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An earlier investigation of a class of models similar to SV(6) is extended by the study of Adler-Weisberger-

type commutation relations within the framework of the R(11) model. The commutators of the AS =0 and

~
AS

~

=1 currents yield
~ fz ~

=1.5 and
~ fz ~

=1.0, respectively, and n—= (f/0+1) '=1.0, when the baryons
are assigned to the simplest representation 32. A sizable mixing with octets in the 320 or some larger repre-
sentation is required to bring these values into agreement with experiment. We conclude that SU(6) is
unique among models of its type in producing interesting results within a framework of reasonable simplicity.

I. INTRODUCTION

ALTHOIJGH SU(6) has proven very intriguing as
a symmetry of elementary particles, its most

straightforward application is marred by several in-
correct predictions, such as ~G~/Gv~ =-sg. ' Hence, it is
of some interest to investigate other groups which
might be at least equally consistent with experiment.
The assumption that such an alternative group must
(locally) contain SU(3)QxR(3) and not mix different
trialities or statistics in the same irreducible representa-
tion leads to R(11) as the next simplest possibility. '

An earlier investigation' of the weak-interaction
predictions of R(11) produced an excellent value for
the ratio

~
G~/Gv ~, to be compared with the rather poor

result obtained with SU (6) symmetry when the baryons
are assigned to a pure 56-dimensional representation.
In that investigation, we assumed the structure of the
weak currents to be given by the adjoint representation,
and assigned the stable spin--,'+ baryons purely to the
32-dimensional spinor representation of R(11). The
remaining states of this representation must then be
associated with a second octet of baryons having spin
and Parity ra+, Presumably including the E*(1470).'
Also, it is necessary to assume the existence of. as yet
unobserved spin-0 mesons to be associated with the
usual 0 and 1 states in the lowest meson multiplet.
Further investigation into the mass spectrum and
two-body decay widths of the second baryon octet' was
inconclusive, since the masses could not be 6xed by
any simple assumptions concerning the R(11) mass
tensor.

In the present paper we investigate R(11) through
commutation relations of the currents, derived from
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the baryon 32 in analogy to the quark-model derivation
for SU(6), and resulting sum rules of the Adler-
Weisberger type. For SU(6), this method is independent
of assignments of particles to representations; however,
as we shall see, such is not the case for R(11).

Thus we are interested in the decomposition of the
direct product of 32 with its conjugate representation—
that is, since 32 is self-conjugate, in the decomposition

32X32= 462,+330.+165.+55,+ll,+l.. (1.1)

(Here s and a denote the symmetric and antisymmetric
parts of the product, respectively. ) Note that the
adjoint representation 55 occurs only once [as does the
35 in the product 6*X6 for SU(6)], so that simple
predictions are possible. The decompositions of the
R(11) 55 in terms of R(8)QxR(3) and SU(3)QXR(3)
submultiplets are, respectively,

55 —+ [0100,0],s+ [1000,2],4+ [0000,2js

~ (8,1)+ (10,1)+(10",I)+ (8,3)+ (1,3), (1.2)

where the pairs of numbers in the brackets are the
greatest weights of the R(8) and R(3) representations,
respectively [R(8) has four diagonal operatorsj, the
subscripts on the brackets give the dimensions of the
R(8)QXR(3) submultiplets, and the pairs of numbers in

the parentheses represent the dimensions of the SU(3)
and R(3) representations of the SU(3)QxR(3) sub-
multiplets. In analogy with the Gell-Mann scheme we
assume that (8,1) contains the time components of the
vector weak-current and charge-current operators while

(8,3) contains the space components of the axial-vector
weak-current and magnetic-moment operators, in corre-
sponding positions with respect to SU(3). [This is
what we expect if the regular representation of R(11) is
to contain the nonrelativistic limits of these operators. ]
We shall then proceed to apply the current commutation
relations from R(11) following the methods used by
Adler and Weisberger' for SU(6).

However, we must note one further feature of R(11).
On restriction of R(11) to R(8)QxR(3), the baryonic
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B=(g/&2)(8+iB'),
B'=(~~/KS)( a'za'), —

where both g and f have unit magnitude. "
(1.4)

representation 32 decomposes into two distinct spin--,
octets:

32-+ [0010,1~+[0001,1j; (1.3)

with respect to SU(3), these octets become indistin-
guishable. There is no additive quantum number in
R(11) which distinguishes between these two octets
(which will be denoted by B and B'); they differ only
by belonging to different eigenvalues of the R(8)
Ca,simir operators. Since there seems to be little evidence
for R(8) symmetry in particle physics at the present
time, we allow the low-lying physical octet of baryons
8, together with a second octet of physical spin- —.', +

baryons 8', to be linear combinations of the "mathemat-
ical" baryons B ancl B'. We have previously shown'
that time-reversal covariance for the baryonic 55
currents restricts this relationship to the form

The total cross sections o. (m.+p, qs) are for m+ on protons
at labolatoly cDclgy iIItp& g Is thc pion-nucleon coupling
constant, and M is the nucleon mass. Adler' est™ated
the corrections to (2.4) due to the fact that the pions
are not on the mass shell to be 0.09&0.03. Thus they
obtained

~ f~~ =1.15+0.07 (Weisberger),

~
f~~=1.24~0.03 (Adler),

(2.5)

~

f2[=I.» (2.6)

and an uncertainty presumably similar to Adler's.
The purpose of the present section is to obtain the

corresponding relations when the currents satisfy
commutation relations appropriate to R(11).

In general, the relativistically covariant vector and
axial-vector baryon currents will be of the form

where the errors are intended as reasonable estimates.
Hohler and Strauss" have reevaluated (2.4) and one
of Adler's correction terms using more recent data, with
the result

II. CURRENT COMMUTATION
RELATIONS IN R(11)

V: Py„SCgf,
4V.vssD&4, (27)

A. AS=0 Axial-Vector Currents

Adler' and Weisberger' used the quark model for
the 65=0 time component of the axial-vector current"

As&s&(x) =Pt(x)ysN(x), (2.1)

where P(x) and N(x) represent protonlike and neutron-
like quark fields, respectively, to obtain the equal-time
commutation relation

As&"t(0), d'yes&" (y,0) = —2Is(0), (2.2)

where I„(0) is the third component of the isospin
density at the origin. Evaluation of (2.2) between one-
neutron states immediately yields unity for the right-
hand side; for the left-hand side, it is necessary to use
the hypothesis of partially conserved axial-vector
current (PCAC)" and standard field-theoretic tech-
niques. Weisberger obtained the result' "

[1—X(~p)]f,'=1, (2.3)

where f~ is the axial-vector form factor at zeromomen-
tum transfer, and

2M dqo~q'
X(srp)—= [ (~'p, vo)

— ( p, vo)3
go =0.25. (2.4)

"In Ref. 3 we adopted the convention that 8 contained the
operators which create particles, in order that one-particle states
and their corresponding fields should have the same transformation
properties. We return here to the more usual definition of fields,
i.e., B"~o) transforms similarly to the state ~B)

"We use the notation and conventions of J. S. Bell, CERN
Report No. 66-29, Vol. 1, 1966 (unpublished).

"M. Gell-Mann and M. Levy, Xuovo Cimento 16, 705 (1960).

where the y„are Dirac gamma matrices and the CJ,
and D~ are matrices representing internal degrees of
freedom such as isospin. In the case of SU(3) internal
symmetry, the matrices CI and D& both belong to octet
representations, F type for CI, and a mixture of F and
D types for D&."'" It is actually the nonrelativistic
limits of the currents (2.7) which contribute to leptonic
baryon decays andhence are to be identified with R(11)
operators. Using the representation of the gamma
iiiatllces

y;=za'so'&(z=1&2&3)
&

p"=osI& ps=orI, '(2.8)

we find in this limit that only the ™ecomponents of
the vector currents and the space components of the
axial-vector currents survive, i.e.,

V~ V, : c'Vg CIC

(2.9)
A~A: CeD&C,

where C denotes the "large" components off. When the
fields are quark fields, then Vs and A belong, respec-
tively, to the (8,1) and (8,3) octets of currents in the
SU(6) adjoint representation 35. In the case of R(11),
we assume similarly that the currents (2.9) are in the
SU(3)QxR(3) submultiplets (8,1) and (8,3) of the
adjoint representation 55.

In order to evaluate the commutator occuringin (2.2)
for R(11), we need the time components of the axial-
vector currents —not the space components —which are
contained in the (8,3) submultiplet of the 55. However,

' G. Hohler and R. Strauss, Phys. Letters 24$, 409 (1967).
14 N. Cabibbo, Phys. Rev. Letters 10, 531 (1963).
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[Ao),Ao) = [A, t,A,), (2.12)

up to possible Schwinger terms, which presumably do
not contribute to the sum rules in question. Since the
axial-vector currents A, are contained in the 55, we
can use the explicit representations of these currents in
terms of the baryon fields given in Ref. 3. FinalLy, we
note that the nonrelativistic limit is adequate for
evaluation of the commutator since the result, being the
time component of a vector-current density evaluated
between one-neutron states, is a Lorentz invariant. "

The bS=O weak-interaction current Ao"' which
occurs in Eq. (2.2) transforms under SU(3) like the p+

meson (or the + baryon). Figure 2 of Ref. 3 shows that
this current can be obtained by applying the loweiing
operator I' ~ to the current transforming like K~+,
which is given in Eq. (2.4) of Ref. 3. We also apply
the operator E to lower the spin projection from +1
to 0. Thus (with a change of phase) we find terms of
the form

Ao'" ~ j(po+) = -'(R '*" ' —- "*-+' + ' ' ' j i (2.13)

with respect to the mathematical baryons in the 32,
where the subscripts denote spin projections. It is
convenient to introduce a matrix representation for
the currents in terms of a column 8 with components

ynX+X" X AR R (2.14)

where, for example, y is a column with components

(2.15)

and the primes denote members of the second mathe-
matical octet in the 32. In terms of this basis,

j(p+)=-'8)M") 8 (2.16)

we note from (2.7) that the commutator of time
components of the currents at equal times t=O is

[Aot(x,0), Ao(y, O)]
=)Pt(x,0)[0)IDit, (risI SD))

X)P(x,0)b (x—y)+ S.T.
=)Pt(x,O)II[D)), D&))P(x,0)5(x—y)+S.T. , (2.10)

while the commutator of space components with the
same space direction is

[A,t(x,0), A;(y, O))
=Pt(x,O)[Ig~, @D)t,IS~,SD,]

X)P (x,0)6 (x—y)+ S.T.
=)p&(x,0)II[D&), D&))p(x,0)6(x—y)+S.T. , (2.11)

where S.T. denotes possible Schwinger terms. We have
used. the fact that, for anticommuting fields )P,

[4'( 0)A4( 0), P( 0)&4( 0)7
= )Pt (x,O) [A,B))P(x,0)o (x—y) +S.T.

Thus,

M &"=[—x'(12)+ (s/W2) (34)—(is/v2) (36)
+ (&/~2) (45)+ (i&/v2) (65)—(78))Ox[(12)
—(34))+[x(12)—(x'/v2) (34)—(ix'/v2) (36)
—("'/&2) (45)+ (i~'/W2 (65)+ (78)7

g [(21)—(43)) . (2.17)

The first factor in each direct product is an 8&8
matrix acting on the column given by (2.14), while
the second factor is a 4&&4 matrix acting on columns
such as that given by (2.15); the expression (ab) denotes
a matrix with unity in the ath row and bth column, and
zeros elsewhere; and x=exp(2ni/3). The scale of the
axial-vector weak current is fixed by the requirements
that the vector weak current give the standard value

(p~ J„(n)=n,y„n„ (2.18)

when evaluated between neutron and proton states,
and that the axial-vector current have the same
"length" as the vector current. By lowering (3.26) of
Ref. 3 we find that the normalization factor is +24;
thus,

A. =(V24)J(p")=(4-:)8'M S. (2»)
Since baryon fields anticommute, the commutator of

the two currents takes the form

[A, (')t,A o(')7= $[StM")tS, StM"'8)
=$8t[M(') t, M('))8. (2.20)

Evaluation of the matrix commutator yields

M(o)t M(o)7 Ctm[(11)+(33))
+C*3[(22)+(44)) (2 21)

with

C=- —(11)+(22) —(33)+(55)
—(77)+ (88)+i(46) i(64) .—

Under the transformation (1.4) from mathematical 8 to
physical baryons Q, (2.20) finally becomes

io)t A io))

= -,'Qt([—(11)+(22) —(33)+(55)—(77)+(88))
Ia [(11)+(22)+ (33)+(44))+[(46)—(64)]

L
—(»)+ (»)—(34)+ (43)7)&

=${—p+*pp+ ng*n+ —Zy+*Z+++ ~ ) . (2.22)

We note that this commutator is no longer equal to
minus twice the third component of isospin; in fact,
since it connects Z' and A', we see that it cannot be
expressed as a linear combination of isospin and hyper-
charge operators. It must be a vector current, and
hence it is a combination of terms from the SU(3)
SE(3) multiplets (S,l), (10,1), and (10*,1) in the SS.
The operators with the correct SU(3) weight [00) in.

the (8,1) are just the hypercharge and the third compo-
nent of isospin; hence it is (10,1) and (10,1) which
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contribute the operator connecting Z' and A'. YVe can
write (2.22) in the form

where
[A o

&")t,A o &'&]= —2Io+-',-Z. (2.23)

( f, (
=1.41-1.52 (2.27)

for the result from the 65=0 commutation relation
in E(11).

B. ~48~ =1 Axial-Vector Currents

Keisberger' also obtained an independent evaluation
of f~ from the commutator of the time component of the
strangeness-changing (3S= 1) axial-vector weak current

Ao"'(*)=I't(x)yo& (*) (2.28)

with its Hermitian conjugate, where &&(x) is the A-like

quark field. In SU(6), this commutator is

Ao ' t(0), d'y Ao"'(y, o) = —Io(0)——,'F (0), ( . )

where I,(x) is the third component of the isospin
density and Y(x) is the hypercharge density. Evaluation
of (2.29) between one-neutron and one-proton states
yields respectively,

[X(K)o)—(1—2n)'] f~' ———1,
and

[X(KP)—(2—4n+ 8n'/3)] fg' ———2, (2.30)
where

23P
X(IC&o)=

Ãg

and

[n(I~+e, qo) —n(te-e, go)]
gP =—0.36 (2.31)

Z= L
—(11)+(22)+ (33)—(55)—(77)+(88)]

&8& [(11)+(22)+ (33)+(44)]+3[(46)
—(64))&3[—(12)+(21)—(34)+ (43)] (2.24)

gives the difference between the R(11) and SU(6)
results. With respect to this same basis (the physical
baryons), the isospin and hypercharge operators are

Io
———,

' [(ll) —(22)+2 (33)—2 (55)+ (77)—(88)]
[(11)+(22)+ (33)+(44)] (2.25)

and

I'= L(11)+(22) —(77)—(88)]
&8& [(11)+(22)+ (33)+(44)]. (2.26)

Evaluation of (2.23) between one-neutron states
yields 2 for the right-hand side. Making this change
in (2.3) and using the values X(harp) corresponding to
(2.4)—(2.6) yields

including the contributions from the unphysical regions
below threshold. The parameter n is related to the f/d
ratio:

nl(1 n)—=dl—f
The acceptable solution of (2.30) is

(2.33)

M &'& =[—(1/v2) (14)+(o/v2) (16)—(25)+x'(37)
+ (+/~2) (48)—(o~'/v2) (68)]&3[(12)—(34)]
+[(1/V2) (14)—(i/v2) (16)y (25)
—*(")—(*'/~) (4') —('*/~) (")]

[(21)—(43)]. (2.36)

As in (2.20), the commutator of Ao&') with its con-
jugate is found to be

[A &'&t A &')]=-'St[M&')t M&'&]8

[M &')t,M &')]=D [(11)+(33)]+D*S[(22)+ (44)]
and (2.38)

D= —(11)—(22)—(33)+(77)+ (88)—i (46)+i(64) .
With the transformation (1.4) from mathematical to
physical states, (2.37) finally becomes

[A &i)t A &i)]

= o&'f [—(11)—(22) —(33)+(55)+(77)+ (88)]
L(11)+(22)+ (33)+(44)]

+L(46) —(64)] [(12)—(21)+(34)—(43)]}~
P+*P+ +* ++—.") (—2 39)

Note again, that (2.39) contains operators which connect
A' and Z', etc., and thus is not expressible simply in
terms of isospin and hypercharge. Using the definitions
(2.24)—(2.26), we can express (2.39) in a form analogous
to (2.29):

[Ao&i)t Ao&')]= —Io——,
o F—-', Z. (2.40)

I f~ I

= 1 28+0 10 n=0 75~0 10, (2 34)

where the limits given correspond to the estimated
uncertainties of about 25% in the evaluation of the
integrals (2.31) and (2.32).'

We again use the equality (2.12) between the com-
mutator of the time components of the axial-vector
currents and that of the space components. The 65=1
current corresponding t.o Eq. (2.29) in R(11) must
transform under SU(3) like the K*+ meson; thus we
obtain the component j (Eo +) with zero-spin projection
by merely applyin. g 8 „to Eq. (2.4) of Ref. 3. With
the normalization factor found earlier, this yields

Ao&') = (+24)j (Eo*+)= (Q-o)stM &"I (2.35)

dqo( q(
X(I P)= [n(&—+P &Io) n(& Pao)l-

x'g g p

Evaluating (2.39) between. one-neutron states in one
case and one-proton states in the other yields —

2 for
= —0.71, (2.32) the right-hand sides in both cases. Making these changes
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C. Possible Representation Mixing in R(11)
In SU(6), if the baryons are assigned to the simplest

possible representation 56, direct evaluation of the
axial current matrix element leads to a value of f~
which is in violent disagreement with experiment.
This is interpreted to mean that there is considerable
mixing with octets from other representations of SU(6).
Such mixing does not invalidate the results mentioned
above LEqs. (2.5) or (2.6) and (2.34)), all of which are
in reasonably good agreement with the experimental
values"

I f~ I

= 1.18&0.025 and n= 0.67&0.03 or 0.63,
since the commutators (2.2) and (2.29) involve only
the SU(3) diagonal operators Is and Y.

On the other hand, in R(11) the corresponding
commutation relations (2.23) and (2.40) involve the
additional operator Z which cannot be expressed in
terms of I3 and F. Thus representation mixing does
affect the results obtained from comnzutation relations
in R(11).We give below an example of representation
mixing which will bring the R(11) results (2.27) and
(2.41) into agreement with experimen. t. (However, we
make no claim as to the result of a direct evaluation of
the axial current matrix elements. )

Comparing the action of Z on the baryonic 32 as
given by (2.24) with the action of the diagonal operators
B, , B, on the baryonic 32 as given by Figs. 3
and 4 of Ref. 3, we 6nd that

Z= 2B 2B7 2B'e B,. — — —(2.42)

Using the mappings given in Table lI of Ref. 3, we
find that Z can also be expressed. in terms of R(8)
diagonal operators:

in (2.30) and using Weisberger's values for the integrals
(2.31) and (2.32), we find

I f~ I
= 1.04&0.12, cr= 1.01&0.10 (2.41)

to be the prediction of the ICOSI =1 commutation
relations in R(11),when the baryons are assigned. to 32.

two 56-dimensional R(8) representations both contain
SU(3) octets:

L1001)~ 27+ 10+10*+8+1,
L1010)~ 27+ 10+10*+8+1. (2.45)

(p I zl p) = —1+ (s/5) I p I'

This expression vanishes for

III = (5/SP'

The confutation relations also involve

(2.49)

(2.50)

(~ I
z

I ~& = (p I
&+~z~-~

I p)
=(pll-z, ~,z)z,

l p&y(plzLz„, z ~)l p&

=(plLI:&+,z),&- ) I p&+(pl zl p&, (2 51)

where the E~~ are isospin raising and lowering opera-
tors. The double conunutator is readily evaluated from
(2.43) and the expressions for E~~ and B~——2Is in
terms of R(8) operators given by Table II of Ref. 3,
with the result

Thus the baryons could be assigned to these, as well as
to the two R(8) octets. The state which transforms
like the proton, say in the L1001),is is given by

I p) ss
——(Q-,') (y/2 (1—x)

I
002 —1)+-,'(x—x')

I
0001D)

+ I
0001m&+-,'(2—*)

I
oooo&

1.-,'v2(1 —x')
I
200—1)}, (2.46)

where the letters A, 8, C, D distinguish between states
which are degenerate with respect to the R.(8) diagonal
operators. We note immediately that Ip&ss is not an
eigenstate of Z since Z=5 for the state I200—1),
whereas Z= —1 for all the others. Let the proton state
be given by the combination of R(8) octet and 56 states:

S 56 (2.47)
Then

zl p) = —
I p)+(4/v'5)(1 —x')pl 2oo

—1), (2.4s)

and"

Z= 2H, —B,—Hg. (2.43)
(PE+g,z), E g) = —2Z. (2.52)

Thus the evaluation of Z will be determined by the
R(8) representation into which we inap the baryons.
The 32 is the smallest R(11) representation in which the
baryons could be placed; the next smallest is the 320.
Restriction of 320 to R(8)R(3) submultiplets gives

320= L1000,1)sM ~
I 1001,1)rrs+L1010,1)ris

+L0001)3)ss+L0010,3)ss+ I 0010)1)rs

+L0001,1)rs. (2.44)

Assignment of the baryons to the two R(8) spinor octets
would lead to the same results as above. However, the

"C.P. Bhalla, Phys. Letters 19, 691 (1966); N. Brene ef af.,
ibid. 11, 344 (1964); W. Willis eI a/. , Phys. Rev. Letters 13, 291
(1964).

Hence for the choice of mixing parameter (2.50) we have

(elzln&=(plzlp&=0, (2.53)

so that the commutation relations (2.23) and (2.40)
yield the SU(6) results (which agree with experiment)
when evaluated between proton and neutron states.

III. CONCLUSION

When the baryons are given the simplest possible
assignment in. R(11), the Adler-Weisberger sum rules
derived from current commutation relations for AS= 0

16Exactly parallel statements can be made concerning the
protonlike state in $1010j, because of the symmetry of Z and of
R(8) under interchan e of c and d operators. ln particular,
(2.49) is unchanged if P)eq is taken to be a linear combination of
states from the (1001j and the $1010$.
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and ~hS~ =1 currents lead to inconsistent values of
f~, and neither of these values, nor the value of cr,

agrees well with experiment. By contrast, the corre-
sponding values derived from SU(6) commutation
relations are entirely consistent with experiment.
Thus when baryons are given a "simple" assignment,
R(11) might appear to be similar to SU(6) in that it
gives mixed good (the value for f~ obtained in Ref. 3)
and bad results.

However, as Gell-Mann has pointed out, 7 results
depending only on commutation relations should be
considered more fundamental than symmetry predic-
tions which depend on assignments to representations,
since the former may still hold in the presence of
symmetry breaking which obscures the latter. From
this viewpoint, SU(6) is quite sa, tisfactory since the

correct Adler-Weisberger predictions are independent
of the assignment of baryons to SU(6) representations.
On the other hand, the corresponding predictions from
R(11) disappear when representation mixing is allowed.
Furthermore, mixing with a representation of dimen-
sion at least 320 is required to bring the results into
agreement with experiment, so that little can be claimed
on the grounds of simplicity. These same criticisms
apply also to the possibility that a modihcation of
PCAC might bring the R(11) results into agreement
with experiment.

Thus we conclude that SU(6) provides by far the
most promising model of its kind I in the sense of Ref. 3,
of a simple group which incorporates both SU(3) and
rotational symmetryj, at least unless one is willing to
go to a complexity an order of magnitude greater.
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Photoproduction of pions at high energy and small angles has been studied by using the Lorentz group
including space reflection and the PCT transformation to project the "crossed partial waves. "The dominant
contribution to the differential cross section for photoproduction of pions at high energy comes from Toiler
poles in the complex ) plane with M = 1 and 7.= &1,where M and X are the Casimir operators of the group
O(3, 1) and v is the signature of the Toiler pole. These poles in the complex P plane have been decomposed
and classified into different families of Regge poles with alternating signature and parity. The residues of
the principal Regge trajectories with &'=1, 0-'= &1, where v' and a- are, respectively, the signature and
parity of the Regge trajectories, have been calculated explicitly in terms of the residue of the Toiler pole
with M = 1 and T = I. These calculations allow us to derive a relation between the residues of the two con-
spiring Regge trajectories n (t) and a &'& (r) at t= 0, which is consistent with the kinematic constraints on the
helicity amplitudes in photoproduction of pions along the forward direction.

I. INTRODUCTION

'OLLOWING the successful application of 0(3,1)
symmetry by Toiler' in the study of forward

elastic scattering, Salam, Delbourgo, and Strathdee'
have extended the use of the Lorentz group to nonfor-
ward and inelastic processes. The purpose of this paper
is to study the photoproduction of pions at high energy
and along the forward direction by using the principal
series of unitary irreducible represent. ation of the
Lorentz group including space reQection and the I'C2
transformation to expand the helicity amplitudes in the
crossed s channel. (For the meaning of "crossed partial
waves" see Refs. 1 and 2.)
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