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O(4) Symmetry and the Regge Trajectory of the Pion*
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An oR-shell generalization of O(4) symmetry is developed, which is applicable to unequal-mass reactions
involving arbitrary spins. The symmetry breaking at t/0 is also investigated. These methods are used to
analyze the hypothesis that the pion Regge trajectory has the Toiler quantum number M=1 at zero
momentum transfer, as seems to be implied by high-energy photoproduction data. We find that if this
hypothesis is correct, then the pion trajectory is necessarily quite complicated. The M = 1 trajectory must
mix with another trajectory. The XNx vertex function then shows a zero near t=0, in agreement with
some 6ts to high-energy data, but this zero is factorizable. Moreover, a model is exhibited that seems
consistent with the hypothesis of partially conserved axial-vector current.

~ ~HE nature of the pion's Regge trajectory is one of
the outstanding questions of Regge-pole theory.

The hypothesis that the pion may have the Toiler"
quantum number M= 1 leads to a very interesting con-
nection with the hypothesis of partially conserved
axial-vector current (PCAC), ' as well as to striking
predictions for high-energy reactions, which seem con-
sistent with photoproduction and np charge exchange
data. 4 ' There are, however, several difhculties remain-

ing, both with the connection to PCAC and with the
high-energy predictions. For example, fits to rtp charge
exchange and to sr+ photoproduction with M=1 pion
exchange require rapidly varying pion residue functions
with zeros near t=0."Some authors have found this
unreasonable, while others have disagreed on the order
of these zeros. '

The quantum number M arises from the 0(4) or
0 (3,1) symmetry of equal-mass scattering amplitudes at
vanishing momentum transfer, t=0. In order to cope
with the questions raised in the first paragraph, we
must generalize the symmetry to unequal masses and
investigate its breaking at t/0. We do this by adopting
an off-shell approach, using the Bethe —Salpeter (BS)
equation as a model. Detailed investigations of the SE
and mp BS equations in the ladder approximation have

been carried out: The results will be published in a
lengthier communication. ' In this paper we present
those results that we have been able to infer from the
models and that seem to be of a general nature.

We write the BS equation as

M- s -s(p', P; E)

=B-t -s(p'P'K)+) d'qM-t v 4 (P'q E)

XG, , (q,K)B (q,p,K), (1)

where G is the product of the two single-particle
propagators. The momentum assignments are shown in
Fig. 1. The M amplitude is related to the physical t-
channel helicity amplitudes (t=E') by

T)„,, b)„b(S,t)
=u..(),„',E+p')up () „',E-p')M. .s-,.s(—p', p; E)

Xu. (X., ', K+p)u—tt() b, ',E p), (2)-—
where the I's are the appropriate external particle wave
functions (spinor, polarization vector, etc.).To simplify
the BS equation, we define the a,mplitude (henceforth
suppressing subscripts whenever possible)

R(p', p,E)=M(p', p,K)G(p,K),
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which obeys the equation

R(P' P K)F(p E)=B(P'P,E)
FIG. 1. Kinematics.

+X d4q R(p', q,K)B(q,p,K), (4)
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where Ii—=G '. We make the usual Wick rotation to
make the p space Euclidean.

We now expand R, 8, and Ii in a set of basis states
which transform irreducibly under O(4) rotations of the
relative momenta p and p', with E held fixed. Such a
rotation is a symmetry operation for the BS equation
at E=O, but we shall also be interested in small,
nonzero values of t, at which the symmetry is broken.

7 W. R. Frazer, F.R. Halpern, H. M. Lipinski, and D. R. Snider.
U.C.S.D. Report (unpublished); H. M. Lipinski and D. R. Snider,
U.C.S.D. Reports (unpublished).
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ZJ g™(n,Q)

gznM Q D~ s,+Ms(Q)D v, tris(Q) (6)

where the D's are the 0(4) representation matrices [see
Ref. 7 or Ref. 2, Eqs. (6) and (7)j, and where ji and js
specify the way the field of the spin-S particle transforms
under homogeneous Lorentz transformations. For ex-
ample, the vector field has j&= j&=—,'.The normalization
factor is

1 (n+M+1)(n M+1)—

2 (22+1)
(7)

After projecting Eq. (4) onto our 0(4) basis states,
we find that the SS equation takes the following form:

Q Eg " '(P', P,t)Fg
'

(P,t)

=J3 "(P',P,t)

+X ~ gsdg Ep"r'(p', q, t)Bp'r(q, p, t), (8)

where we have introduced the symbol Y—= (n,M,Z} to
stand for the set of 0(4) quantum numbers. Henceforth
we specialize to simple interactions for which 8 is
independent of E, and is therefore diagonal in the 0(4)

We choose our 0(4) reference frame such that
E= (0, 0, 0, i—gt) T. he 0(4) basis states are written

~
n, M,J,ns, Z ). The quantum numbers n and M, the

eigenvalues of the Casimir operators, are for physical
values of J, the maximum and minimum values of J
contained in the representation. "It is frequently con-
venient to label the representations by j& and j2, where
n= jr+ js and M= ji—js. Then ji and js are the
eigenvalues of the Casimir operators of the two SU(2)
subgroups of 0(4) SU(2) )&SU(2). The quantum
number Z is the total spin, not in the rest frame but in
the frame in which the relative momentum points in the
timelike direction. The three dots indicate other quan-
tum numbers, such as intrinsic parities, which may be
needed to complete the description of the state.

The amplitudes M tt tt(p', P,E) are matrix elements
between states ~n, p, Q~), where the direction of p is
specified by three angles Qs= {@,8,$},and where n and P
are the spinor indices. The transformation coefficients
between such states and the 0(4) basis states

Z,„,....M(~,P,Q)

=(,P,Q~ nM J~Z.
a»d ~M~ & Z&n (5)

have been calculated in Ref. 7. They vanish unless

~M( &J&n and ~M( &J &&n. By way of illustration,
the transformation coefficient for a two-particle state
with spins 0 and S is given by

quantum numbers: Bg ' =5q qB~.' No interesting fea-
tures of the problem are changed by this simplification.
The symmetry breaking is now confined to the inverse
propagator F, which takes the form

~~"(P,I) =~'"(p)&r r+(«)J7r»'"(P)
+terr z ' (p)+ ' ' ' (9)

If we take 6 to be the simple unrenormalized propa-
gator, then Eq. (9) is a finite polynomial in Qt. At t =0,
the equations decouple and Rg

' ——0 unless Y= Y'.'
There is no problem with unequal masses in this
formalism, since we are working with oB-shell ampli-
tudes. When we discuss the construction of the physical
helicity amplitudes from the R amplitudes, we shall find
the peculiarities of the unequal-mass kinematics ap-
pearing explicitly.

Our formalism is also well suited to discussion of the
0 (4) symmetry breaking at t WO as a perturbation about
the symmetry point. "We are interested in Regge poles
and their residues near t=0. To find the Regge tra-
jectories it is necessary to continue the amplitude
Eq

'
(P',P, t) in J, keeping tt = n Jand tt'= n—'—J in-

tegrals. 'At t=0, ~=f(." and M=M', so that it is possible
to label trajectories by their M and tt values (it =0 means
a parent trajectory, it = 1 means first daughter, etc.). In
order to investigate the M= 1 hypothesis for the pion,
we shall concentrate our attention on a trajectory
having M = 1 at t=0. We assume that our interaction 8
is su%ciently well behaved that the BS equation is of
Fredholm type. If 8 is not suKciently cooperative. we
impose a cutoff. This will be discussed in more detail in
forthcoming papers. Moreover, we assume that Bg is
regular in J, permitting the continuation of the scat-
tering amplitude in J, and we further assume that there
exists a Regge trajectory J=n(t), with M=1 at I=O.
This can be investigated numerically in speci6c BS
models, and indeed we have found that, in the BS
equation for EN scattering in the ladder approximation
through scalar meson exchange, the highest-ranking
trajectory at )=0 with the quantum numbers of the
pion has M=1. A numerical investigation of the be-
havior of the trajectories for small finite t is in progress.
Such a calculation has already been carried out by
Chung and Snider for the spinless case."

More correctly, the kernel Bz ' of the integral equation is
diagonal only in the O(4) Casimir quantum numbers n and M, at
t =0.

9 Since P') involves only one power of E, it obeys a selection
rule: Either he=+1 and AM=0 or he=0 and AM=&1.
Similarly, F&~& involves only ~An[ &2, ~5&~ &2, so that only a
finite set of coupled equations need be solved to obtain a solution
to a given order in gt.

"Off-shell generalizations of O(4) have also been made by G.
Domokos, Phys. Rev. 159, 1387 (1967);R. Sawyer, ibid. 167, 1372
(1968); G. Domokos and P. Suranyi, Hungarian Academy of
Sciences Central Research Institute for Physics Report (to be
published). R. Delbourgo, A. Salam, and J. Strathdee /Phys.
Letters 2SB, 230 (1967)] have constructed a generalization to
6nite t, but it is not the same as the one presented here. In par-
ticular, their formalism necessarily involves daughter traiectories.

"V. Chung and D, R. Snider, Phys. Rev. 162, 1639 (1967).
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TAnrE l. Kinematical behavior of transformation coefficients X(i,t) connecting 0 (4) basis states to helicity states; fire™dzsz"'vfactor.
Here n=mp m—ss and p =Np/2V't, where ¹=t+—(mr+ms)' and p'= t+—(mr —mr)'
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(X=1)+(lj,= —1) P.=1)—(X= —1)

In this paper, we are concerned primarily with the
general nature of the pion residue function, not with
numerical results. When we apply perturbation theory
about t=0, we find a result that is, at first sight, quite
discouraging: We find that as long as nondegenerate
perturbation theory is valid, the physical pion cannot lie
on an M = 1 trajectory. This has been guessed by several
authors, ""who made qualitative arguments similar to
the following: If the pion pole were at (=0 with M= 1,
its residue would have to vanish, since J&M for integral
values. To be more precise, an &=1 "pion" would
choose nonsense at t =0. Then if it is possible to continue
smoothly to t= m ', this pion would continue to choose
nonsense. In the context of the BSequation it is possible
to prove these statements. If, however, the uncoupled
trajectories cross, then perturbation theory is no longer
valid. In order to make these remarks more quanti-
tative, we must return to another technical matter: the
projection of physical helicity amplitudes.

We wish to obtain the transformation coefficient be-
tween a physical helicity state and an O(4) basis state,

Xr*(hi, )is,t) = (Jmki)is
~
nM JmZ ) . (10)

We can obtain this by combining Eqs. (2) and (5), and
by observing that the external wave function u (q) of a
particle of spin S is given simply, in terms of repre-
sentation matrices of O(3,1), by

u. ()i,q) = D. , ai, ""(0,)
For the spin-zero —spin-5 scattering example of Eq. (6),

TABLE II. The dye), &'»'2 factor in X (X,t). To form X 's, multiply
coefficient from Table I by this factor.

we find that

cost/i =
2mtv't

m$ —m2
(12b)

cosf~=
Lt (2mi'+ 2ms' —t)$"'

These angles are not necessarily real, so that d's in
Eq. (12a) are defined by analytic continuation.

Tables I and II list the important features of some of
the X's, which we shall need later. Note that Eqs. (12)
exhibit the well-known singular nature of the limits of
equal masses and t —+ 0. One case is especially simple:
First take equal masses, then go to 1=0. At this point,
P„=pi —,'7r, and Eq——. (12a) reduces to essentially the
form derived by Freedman and Wang. ' A virtue of our
formalism is that this limit appears as a special case of
our more general formulas, and all the appropriate
kinematical factors are exhibited.

Now let us return to the question of an M=1
trajectory in the vicinity of t=O. We see from Tables I
and II that the residue of such a pole vanishes at J=O
in the )i= 0 (sense) state, but remains finite in the )i= 1
(nonsense) state, as we mentioned above. But the
question remains: Away from t=0, where the O(4)
symmetry is broken and M/1 contributions are mixed
in, does the residue of a trajectory which is M = 1 at t= 0
continue to choose nonsense at J=O? We can answer
this by analyzing "sense and nonsense" in the 0(4)
basis states ~n, M,J,m, Z). The transformation coeffi-

X P t)=~™~ri"Q )rfvsi (Pi 0), —(12a)

where

t+mi ms

Spins Helicity state Factor

01
01
01
1 1
2 2
1 1
2 2
1 1
2 2
1 1
2 2

X=O
X=a1
X=O

Il l)—I

—s

I2 2&+I —s

1)

—l)—$)

'2 G. F. Chew (private communication)."R.Sawyer, Phys. Rev. Letters 19, 137 (1967).

NI'
1

N

p
E

J 1 1

J 0
J+1 0 1

J 0 0
1+1 0 0

J, 1, 1

1

gt
tv'J
v'(t J)
t+J

J, O, 1 J+1,0, 1 J, O, O J+1,0, 0

v'(t J)
v't
v'(t J)

1

1

TABLE III. The t and J dependence near t =0 or J=0 of
O(4) matrix elements of the inverse propagators. The matrix is
symmetric.
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cients Zr vanish unless, for physical J, ~M
~

&J&n and

~
M

~
&Z &e. We label the corresponding states 0 or v at

a given physical J according to whether or not these
restrictions are met, while we reserve for the terms
sense and nonsense their usual meaning in terms of
helicities. These labels are given in Table I for J=O.
One finds the result from Table I that o states are sense
choosing at J=O, while v states are nonsense choosing.
Thus if the t&0 perturbation is to succeed in making the
M= 1 trajectory choose sense at J=O, it must involve
mixing with an 0. state. But we have found that matrix
elements for 0-v transitions vanish like gJ, just as is
well known to be the case for sense-nonsense transitions.
(See Table III.) Then as long as nondegenerate pertur-
bation theory is applicable, the residue of a trajectory
which is M = 1 at t= 0 continues to choose nonsense
even in the presence of the finite-t perturbation.

This reasoning fails to apply to a case where there is a
crossing of the uncoupled trajectories. "To exhibit this
situation most clearly, we consider a model version of
Eq. (8), which can be derived as an approximation to
Eq. (8) by expanding in eigenfunctions of the kernels.
In this model we couple one v state (i.e. , the M = 1,J= n

state which we hope to associate with the pion) with one
0 state by means of the algebraic equationv

0
oj

/
a~~~av

exploring the consequences of such a trajectory-mixing
model of the pion. "

The residues of the poles in Eq. (14) factor, as they
also do in any Fredholm-type BS equation, yielding a
pole of the form M;,=F,I',/(J —n ), where i,j= v, o.. In
the trajectory-mixing model. the vertex functions of the
s. trajectory can be seen from Eq. (14) to behave as
follows: I'„~Qn and F, ~ t". The vertex functions in
helicity amplitudes are then given by

q. P, t) = Q X'(X,t)I', (t). (16)

FIG. 2. A Chew-Frautschi plot showing a level-crossing situa-
tion; ————uncoupled trajectories, —actual trajectories. Since
the lower trajectory is pure M = 1 at J=0, it chooses nonsense at
that point.

dt" J b J—n, t R„] 8,
where a, b, c, and d are constants; n;(t) is the i trajectory
in the absence of coupling; and cv depends on the par-
ticular trajectory chosen (see Table III). There is a
similar equation in which the final subscript is v. The
solution of these equations is

R„„=b(J—n, )B„/det, R„,= —ct"(QJ)B,/det,
(14)R„=a(J—n„)B,/det, R,„=—dt (QJ)B„/det,

where
det= ub(J n„)(J n.) cd—t'"J — —(15)

At t=0 the trajectories decouple, and we shall be
interested in the one which is type v at t= 0, which we

shall call the x trajectory. Again at J=0 the trajectories
decouple, and either J=n. or J=n„at this point. That
is, the m trajectory coincides with either the 0. or v

trajectory at J=0. If it coincides with n„, nondegenerate
perturbation theory applies, and indeed we see from
Eq. (14) that R, vanishes at this point. However, the a.

trajectory may coincide instead with n, at J=O, by
virtue of a nearby crossing of the uncoupled trajectories,
such as shown in Fig. 2. We shall call this situation
trajectory miximg. In this case, E is finite at J=0, and
E„„=Oinstead. This seems to be the only possible way
in which the pion could lie on a trajectory which has
M= 1 at t= 0. The rest of this paper will be devoted to

' R. Sugar and R. Blankenbecler, Phys. Rev. Letters 20, 1014
(1968).

In the following, we shall consider only one trajectory
of each type, v and 0., although in general there may be
several trajectories of each type involved in the mixing,
as well as others whose contributions can be obtained
from simple nondegenerate perturbation theory. These
add no new features to the problem.

There are several possible trajectory-mixing models
for the pion, depending on which of the 0- trajectories
participates in the mixing with the v trajectory. This is a
question of detailed dynamics, to which we cannot give
a reliable answer, but we shall exhibit the form of the
pion residue function in two models. Perhaps the most
natural choice for the trajectory is 3f=0, Z=O, ~=0
(parent). With this choice &v=2, and one finds from
Tables I and II and Eqs. (14) and (16) that some im-
portant X=O (sense) pion residues are: (see Tables I
and II for definitions of the kinematic factors)

(spin 0)-(spin 1),

(spin —,')-(spin —,'), singlet,

~-(t) = (v't)Lg, -(t)+g.&'3(p'/&); (»b)

(spin -', )-(spin ~i), triplet,

"At t =0, the trajectory of the pion s conspirator coincides with
the trajectory at the pion. In contrast with the pion's trajectory,
we assume that the pion's conspirator does not mix with any other
tra}ectory. If the trajectory is rising, it will choose nonsense at
J=0 by virtue of the above arguments.
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where the g's are functions, presumably slowly varying,
of the external masses and of t. The factors in paren-
theses agree with the well-known kinematical factors for
unequal-mass scattering. "

Note that the NNs. vertex, given by Eq. (17b),
probably has a zero in the small-f region (since Ps= f for
this case), as found necessary if the photoproduction
data is to be fit with M = 1 pion exchange. 4 If the masses
of the spin-~ particles are made unequal, the zero moves
away from the small-t region. The zero in the XSw
vertex implies a double zero in the pion residue in esp

charge exchange, whereas the published its use a single
zero. ' These fits should be reexamined.

The spin-0 —spin-1 residue also indicates a nearby zero,
but not at the same place as the NNs. vertex zero. On
the other hand, consider the NN*rr vertex, where Ne
denotes a "pseudonucleon" of spin —,

' and negative
parity —for example, a pion and nucleon in a relative 5
state. This vertex (evaluated at t=m ') is just the
s-wave m-E scattering amplitude with the m-S center-
of-mass energy equal to m2. Then the pion will occur in
the triplet state, so Eq. (17c) is relevant. Since this
vertex involves E' rather than I"p lt does not behave
very diRerently for equal or unequal external masses.
This does not convict with anything currently known
from study of high-energy reactions, but it is relevant to
Mandelstam's remarks about the possible connection of
PCAC with the pion trajectory having M=1 at 3=0.

Mandelstam argued that if the pion has M = 1 and if
it had zero mass then its coupling to all equal-mass
channels would have to vanish. ' This is Adler's self-
consistency condition, deduced from PCAC. This is
indeed consistent with the limit f= m ' —+ 0 in Eq. (17).
But there is the difIiculty, already noted in other
contexts, " that the EE*m vertex vanishes only by
virtue of the factor gt. This factor is the same for equal
mass N and N* (soft-pion emission) as it is for unequal
mass (hard-pion emission), whereas according to
PCAC, the m-E s-wave scattering amplitude should be
small at threshold compared to its value well above
threshold '8

'& G. Cohen-Tannoudji, A. Morel, and H. Wavelet, Ann. Phys.
(N, Y.) 46, 111 (1968), and references therein."S. Mandelstam (private communication); R. F. Sawyer,
Phys. Rev. Letters 21, 764 (1968)."S.Weinberg, Phys. Rev. Letters 17, 617 (1966).

While we have concluded that the hypothesis of an
M=1 pion trajectory does not unambiguously imply
PCAC, we And it possible to construct models in which
this hypothesis is not obviously inconsistent with
PCAC. One such model has the M=1 trajectory mix
with an M=O, 2=1, fr=1 (i.e., first daughter) tra-
jectory. This would require a very steep slope of the
uncoupled daughter trajectory cr(f) in order to avoid
having its parent lie unacceptably high. "Such a model
leads to the following predictions:

(spin 0)-(spin 1),

y~ = (Qt) [g.rr. (&)+g.N'P' j(p~/NP); (18a)

—,'-—,', singlet,

—,'--,', triplet,

The contributions of other trajectories not involved in
the Inixing can be calculated from perturbation theory.
The additional terms which these trajectories contribute
to Eqs. (17) and (18) are proportional to powers of t or
to (mrs —ass).

A11 three vertex functions in Eq. (18) have zeros near
/= 0 in the equal-mass case. Moreover, all three predict
that the ratio of soft- to hard-pion emission will be
small, of the order of tn '/(mt —ms)s.

To summarize, we have found that if the pion lies on
a Regge trajectory having M= 1 at t=0, as seems to be
implied by the high-energy data, then the pion tra-
jectory is necessarily quite complicated. The M=1
trajectory must mix with another trajectory. The re-
sulting NN residue function shows a zero near (=0, in
agreement with some fits to high-energy data, but this
zero is factorizable. Finally, a model has been exhibited
which seems consistent with PCAC.

We have benefitted greatly from stimulating dis-
cussioos with Dr. R. Blankenbecler, Dr. G. F. Chew,
Dr. R. W. Haymaker, Dr. S. Mandelstam, and Dr.
R. Sugar.

"The parent BI=0, 2=1 trajectory might be identified with
the A1.


