mass formula
of the 2+ meson, we obtain g~. o o=0.19g~ 0 o, which
implies P(f"~ mrs. )—0.071'(f' —+ mm). This is con-
sistent with present experiments. " We have thus
demonstrated the fact that mixing may play an ap-
preciable role in improving the agreement with experi-
Dient, and the intricate but interesting interplay be-
tween the mass spectrum and the coupling constants.

(E) We now turn to the 1+ meson. The spin-parity
assignment has not yet been firmly established. How-
ever, we seem to have two 1+ multiplets": one with
J~c= 1~ LAi(1070) is its I=1 member] and the other
with J~~= 1+ LB(1220) is its I= 1 member). Then the
question arises: What are the I= 2 members of these
multipletsP We propose, from the mass formulas that
will be derived below, that the K~(1230) an K~'(1320)
belong to the 1~ and 1+ multiplets in the symmetry
limit. In the presence of symmetry breaking, the Ez
and E~' can mix, although the A~ and 8 cannot. If, for
the time being, we neglect this mixing, and replace,
in Eqs. (7) and (8), the 7r+ and E+ mesons with the
A~+ and Eg+ or the 8+ and E~+' mesons, we obtain,
correspondingly, m&*o'—mp m~„m+ or m+*o'
—mpo'=mz~+ '—m&+'. In deriving the latter equation,
we have assumed that the 8 meson decays into com-,

but not Px, as indicated by experiment. Namely, present
experiments" give an upper limit for the partial rate
of this decay of P(8 ~P~)(1.5%. It seems quite
possible that the 8 —+ @+s.decay is forbidden for the

'7 In Ref. 1, by neglecting the f' term (i.e., from the equation
c=a) we have determined the value of 0' to be 33'.

"We have taken the masses of AI, 8, EA, and EA' from the
latest compilation by A. H. Rosenfeld et al. , Rev. Mod. Phys. 40,
77 (1968), wallet sheets. Also see G. Goldhaber, in Proceedings of
the International Conference on Particles and Fields, Rochester, 1967
(Interscience Publishers, Inc. , New York, 1967),p. 57. One of the
authors (S. O.) thanks G. Fourez for pointing out the assignment
of EA. and EA.' discussed in Sec. V.
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same reason as that of the P —+ p+xdecay. Preliminary
data" indicate 0.20&0.11=0.39+0.07 and 0.20+0.11
=0.38&0.08, in GeV, ' for the above mass formulas.
Therefore the mass formulas seem to work fairly well

and to su,pport our assignment of E& and E&'. We may
blame the small discrepancy for the possible E~-E~'
mixing and experimental errors. By considering the
Eg-E~ mixing in the above equations, as we did in

parts C and D of this section, we can, in fact, express"
the E~-E~' mixing angle in terms of the masses of
I=1 and I=2 1++ and 1+ mesons together with the
masses of the p and co mesons. The formula obtained
is rather sensitive to the errors in the values of the
masses involved. However, so long as the mass of E~'
is greater than that of E~, the mixing angle 8 is less
than 45', which is consistent with the proposed assign-
ment of E& and E&' in the symmetry limit. By using
present experimental values" for the relevant masses,
we tentatively obtain 0~26 . At the moment, the ex-
perimentsl error is important, and even 0~0 is not
excluded. Over-all consistency, including the decay
branching ratios of 1+ mesons on the basis of the sum
rules between the decay coupling constants obtained
in our approach, indicates a value of 9 around 12 . It
seems to us, at present, that this is a reasonable estimate
of the E~-E~' mixing angle. Details will be published
elsewhere. "

(F) We now discuss the ra+ and as+ baryons. The ex-
tension to other baryons with higher spins is straight-
forward. We now consider (with

I q I

= oo)

&&&=--I~.-l=-*'(q))—&~ (q) I~--I v*')
x&v* Iv (v..)l=-*(q)&=o. (17)

Exactly in the same way as for Eqs. (7) and (8),
we obtain & Ex E-.* Er—~ (w——ith —

I q I

= ~ ), which
gives' m„-.-'—m~-'= m-. +o'—my &o'. Experimentally, this
relation reads 0.32=0.42&0.05 in GeV'. We also ob-
tain from the following two equations

&~l ~-"I I'*s&&I'*'I Vx (V» ) I
&*s&

—&~l Vz (Vx) IP)&PI ~-'I&*s&=0 (1g)

&~'I& .I=-*-&&=-*-Iv (v ) lfl-)
—&z'I vx (vx) I=-'&&=-'IA In-&=o, (19)

the results m~+o' —m~+o'=m~+' —m ' and mg-' —m-. +-'

=m-. o'—mzo', respectively. Experimentally, "these rela-
tions read 0.39&0.26=0.53 and 0.46+0.01=0.31 in
GeV. ' Similar relations have also been obtained in

'9 G. Fourez and S. Oneda, University of Maryland Technical
Report No. 818, 1968 (unpublished); G. Fourez, University of
Maryland Technical Report No. 847, 1968 (unpublished}.' We always obtain quadratic mass formulas by this method of
computation, For the Gell-Mann-Okubo mass formulas for the
same SU(3) multiplet, we can always rewrite the quadratic mass
formula as a linear one, since the difference of these mass formulas
is of order ~~, which we neglect. In Ref. 2, we obtained linear
formulas for baryons by neglecting the e' pffept,

SU(6)-symmetry theory (except for the fact that we

obtain quadratic mass formulas). Agreement with ex-

periment is reasonable but not spectacular. There is,
in fact, a reason for this discrepancy. In Eq. (19),we can
replace Z' with A'. This equation, together with
Eq. (19), then leads to the Z-A. mass degeneracy. This
was also encountered in the simplest SU(6) mass
formula. "We claimed that our approximation is good,
electively, to order e. We may possibly blame the
neglected O(s') effect for this Z-A degeneracy and for
the small discrepancy between our mass formulas and
experiment. However, we feel that we should wait to
draw this conclusion until we are sure that all the mixing
effects are considered. " (See note added in proof. )
Suppose, for example, that there exists another —',+

baryon multiplet S' beside the usual one E. A possible
small -"' or p-p' mixing in Eqs. (17)-(19)may be able
to remove the A.-Z degeneracy and also lessen the dis-

crepancy in the above mass formulas. As seen from the
discussions in parts C and D of this section, if the
couplings ~~*~g+s and ~~'+s. or N* —+X+m and
1P+7r are comparable (i.e., if the overlap in the same
decay channel is large), small mixing angles may still
be able to do this job. The small E-E' mixing angle
may not have a great effect on the Gell-Mann —Okubo
mass formulas for the E octet, since there we deal with
the commutator [Vxo,Vrro]=0 and the eGect is neces-
sarily of order e'. We do not go into detail in this paper.

V. CONCLUDING REMARKS

In summary, the discussions presented here seem to
indicate further the usefulness of our SU(3) approxima-
tion and chiral SU(3) 3SU(3) algebra. We have derived
not only SU(6)-type mass formulas, but also other
types of interrnultiplet mass formulas. Furthermore, as
demonstrated in parts C—E of Sec. IV, our approach
is able to derive sum rules that exhibit an intimate con-
nection between the mass spectrum and thecoupling
constants, if we make a combined use of pion PCAC.
By using kaon PCAC, we might be able to obtain more
such sum rules. However, since kaon PCAC involves
larger off-mass-shell extrapolation (mrs-+0), we did
not, consider it in this paper. Our results (after removing
the effect of mixing) seem especially good for the case
of bosons. The method can be easily extended to include
higher spin states. For the case of baryons, we are
faced, at the moment, with the problem of Z-A. de-
generacy, which was also met in simple SU(6)-symmetry
theory. We seem to have three possibilities for this
problem.

(i) The most optimistic possibility is to assume that
we have not yet taken into account the effect of mixing

"For 0, 1,and 2+ mesons, mixing eGects (X'-g, ca-p, and ff')-
seem to bring the Gell-Mann-Okubo mass formulas into excellent
agreement with experiment. In this sense, it seems quite natural
to expect similar mixing eRects for the mass formulas under
{:oosideration,
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Ilg'~ q(x)Xsq(x). (20)

to the fullest extent, as mentioned in part F of Sec. IV.
In this connection, the study of the existence of 2+
or —',+ baryons other than the known ones is extremely
enlightening. We note that there is some indication
that such baryons do exist [e.g.,"X'(1470)]. We also
note that the existence of another —,

'+ baryon multiplet
fq' will modify the sum rules [Eq. (3)] for the axial-
vector coupling constants of semileptonic weak inter-
actions through the E-S mixing. This is certainly
relevant to the question of whether or not we have
0A tv-

(ii) The second possibility is that our model of
SU(3) breaking manifested by the commutators in-
volving time derivatives, i.e., Eqs. (6), is too simple
and that in the realistic models we need to have some
correction terms. (See note added in proof. )

(iii) The third possibility is that this Z-A degeneracy
is indeed due to our SU(3) approximation for the matrix
elements of Vz involving baryons, and that the ap-
proximation is better for the boson cases (probably
because of the existence of G-parity selection rules).
The masses of resonances that appear in our inter-
multiplet mass formulas involve sizeable experimental
errors. Therefore it is also possible that the over-all
agreement with experiment is, after all, of the same
order as we have obtained in the case of —,

'+ and —,'+
SU(6)-type mass formulas. We note, however, that
the Gell-Mann —Okubo mass formulas (which are the
quadratic ones) for the Eq~2+ and $3~2+ baryons derived
along the lines discussed in Sec. III agree very well
with experiment. This indeed seems to justify the
neglect of the 0(e') term. Therefore, at the nsoment, we
rather prefer possibilities i or ii to possibility iii. We
also note that if the Z-A degeneracy should really be
blamed for our SU(3) approximation, then Cabibbo's

analysis of semileptonic decays based on the hypothesis
of small renormaliza, tion of the V„x(x) current at zero

momentum transfer must also be modified.

Note added Az proof. We are now more inclined to
believe that possibility (ii) is the case. In this paper we

have considered only the simplest model of SU(3)
breaking given by (for example, in a quark model)

In this model all the commutators used in this paper
are valid. However, we may add a more general SU(3)-
breaking interaction

Hg'~ Q Q ds, ,g(x)Q.h,q(x)q(x)Q„X;q(x), (21)
sj a

where the Dirac matrix 0 corresponds to a choice of
S, V, T, A, and I' interactions. Under this model of
SU(3) breaking, O'= H&'+H2', only the following com-
mutators involving the Vlr are valid:

[Vx,Vr~']=[Vx', Vx']=PC', V ']=0: (22)

If we use one of the above commutators, [Vxo,A xo]=0,
taken between the states P(q)~ and ~Q (g)), with

(q) = ~, we obtain with the SU(3) approximation the
Gursey-Radicat SU(6) mass formula

mz-' —m-. -'= m-. -*—ma-'= m;~' —mg-'. (23)

As long as we stick to the commutators (22), we shall
not encounter the problem of Z-A. degeneracy which,
however, can take place in Eq. (19).This was pointed
out to us by C. A. Nelson (private communication).
We wish now to point out that the commutators with
the V~ used in this paper are also valid if we add a
slightly stronger (but still very reasonable) assumption
that the II &' satisfies a sort of chiral invariance, Namely,
let us assume, for example, that the H~' has a V and
A form given by

& '"2 d *,[A."'( )A."'( )+V.'*'( ) V."'(*)] (24)

We then obtain commutators used in this paper, such as

[Vxo,A
—]= [Vx~,A x+]= [Vx+,A,+]=0, (25)

in addition to the ones given by (22). These cornmuta-
tion relations seem approximately valid, since they give
rise to the sum rules discussed in this paper that are
reasonably in agreement with experiments.
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