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Current Algebra and Double-Pion Photoproduction

S. C. BHARGAVA

Centre for Adoanced Study in Physics, University of Delhi, Delhi7, -India

(Received 27 May 1968)

Double-pion photoproduction is studied with the help of the equal-time commutation relations and the
hypothesis of the partially conserved axial-vector current. In the present model we disperse both the pions
and the photon, and hence the pions are treated symmetrically. Further, we work in the off-mass-shell limit
$(pion four-momentum)'-+ 0$ in contrast to the soft-pion limits used by earlier authors. Certain difficulties
connected with gauge invariance, which arise from this limiting procedure, are noted and discussed; also,
the present calculation is expected to be valid only in the low-energy range close to threshold. The results
obtained are in good agreement with experiment.

I. INTRODUCTION

"'N recent years, following the suggestion of Qell-
- Mann' and the successful calculation of the ratio

~G~/Gv~, ' current commutation relations (CCR) and
the hypothesis of partial conservation of the axial-
vector current (PCAC) have been used by a number of
authors to obtain detailed information on low-energy
parameters in pionic amplitudes. ' 7 These soft-pion
(pion four momentum ~ 0) calculations proceed mainly
in two parts. First, the amplitude for the process is
written in a manner such that the pions involved are
soft; secondly, to get physically interesting results,
smooth extrapolation from the soft-pion point (g„~0)
to the physical point (q„&0, q'=rrt ') is assumed.

If, however, we have more than one pion in the

process, then there is an ambiguity as to which pion
should be made soft. It was found by Callan and Trei-
man' that form factors (e.g., in Et4 decay) depend quite
sensitively on the choice of the pion whose four-momen-

tum is allowed to go to zero. Weinberg' has shown that,
in order to use CCR and PCAC in a consistent manner,
all pions involved in the process should be treated sym-

metrically and dispersed simultaneously.

Recently, Chang' has studied the process m E—+ ewe,
contracting all the three pions simultaneously and

working in the soft-pion limit for all three pions. He has

' M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Physics 1, 63
(1964).' S. L. Adler, Phys. Rev. Letters 14, 1051 (1965); Phys. Rev.
140, 3736 (1965); W. 1. Weisberger, Phys. Rev. Letters 14, 1047
(1965); Phys. Rev. 143, 1032 (1966).' For a review, see R. F. Dashen, in Proceedings of the Eighth
International Conference on IIigh Energy Xuclear Ph-ysics (Univer-
sity of California Press, Berkeley, 1967), p. 51.

For example, see S. Weinberg, Phys. Rev. Letters 17, 616
(1966); K. Raman and K. C. G. Sudarshan, Phys. Letters 21, 450
(1966); A. P. Balachandran, M. G. Gunzik, and F. Nicodemi,
Nuovo Cimento 44A, 1257 (1966); K. Raman, Phys. Rev. Letters
17, 983 (1966); R. kamanchandran, Nuovo Cirnento 47A, 669
(1966); Y. Tomozawa, ibid 46A, 707 (1967).; N. Fuchs, Phys.
Rev. 150, 1241 (1966); K. Raman, ibid. 159, 1501 (1967); R. H.
Graham, L. O'Raifeartaigh, and S. Pakvasa, Nuovo Cimento
48A, 830 (1967); H. Abarbanel, Phys. Rev. 153, 1547 (1967).' C. G. Callan and S. B. Treiman, Phys. Rev. Letters 16, 153
(1966).' S. Weinberg, Phys. Rev. Letters 16, 879 (1966);17, 336 (1966).' H. J. Schnitzer, Phys. Rev. 158 1471 (1967).' Lay-Nam Chang, Phys. Rev. 162, 1497 (1967).

obtained fair agreement with experiment on both pro-
duction data and m-x effects. Here we shall study,
within the framework of current algebra, the double-
pion photoproduction process yp-+ 7r sr+p close to the
threshold. We shall treat both the pions on the same
footing; to do so we shall disperse the two pions and the
photon and shall work in the off-mass-shell ((pion four-
momentum)'~0$ limit, in contrast to the existings
calculation of the process in which the photon and only
one pion are dispersed, the soft-pion limit being taken
for the latter. Recently, a number of analogous proc-
esses" have been studied using CCR and PCAC in this
off-mass-shell limit. As will be seen, restrictions on the
amplitude imposed by this limiting procedure are less
severe than those imposed by the soft-pion limit. For
example, the T product of the type krak&. p(pQ) ~

T
X ldll, A.,J„)~ X(pr)), which occurs in our formulation
and which is quadratic in the pion momenta, either
vanishes in the soft-pion limit or reduces to a form in
which the limit is ambiguous; hence essentially arbitrary
prescriptions must be given" to evaluate such terms.
Qn the other hand, in the off-mass-shell limit this T
product always gives a finite and unambiguous contri-
bution comparable with other terms comprising the am-
plitude. It may also be noted that it is this term (rather
than the equal-time commutator) that survives in the
on-shell limit, and hence some of the dynamical details
are present in this term. Further, by making the pions
soft, we not only take zero-mass pions, but also take
their energy and momenta separately equal to zero. This
restriction is quite stringent, as, for example, in the
process yX —+ xm-X, which we shall consider in detail.
The soft-pion limit will tend to spoil the energy-
momentum conservation unless we make an unphysical
assumption that the whole of the incident y-ray energy

'P. Carruthers and H. W. Huang, Phys. Letters 24B, 464
(1967)."See, for example, T. Das, V. S. Mathur, and S. Okubo, Phys.
Rev. Letters 19, 1067 (1967); D. Bondhyopadhyay and K. C.
Gupta (to be published); R. Dutt, K. C. Gupta, and J. S.
Vaishya, Phys. Rev. (to be published); Debabrata Basu and R. N.
Chaudhuri, ibM. (to be published).

"For example, in the case of nonleptonic hyperon decays the
problem of obtaining an unambiguous contribution from the so-
called weak-amplitude term in the soft-pion limit is discussed in
detail in V. A. Alessandrini, M. A. B.Bbg, and L. S. Brown, Phys.
Rev. 144, 1137 (1966).
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is transferred to the final nucleon. Thus, to obtain
physically interesting results, we shall have to apply
corrections not only due to the finite mass of the pions,
but also due to their finite four-momentum. On the
other hand, if we work in the off-mass-shell limit, we
need only apply corrections due to the finite mass of the
pions. Lastly, we may remark that the hypothesis of
PCAC necessitates the introduction of off-mass-shell
pions. Since the g'= 0 limit is.sufficient for this purpose,
we need not consider the restrictive q„=0 limit.

It may be mentioned here that many years ago the
photoproduction of pion pairs was studied within the
context of the static theory by Cutkosky and Zach-
ariasen. " In their approximation there are two contri-
butions, one due to the meson current and the other
due to the interaction current. The meson current gives
rise to two terms that combine to give the so-called
Drell term. "The interaction current is dominant in the
low-energy range and, near 1 BeV, meson-current con-
tributions are comparable with that from the interac-
tion current. The results obtained by them are not in

good agreement with experiment close to threshold'4;
in particular, the sudden rise in total cross section near
threshold is not well explained. Carruthers and Wong""

proposed a simple scheme, also based on the static
model, in which the interaction current produces the
3-3 pion-nucleon isobar along with an S-wave recoil
pion. They produced excellent agreement with experi-
ment near threshold and were able to obtain the sudden
rise in total cross section. Carruthers and Huang have
also done the current-algebra calculation of the process
in the soft-pion limit where they estimated the con-
tribution of the weak-amplitude term relative to that
of the commutator term.

In our study of the double-pion photoproduction
process, we find additional terms contributing to the
amplitude that are not found in earlier investigations.
These arise because we disperse both pions and the pho-
ton and work in the o6-mass-shell limit. We evaluate
these matrix elements in the pole model, taking octet
and decuplet poles LtV and 3'*(1238)]only. The limit-

ing procedure also results in certain gauge-invariance
difIiculties that are inherent in such off-mass-shell cal-
culations. In the absence of an unambiguous prescrip-
tion" to remove these difhculties, we assume the validity

"R. E. Cutkosky and F. Zachariasen, Phys. Rev. 103, 1108
(1956)."S. D. Drell, Phys. Rev. Letters 5, 278 (1960).

'4 See S. Ferroni, V. G. Gracco, and C. Schaerf, Nuovo Cimento
Suppl. 3, 1051 (1967).

'SP. Carruthers and How-sen Wong, Phys. Rev. 128, 2382
(1962).' The gauge-invariance diKculty has been discussed in detail by
M. Nauenberg, Phys. Letters 22, 201 (1966); S. L. Adler and Y.
Dothan, Phys. Rev. 151, 1267 (1966); S. L. Adler and W. I.
Weisberger, ibid'. 169, 1392 (1968).However, they have discussed
it for the case when the pions are soft. Recently, Balachandran
et al. LA. P. Balachandran, M. G. Gundzik, P. Narayanswami, and
F. Nicodemi, Ann. Phys. (N. Y.) 4S, 339 (1967)j have stated that
the prescription of removing gauge invariance is &~uite ambiguous
in soft-pion calculations.

of PCAC and a very smooth extrapo1ation from the
off-mass-shell to the on-shell limit. We then demand the

gauge invariance of the off-mass-shell amplitude and

proceed as is shown in the last part of Sec. III. In
evaluating the total cross section, the phase-space in-

tegration is done exactly and in a covariant manner. "
The total cross section close to the threshold, i.e., in
the energy range 410—750 MeV of the incident p ray, is
evaluated numerically.

In Sec. II, we shall obtain the double-pion photo-
production amplitude. Section III contains the compu-
tation of the total cross section, and in Sec. IV we shall

compare the results obtained with existing experimental
data.

IV„= d4z e '~'(s. (kt)z.e(ks).V(ps) IJ„(s) I
"i (pt)), (2.2)

where we have treated the electromagnetic interaction
to lowest order. Contracting both pions simultaneously
and using PCAC, ' we get"

d'x d4y d'z gia1'ct, ik2 ~ pg
—iIc ~ z

X(tl (ps) I
T(ct)A), (x),c)„A„(y),J„(s))ItV(pt))

X(ki' m')(k—s' —ttt ')(m 'f ) '1/(4ktskss)'t' (2 3)

where m is the mass of the pion, k~0 and 420 are the
fourth components of ki and ks, and f is the weak z.-

decay constant defined through (we have suppressed
t.he isospin index)

(oI~.(~) I
~(kt))= Le '""/(2~)'"l&f-kt' (2 4)

The value of f is given by the Goldberger-Treiman
relation"

f nssrg~(0)/g~(O), (2.5)

"Rajendra Kumar (to be published).
"M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960).

In our notation, B„A„'(x)=m 'f p '(x).
We have adopted here the notation of J. D. Bjorken and S.

Drell, Relativistic Quantum 3fechanics (McGraw-Hill Book Co. ,
New York, 1964).' M. L. Goldberger and S. B. Treiman, Phys. Rev. 110, 1178
(1958).

II. DOUBLE-PION PHOTOPRODUCTION

We consider the photoproduction of pion pairs

y(k)+X(pt) ~ z. (kt)+~~(ks)+E(ps) (2.1)

where tr and p are the isospin indices of the pions; pi
and ps are the four-momenta of the nucleons, ki and ks

are those of the pions, and k is that of the photon. To
assure Bose symmetry for the pions, we follow Wein-
berg' and reduce both the pions simultaneously.

The matrix element of the above process is given by
e&M„, where e& is the photon-polarization vector and
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where zzzd(( is the mass of the nucleon, g~(0) is the axial- 8(xo—yp)I df0 (x),A„p(y))=it p&V„&(y)&'(x —y),
vector weak-interaction form factor, and g~(0) is the g(x y,)I-g,m(x) y p(y)) —

z& Q p(y)$4(x y) (2 6)
s

Expanding the T product in (2.3) and making use of
the equal-time commutation relations' "

kd„=(k '—m ')(k, ' —m')(m ',j)' /1(,kd„k„)' e(
— d'e d'y d'. e' "e'e'"e '""k ek .

x(v(pz)IT{df~ (x),df„p(y),J„(s)}I;v(pk)) — d'x d's p'"'+"" 'p *" (z't'kdk'-a)

X (iV(pz) I T{o(x),J„(s)}Id)'(p&))+-', d'x d's e""'+""""e'"'c p„(kz —k&)„(E(pz)
I
T{V,~(x),J„(&)}I!i~(pz))

d'* p'"'+"' "' pz-y ~

peak(i'(pz)

I I'(x) I &'(pk))+ ~zpy'r y z (~ (pz) I
1'"(x)17''(pz))

d'x d'y e'"'*e""' "'"e&p»»(N(Pz)
I T{df„&(y),df& (x)}Ix(Pz)),

In writing (2.7) we have dropped the term

8(xo—yo)(1V(pz) I T{(8/By" +8/Bx")

xL&o ( ),&.'(y)),J,()}I&(p ))
from the expansion of the T product, which vanishes
identically because of the conserved vector current
(CVC) hypothesis. "

Thus we must evaluate matrix elements of the follow-
ing type:

(i) &&(pz) I T{~(x),~(y),J(s)}I &(pk)),
(ii) P'(p ) I T{I'(x),J(s)}I &(pz)), (2 8)

p (p,) I T{w(x),w(y)} Ix(p,)).
In addition, we must evaluate the double-commutator
terms.

We do not consider the contribution coming from the
0 term. Invoking Adler's" consistency condition, we
have neglected it.

We shall evaluate these matrix elements in the pole
model, taking octet and decuplet baryon poles LX and
dV*(1238)] only. In evaluating these we shall need the
weak and electromagnetic form factors of the baryons
and baryon isobars, which are discussed below (for
convenience, we have dropped the isospin indices).

The weak nucleon —axial-vector vertex (NNA vertex)
is given by

(X(pz) I
df „(0) I iV(p&) )= (zzz&'/EzE&) '"L1/(2zr)']zz(p, )

X I:g~(V')y "y.+k~(C')»C. )N(Pz), (2 9)

where (7= Pz —Pz, and Ez and Ez are the energies associ-

ated with nucleons p& and pz, respectively. Here we shall

only consider the part given by gz((7').
The E*—lV axial-vector vertex' " has four linearly

independent form factors when both baryons are on
their mass shells. These are given in

(1V*(p) Idf„(0)IE(p))=(zzzd(M/EE')'"I 1/(2zr)')zz. (p')I gz(k")k '(k"p —k 'p k')

+igz(k")k, '(y. emdk, „Pdkk, 'yk)+igz(k") ,p. pe, dP Pm,
k' p,k'

+z gg*( k)B.„)(zPz) y (2.10)

where k'=P' —P, zd (P') is the Rarita-Schwinger wave

function for a particle of spin ~+ and mass M, and L&

and E' are the energies associated with baryons of mo-

rnentum p and p', respectively. The form factors g&, gz,

and g3 are transverse to k' and hence do not contribute

"R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958)."S. L. Adler, Phys. Rev. 137, 81022 (1965); 139, B1638
(1965).

in the off-shell limit; only gz*(k") contributes longi-
tudinally. The projection operator for a particle of spin
—,
' is given by

E„.= fg„,—(2/3M') p„p,—sky„y,
—(1/3M)(p„y„—p„y„))(y p+M)/2M, (2.11)

where p is the momentum of the particle.

"J.D. Bjorken and J. D. Walecka, Ann. Phys. (N. Y.) 38,
35 (1966).
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The Goldberger-Treiman relation for 1V* gives the
value of g~*.8

For the E*Ey vertex, we shall follow Gourdin and
Salin"; thus

P*(p')I v.(0)l-v(p))

m~M)"' 1

FF.' I (2')'

Ag Av
\

Ap, (
\

1

)Av
1

(ics(k") c4(k")
Xi (y k'8 "—k'"y )— (p' k'8 "—p 'k'") yAA y Ay Ag+~ ~ A

cs(k")
(p.kS -pk") in(p), (2.12)

where the form factors c3, c4, and c5 are taken to be'

cs(0)=0.345, c4(0)=cs(0)=—0.0035. (2.13)

Thus the terms proportional to c3 give the dominant
contribution, and hence we do not consider the other
two.

The vector currents considered here are generators of
the SU(2) isospin group. These matrix elements are
taken to be of the following form:

P(ps) I
i's(0) I&(pt))

(m~s ) rls

n(ps)
kZ, Z,) (2~)'

( z(rs„
Xi F (k")y„+ k'"F (k") In(p ), (2.14)

2msr i
where k'= p&

—pz, Fz(k") and Fs(k") are, respectively,
the isovector-charge and magnetic-moment form fac-
tors, and"

P *(p )I v„(o)l x(p))
m~M)'" 1

n.(P')
ZZ' i (2~) s

X ys Gt (k")4"—
P"Ys

Gsv'(k") n(Pr), (2.15)

where k'= P' —P and Gtr and Gsv are the form factors.
Coming back to the matrix elements of Eq. (2.8), we

note the following:

(i) (X(P,) I
T{Ax (x)A.s(y),J„(s)}IrV(Pr)) includes

contributions from different diagrams of Fig. 1. We
have taken E and E*(1238) poles wherever possible
and have avoided vertices of the type X*X*A or

'4 M. Gourdin and Ph. Salin, Nuovo Cimento 27, 193 (1963);
27) 309 (1963).

'~ C. H. Albright and L. S. Liu, Phys. Rev. Letters 13, 673
(i964).

Ap &~ ~ Ay

FIG. 1. Diagrams contributing to the matrix element of type
(i) in Eq. (Z.8). E and Ã* poles are taken wherever possible. The
A's (———) are the axial-vector currents, J (~) is the photon
current, and continuous lines represent nucleons or nucleon
isobars.

E*S*y. Evaluation of these diagrams is tedious but
straightforward. An idea of the nature of the algebra
involved can be had from the evaluation of the last
diagram of Fig. 1 as is done in Appendix A. The terms
coming from this class of diagrams are gauge-invariant.

(ii) (iV(ps) I
T{V„&(x),J„(s)}I E(pr)) includes the two

diagrams of Fig. 2(a). Here also we take into account
both E and E*poles. These elements are again gauge-
invariant and can be evaluated in the pole model.

The difficulties connected with gauge invariance
arise in the matrix element of type (iii) which includes
the diagram of Fig. 2(b) and the double-commutator
terms. These difhculties can be traced to the presence of
equal-time commutators involving the electromagnetic
current, e.g. , LA,J] or LA, LA,J]].Upon evaluation
using (2.6), the resulting vertex has associated with it
the photon momentum. It is then easy to see that gauge
invariance is not automatically satisfied in our off-shell
limit. " In the absence of an unambiguous prescription
to remove this diQiculty in the off-shell limit, we assume
the validity of PCAG and a smooth extrapolation from
the off-mass-shell to the on-mass-shell limit. Thus we
demand gauge invariance of the off-mass-shell ampli-
tude as well. We then find that matrix elements of type
(iii) do not contribute to the process; from the double
commutator the term

n(ps)L(&os /2m')k (F& +Fs )]n(p&)

alone survives. We may expect that the error involved
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t

4 I

I

I

)Vy
I

(a)

(b)

4+x r4
rXj'r

The coefficients A &, A 2, , A83 are given in Appendix

B. These include the contribution from nucleon poles

only. In actual calculation, both S and E*poles have

been included. The resulting expression can be obtained

in a straightforward but tedious manner.

In the numerical computation of the total cross sec-

tion near threshold, we ignore the momentum depen-

dence of the form factors used here. Ke take the follow-

ing values of the different parameters:
Flo. 2. The upper diagrams (a) contribute to the matrix element

of type (ii) and the lower ones (b) to (iii) in Eq. (2.8). Also,
V (———) is the vector current, J (~) is the photon current,
A (———) is the axial-vector current, and continuous lines repre-
sent nucleons or nucleon isobars.

m~ ——939,

m =139.6,

gg(0) = 1.17,

g 2/42r= 14.6,

M = 1236, gg*(0) = 1.44,
in omitting the non-gauge-invariant terms is of the same
order as that involved in the smooth-extrapolation
assumption.

III. NUMERICAL RESULTS

The total amplitude for the process consists of the
following gauge-invariant terms:

p v=$

Ppnv= 1 79

p A+7 07

Pneq ]9]
e2/42r = 1/137,

c3(0)=0.345,

Gll'(0) =3.5,

Gsv(0) = —1.5,
p NNv —05

P,»~=1.85.

(v')(v. k)(v k ), (v')(v k)

(kl. k)(v «)(v kl) —(kl. «)(v k)(v kl),

(P' k)(v')(v kl)-(P' «)(v k)(v kl)

(kl k)(v'«)-(kl'«)(v'k) ~

(p*"k)(v')-(p")(v k)

(v kl)[(kl')(p' k)-(kl k)(p")]
(v k.)[(pl')(p'k)-(pl k)(p'«)],
(v k)[(kl «)(p; k) —(kl k)(p; «)],
(v k)[(pl «)(ps k) —(pl k)(p2')]
(kl «)(p; k) —(kl k)(p; «),

(pl «)(p2 k) —(pl k)(p2 «)

(3 1)

where i=1, 2.
However, for convenience, we shall write the scatter-

ing amplitude as

The total cross section for the process is given by

m~2
t g„

p, kEmrfgg&

dsp

2Z2(22r) 8 2552(22r)8

d'ky
X (22r)48'(pl+k —kl —k2 p2) ~M fi (, (3.3)

2otl(22r) '

where

&0;= (Q 2+m 2)1~2 ant/, E2 (p2 +m5f2)1~2——.

The bar over Mf; means that we average over the initial

spin states and sum over the 6nal spin states.

For covariant integration, we introduce the following

variables:

xl——(k2+ kl) ',
3ffj 24(p2) (A 1(v «) (v k—)(.v kl)+A 2(v «) (v k).

X2= (Pl—P2)'i
+A 3(v ' «) ('Y ' kl) +[A 41p1 ' «+A 42p 2

' «+A 43k 1 ' «]
X3 P2 1 1

X (v ' k) ('Y ' kl) +[A 5lp1 ' «+A 52p2 ' «+A 53kl ' «](v ' k 1)
x4—(pl k2)

+[Aslpl «+A82p2. «+A83kl «](V k)+Ar(V «)

+[A81pl'«+A82p2'«+A83kl'«])N(pl). (3.2) in terms of which the (3.3) will become

(3 4)

m~ ASCv
g g2

egg 2 2x ' g. k X sash')0

X1+ X2+ P3+ X4+ dxldxsdxsdx4F($)xlpx2)x3)x4)
(3.5)

P.(s,m~s, xl)X(s,m ' xs)]"'[(1—Zl') (1—&2') (1—&3')]"'
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where F(s,xt,xq, xs,x4) is the new ~Mf,
~

' obta, ined after
changing the variables. Here

2s(2m~' —xs) —(s+m~') (s+m~' —xt)
Z1

[X(s,m~', 0)X(s,m~', xt)]'"
—2sxt+ (s+xr —m v'-) (s+m„'—x,)

Z2=
[)j.(s,xt,m~')) (s,m ' xs)]

Z4 Z1Z2
Z3—

[(1—Zts) (1—Zss)]t&s

with

2s(x4 —m~' —m„')+ (s+m~')(s+m '—xs)
Z4

[) (s,m~' 0)X(s&m ',xs)]'

s is the c.m. energy squared and )( ab, c) is equivalent
to a'+ b'+ c' 2ab 2—bc 2—ac-

The limits of integration x1~, x2~, x3+, and x4~ are
found to be'~

100-

80-

QQ5.

0

40-

20-

xt ——(2m.)', xt+—- [(Qs)—mp. ]',
(s+m~') (s+m~' —x t)

(xs)g ——2m~'—

Q I

300 400 500
I I I

600 700

E~ (MpV)

2s

[)j.(s m~'0)) (r m~' ~ )]'"
2$

FIG. 3. Total cross section plotted as a function of the incident
y-ray lab energy. The solid curves show our results and the dashed
curves are the results of Cutkosky and Zachariasen (Ref. 12).
Experimental points are shown: (X) results of Stanford group
(Ref. 26) and (o) those of Chasan et ul (Ref. 27)..

(xs)~——s+m. '——,
' (s+xr —m~')

[X(s,m~', xt) iX (xt,m. ',m. ')]"'
2x1

s Sl~ S 1%7r —X3

(x4)~ = m~'+ m.'—
2s

P, (s,m~', 0)X(s,m ' xs)]"'

2$

y {ZtZs~[(1—Zt ) (1—Zs')]'~')

The curve of Fig. 3 summarizes the results obtained
for the total cross section in the energy range 410—750
MeV of the incident y ray (E,).

IV. CONCLUSIONS

We have calculated the total cross section for the
process y+p ~~+s.+p in the framework of current
algebra. The results are in good agreement with experi-
ment. We would like to point out that the calculations
have been done in the limit q2 = 0, which is less restrictive
than the soft-pion limit. We also disperse both pions
simultaneously. By doing so we have taken into account
the earlier suggestion of Carruthers and Wong, " that
a more precise treatment of the Bose symmetry of the
final pions may be required than that given by Cutkosky
and Zachariasen, "who treated the pions differently and
reinstated symmetry by symmetrizing their results.

Our numerical results are in better agreement with
recent experimental da, ta than those of Cutkosky and
Zachariasen, ' as shown in Fig. 3. However, they are
quite close to the results of Carruthers and Wong" ob-
tained by using the static model. Our total cross section
reaches its maximum at an incident p-ray energy that
is lower than that corresponding to the experimental
value. Also, at higher energy (Er)500 MeV), the cross
section is lower than that given by the recent experi-
ment of the Stanford group" and agrees well with the
earlier measurement of Chasan et al. 2~ This may be be-
cause we have not included the Roper resonance and
the effect of final-state intera, ctions. We may expect their
inclusion to bring the results into better agreement with

experiments.
We make use of Adler's consistency condition, "and

neglect the contribution of the 0. term. Whether its in-

clusion, which has been strongly suggested by many
authors, "' will change the results appreciably needs
further analysis. In view of the close agreement of our
calculated cross section with the experimental results,
one would expect its contribution to be small.

"J.V. Allaby, H. L. Lynch, and D. M. Ritson, Phys. Rev.
142, 887 (1966)."B.M. Chasan, G. Cocconi, V. T. Cocconi, R. M. Schechtman,
and D. H. White, Phys. Rev. 119, 811 (1960).

~' See, for example, K. Raman, Phys. Rev. 164, 1736 (1967).
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APPENDIX A

Here we evaluate the last diagram of Fig. 1.Nucleon

(N) and nucleon isobar (N*) poles can be included in
three different ways, taking (i) N-N poles, (ii) N* N-
poles, and (iii) N N* p-oles. We shall consider in this
Appendix the case (iii) and thus write the matrix ele-

ment as

lc2(0)l
I:kk "(o)3 IL'k (o)lk ik ""p(p ) k.,"(k...,- lv. ,v.,—

m, ) 3M2

2 (p2+kl)vk(p2+kl)v2 (p2+kl)vlrvk (p2+kl)vk'Yvkl

3M 3M

r ' p2+r ' kl+M 'r pl —'r ' k2+mN
X ~ (~ k~ "—k"~ ) ;.' N—(P1),

(p2+kl) M (pl k2)

which we put in the following form after some numerical simplification involving y matrices:

g~*(o)~2(o)g~(o)
(2p2 kl+kl' —M'+mN') '(k2' —2pl k2) '

4m.

2 2%N
Xll(p2) (V 2)(V k)(V kl) (M'+MmN p2 kl)(—pl k2 2mN') — (M—+mN)p2 kl

3M 335

mN 2
+ [kl k(MmN+2p2 kl 2M'—)+p2 k(2p2 kl+M'+MmN)5 —(y 2)(y k) — - (M+-mN)(p2 kl)(pl k2)

3%2 3M

4mN
l2mN

+ (k kl p2 kl)(M'+—MmN p2 kl) , (M—+mN)m—Nkl k+ p2 kl[kl k(M mN) p2 —k(M+—mN)]
3M 3M' )

k1 k
+(y 2)(v kl) — [pl k2(MmN -2M'+2p2 —kl)+2mN(M mN)p2 kl —mNM'(M+—mN)]

33I2

p2 k
+ (P, k, (kk'+kkmv+2P, k,)—2mvP, k (kv+mv) —kmvkk(kP+kkmv kk, .k,)j)—

3M2

k1' 6

(7'k)(V'kl) [pl k2(MmN 2M +2p2 kl)+2mNp2'kl(M mN) mNM (M+mN)5
33''

2'6
+ [p, k2(M'+MmN+2p2 k,) 2mNp, k—,(M+mN) 4mNM(—M'+MmN 2p, k, )5—!)3M2

k1.k
+(y ~) (2p2 kl[pl k2(M mN)+m—N(MmN M'+2p—2 kl) 2mN'(M— mN)] —M'(M+—mN)(pl k2 2mN')}-

33f2

p2 k
(2p2 kl[(M+mN)(pl k2+2mN' 2mNM)+mN—(2p2 kl+M'+Mm'N)5}

I3%2 )
k1 ~—(7 k) (2p2 kl[pl k2(M mN)+mN(MmN —M'+2p2 kl) 2m—N'(M mN)]- —
3M2

l2'6
M'(M+—mN)(pl k2 2mN')} —— 2p2 kl[(M+mN)(pl k2+2mN' 2mNM)+—mN(2p2 kl+M'+MmN)5 !3'2 )
('V'kl)[2mN(p2' 2kl'k kl' 2p2'k)]+(p2' 2kl'k p2'kkl' 2)

2 4mN
X! pl k2(2p2 kl+M'+MmN)+ ', mN(M+mN) —-(M—mN)p2 kl ! r rsN(pl).

'k3M2 3M'
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APPENDIX 3
In the following, we have replaced the form factors

with their numerical values given in Sec. III:

p, k2+p2 kl+2mN'
3g= 1.225~

~ ~

pl k(2p2 kj+kj2)

pl k2+p2 k —2mN'

p2 k(2pl k2—k2')

pl'k2 p2'kl 2mN
+2.61

(2p2 kj+kj )(—2pl k2+k2)

2mN(kl k —p2 kl)
A g

——1.225~

~ ~

p2 k(2pl k2 —k2')

p2 kl(2mN'+pl k)

mNpl k(2p2 kl+kl')

5.228'+

(2p2'kl+kl )( 2pl'k2+k2)

5g= d 52= A g3= 0

2.45p2 kl

pl k(2p2 kl+kl')

2.45(p2 kl —kl k)
A62 ——

p2'k(2pl'k2 k2 )

5.22p2 kl
)

(2p2 kl+kl')( —2pl k2+k2')

2.45(2mN'+ p2 kl —pl k)
~6S=

pl k(2p2 kl+kl')

5.22(pl k2 —2mN')
7

(2p2 kj+kj )(—2pl. k2+k2')

p2 kl(2mN' —pl k2)
+2.61

mN(2p2'kl+kl )( 2pl'k2+k2)

1 .225t 2mN'+p2 kj pl k2 —2mN')

mN i2p2 kj+kj' 2pl k2 —k2' &

0.8112

k jj~y'+P ki —Pi&)
2p2'kl+klpl. k

fkj'k p2'kl p2'kl
) A7 ——2.45! +

(2pj k2 —k2' 2p2 kl+kl'

mN(p2 k+kl k)—5.22
(2p2 kj+kj )(—2pl k2+k2')

1.225 2mN'+ p2 kl
A 4g=-

mN pl k(2p2 kj+kj)

1.225 pl k2 —2mN'

mN p2 k(2pl k2 —k22)

p, klp2 kqkj k(pl. k2 —2mN')—5.22
7

(2p2 kl+kl')( —2pl k2+k2')

kl k(p2 kl+2mN')
A gg

——2.45
mNpj k(2p2 kl+k2')

m~ky k
2 82

———10.44
(2p2 kj+kj )(—2pl k2+k2')

mNp2 k
383

——10.44
(2p2'kl+kl )(—2pl'k2+k2 ) (2p2'kl+kl )( 2pl'k2+k2 ) ~


