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This is 0.75 at J= 10, 0.9 at 7=20. The other crossing
coefBcients are much closer to 1 at J=10. Roughly
then, the J-independent bootstrap solution (12) evolves
for J& 10. Of course, bootstrap solutions may be found
at lower J which are not the simple ones given in
(1o)-(12)

(4) A reasonable parametrization of the actual
p-As trajectory is J 0.5+rtt', with rrt in GeV. A
readily verified consequence is that the decay modes
Ps —r Ass '+sr or Ass+" —-z Ps+sr become energetically
impossible for J&12. If, however, our result for high
J, g(ps~ Ass '+sr)=g(Ass+' —r ps+sr), continues to

maintain approximate validity for J between 5 and 10,
and if the initial stage in the decay of p~(As~+') is
ps —+ Ass '+sr(Ass+'-+ p~+zr), then the approximate
equality of the widths ( 20 MeV) of the resonance
observed in the mass-spectrometer data' could be
understood as a consequence of the model.

We are aware of many of the shortcomings of the
present approach, such as the lack of prediction of a
mass formula or the lack of results for small J.Neverthe-
less, we feel that the model has provided a simple and
transparent dynamical approach to Mandelstam's
hypothesis' as applied to the p-A2 system.
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Proton-proton scattering at large momentum transfers is analyzed in detail, with spin and the Pauli
principle taken into account. It is pointed out that various empirical formulas that fit the gross feature of
the data in the neighborhood of 90' c.m. scattering angle are essentially consequences of the Pauli principle.
E'"rom the data we directly determine the effective Regge trajectory. Two different trajectories seem to
dominate different ranges of momentum transfer, and the switchover from one to the other happens almost
discontinuously. The trajectories are consistent with E+0.5t and 1+0.25t, respectively. This supports an
earlier model proposed by Huang, Jones, and Teplitz, who suggested that the two trajectories correspond
to the Pomeranchuk trajectory and a Regge cut generated by it. Assuming this interpretation, we deduce
some properties of the Pomeranchuk trajectory. The differential cross section for pp scattering at large
momentum transfers is Gtted in detail, using this model. Consequences for polarization in pp scattering and
the cross sections for PP scattering are also discussed.

1. INTRODUCTION
' 'HIS paper contains a detailed analysis of pp

scattering at large momentum transfers, based
on an idea proposed by Huang, Jones, and Teplitz. '
They suggested that, from the point of view of a Regge
analysis, scattering at large momentum transfers may
be simpler than diffraction scattering, because the
Pomeranchuk trajectory P, which is thought to have a
smaller slope than all other Regge-pole trajectories,
could dominate the scattering.

Despite the unique position that I' is supposed to
have as the leading trajectory, there is a woeful lack
of direct experimental evidence for it. A possible reason
(apart from the possibility that it may not exist) is that
most scattering data pertain to the diffraction region,
where other trajectories are also important. It is not
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f Part of this work is contained in. a thesis, submitted by S.
Pinsky to the Physics Department, M.I.T., in partial ful6llment
of the requirements for the Ph.D. degree.' K. Huang, C. E. Jones, and V. L. Teplitz, Phys. Rev. Letters
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surprising, therefore, that the parameters of I' obtained
from fits to di6raction scattering depend sensitively on
assumptions made about the forms of residue functions
for I', as well as for other contributing trajectories.
Various fits' of this type yield different values for the
slope of E, and they spread over the range 0.1—0.5
(BeV/c) . This indicates that if P exists, its slope is
probably less than 1 (Bev/c) ', the approximate
common slope of all other known trajectories. It seems
reasonable to suppose that if I' exists, it will eventually
dominate all other trajectories at large momentum
transfers. In Ref. 1 this idea was proposed and tested
in pp scattering at 8=90', where 8 is the c.m. scattering
angle.

There are, however, complications anticipated by the
theory. Whenever I' can be exchanged in a scattering
process, the simultaneous exchanges of two or more I'"s
are also possible. These exchange processes lead to
Regge cuts (referred to as the I' scut, the I' I' I' cu-t, --
ete.) whose branch points have trajectories that lie

W. Rarita, R. J. Riddell, C. B. Chiu, and R. J. N. Phillips,
Phys. Rev. 165, 1613 (1968), and references therein.
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successively higher. ' It was assumed in Ref. 1 that these
cuts have very small effective coupling compared to
that of P, so that they are unimportant for a certain
intermediate range of momentum transfers; but
eventually, at sufFiciently large momentum transfer,
P-P must dominate over P, and at still larger mo-
mentum transfer higher cuts must also enter.

A particularly dramatic possibility is that the relative
coupling constants are such that the switchover from
P to P-P takes place near a nonsense wrong-signature
point of P. If the residue function of P has no pole at
that point, then the contribution of P must vanish, and
the switchover would occur almost discontinuously.
In Ref. 1 this point was chosen for simplicity to be the
first nonsense wrong-signature point (n= —1) and the
sharp break in the experimental cross section observed

by Akerlof et al.4 was repioduced at the right place by
choosing n'=0. 3 (BeV/c) '.

The analysis of Ref. 1 is only qualitative in that the
protons were taken to be spinless. For scattering at
0/90', it becomes essential to take spin into account
in order to have the proper symmetries required by the
Pauli principle. In this paper, we take full account of
spin and the Pauli principle, and will thus be able to
compare theoretical results with the vast amount of
excellent data at a wide range of angles that has since
become available. ' ' Our results support the basic
validity of the picture proposed in Ref. 1, and suggest
that the P trajectory and the cuts generated by it do
exist. A summary of the contents of the paper is as
follows.

The tedious, but necessary, preliminaries are given
in Secs. 2—5. It is noted that the Pauli principle requires
a "conspiracy" of Regge singularities in a crossed
channel, and we give a practical recipe to deal with it.

In Sec. 6, we show that as a consequence of the Pauli
principle, the differential cross section near 0=90' has
the property

d ( do.

i
ln— = f(k), —

d sine( dQ g=9e'

3 D. Amati, S. Fubini, and A. Stanghellini, Phys. Letters 1, 29
(1962); S. Mandelstam, Nuovo Cimento 30, 1127, (1963); 30,
1148 (1963).

4 C. W. Akerlof, R. H. Hieber, A. D. Krisch, K. W. Edwards,
L. G. Ratner, and K. Ruddick, Phys. Rev. Letters 17, 1105
(1966); Phys. Rev. , 159, 1138 (1967).

' A. R. Clyde, Ph.D. thesis, University of California, Berkeley,
1966 (unpublished).

6C. M. Ankenbrandt, University of California Report No.
UCRL-17257 (unpublished). C. M. Ankenbrandt, A. R. Clark,
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170, 1223 (1968).

~ J. V. Allaby, G. Bellettini, G. Cocconi, A. N. Diddens, M. L.
Good, G. Matthiae, E. J. Sacharidis, A, Silverman, and A. M.
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where f(k) is finite, and is generally a rapidly increasing
function of the c.m. momentum k. In contrast, this
quantity is expected to be infinite for nonidentical
particle scattering such as 7rp and pp. In view of this,
it is perhaps not surprising that in pp scattering,
empirical formulas of the forms' "

d0—~ exp( —Ak sine),
dQ

(Ores, r, Ref. 9)

exp( —A 'k' sin'8), (Krisch, Ref. 10)

exp( —A "(k'+m') sing), (Allaby et a/. , Ref. 7)

can account for the gross behavior of do/dQ near
0=90'. A more refined empirical formula proposed by
Krisch, "which decomposes the differential cross section
into two terms,

do/dQ= (do+/dQ) for„gag+ (do.+/d&)e~q„«u,

bears a certain similarity to the Regge formula that we
derive in Sec. 4 LEq. (49)]. None of the above forms,
however, agrees with the data in detail.

We start the main part of the investigation by erst
giving a direct experimental test of the hypothesis
that, at large t, pp scat—tering is dominated by a single
Regge trajectory. Analyzing the data in a special way,
we show in Sec. 6 that there appears to be two different
ranges of —t in which a single trajectory dominates.
The dominating trajectory is different for the two
ranges, and the switchover from one to the other occurs
almost discontinuously. This gives direct support to
the picture of Huang, Teplitz, and Jones, in which the
two dominating trajectories are P and the P-P cut.
From the data we can draw the following conclusions,
which do not depend sensitively on the choice of residue
functions:

(a) The trajectory of P is consistent with a straight
line of slope about 0.5 (BeV/c) '.

(b) The P Pcut, which has-half the slope of P,
exists.

(c) Some or all of the residue functions of P have
fixed poles at n= —1, of the type pointed out by Jones
and Teplitz and by Mandelstam and Wang. " There
appears to be no fixed pole at n= —3. The break in the
cross section first observed by the Argonne group4 is
attributed to the fact that P passes through o.= —3.

The main difference between these results and those
of Ref. 1 is that P is found to have a larger slope than
thought, so that the relevant nonsense wrong-signature
point is now 0.= —3, instead of a= —1.

We 6t the differential cross section in detail in Sec. 7.
The model makes use of three trajectories: P, P-P,

9 J. Orear, Phys. Rev. Letters 12, 112 (1964).
"A. D. Krisch, Phys. Rev. Letters 11, 217 (1963)."A. D. Krisch, Phys. Rev. Letters 19, 1149 (1967).' C. E. Jones and V. L. Teplitz, Phys. Rev. 159, 1271 (1967);

S. Mandelstam and L. L. Wang, ibid. 160, 1490 (1967); see also
A. H. Mueller and T. L. Truenran&ibid 160, 1296 i1967)..
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2. PAULI PRINCIPLE

We define, as usual,

s=4(k'+m')
t= —2k'(1 —s) )

u = —2k'(1+s),
where k and s= cos8 are, respectively, the momentum
and the cosine of the scattering angle in the c.m.

system, and m is the proton mass. The corresponding
quantities for the t- and I-channel reactions will be
distinguished by an appropriate subscript:

kP = —m'+43,

s,= 1—2s/(4m' —t)

k '= —m'+-'4u,

z„=1—2s/(4m' —u) .

(2)

There are 16 helicity amplitudes" f.z, ,&'( , s),iwhere
the helicity indices c, d, u, b, independently take on the
values + and —.They are so normalized that the
unpolarized differential cross section is given by

2o.—= (16''s) ' p I fcq, cs'(s, t) Is.
dQ a, b, c, d

Owing to the conservation of parity, total spin, and the
invariance under time reversal, " only five helicity
amplitudes are independent, and are taken to be

fi'= f++,++' fs'= f+;
fs f+ t~ f4 5—-.-+

fs'= f++,~'
(4)

» M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 1, 404 (1959).
Our helicity amplitudes are theirs multiplied by (16m's)')'.

"M.L. Goldberger, M. J.Grisaru, S. W. MacDowell, and D. Y.
Wong, Phys. Rev. 120, 2250 (1960).

and I'-I'-I'. There are eight free parameters, which are
adjusted by a &' fit to 97 selected data points. The
Anal theoretical cross section agrees reasonably well
with all the data available in the range

5&pi,b&26 BeV/c,

3& 3&18—(BeV/c)'

consisting of some 200 data points. The latest measure-
ments from the CERN group, ' consisting of 86 data
points, have not been used in our fit. They agree with
our theoretical curves in shape but not in absolute
magnitudes. We note that they di6er signi6cantly from
earlier measurements from the same laboratory~ in
absolute normalization.

Predictions on polarization in pp scattering and on
the differential cross section of pp scattering are made
in Sec. 7.

Finally, some theoretical speculations on extremely
high-energy phenomena are given in Sec. 8.

TABLE I. Relations among the helicity amplitudes,
f.scs', (—=cd,ab).

Independent
amplitude

(++, ++)
(++s ——}
(+—+—)
(+- -+)
(++, +—)

(——,
(——,
(—+,
(—+,
(——

—(——,
—(+—,

Equal to

——)
++)~

—+)
+—)
+-), (-+, --), (-+, ++),—+), —(++, —+),
++),'-(+-,'--)'.

All others are related to one of the above as indicated in
Table I. For convenience, let f'( st) denote the column
vector whose components are fi', , fs' The. n

do/dQ= (87r's) '(I fi'I'+
I fs'I + I

fs'I'
+If I'+4lf:I') (5)

lt can be shown that the Pauli principle imposes on
f'( ts) the requirement

f'(s, u) =(Rf'( ts),

where R is a 5)&5 matrix with (R'= 1:
0

0
@=00

0 0
.0 0

0 0 0
0 0 0
0 —1 0

0 0
0 0 —1

cos20 —sill~0
d I/2 (g)—

~

~

sin-,'0 cos-,'0

cosXc——)st/(s 4m') (t 4m') 5"'——

(10)

There are again five independent t-channel helicity
amPlitudes, taken to be fi', , fsc, which are defined

"T.L. Trueman and G. C. Wick, Ann. Phys. (N. Y.}26, 322
(&964).

At 0=90'wemusthave fs'+f4'=0, and fs' 0, leavmg-—
only three nonvanishing independent amplitudes.

The helicity amplitudes for the t-charinel reaction
pp~ pp are denoted by f,z,z&'(s, t), where capital
subscripts refer to the helicities of antiprotons. Thus
f,~ Ds (s,t) is the helicity amplitude for pp —+ pp, with
total c.m. energy squared equal to t, and invariant
momentum transfer squared equal to s. We define the
u-channel helicity amplitude f,z,z s (s,t) by an identical
statement except that the total c.m. energy squared is I:

fcA, Db (s&")= fcA, Db (s&u) .
The crossing relation between f,z, z&' and f,z„c is"

dg. ,'"(x,)ds. b'i'(m —xc)
c', A', D', b'

Xd, (ir —c&c)dD g'"(&c)f;~,g) 4'(s, t), (9)
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where
f(s, t)'=OR(st) f(s,t)', (12)

1
1

OR(st) = ', sin-'X,

8
—b

1 1
—8 1

—a
—1

—b —b

—1

1
b

4b
4b
4b

—4b
2 (1—b')

, (13)

a= 2 csc2&]—1, b= cotxg. (14)

by the analog of (4). Table I applies also to the t

channel amplitudes. Denot;ing by f'(s, t) the column
vector whose components a.re fi', , f5', we deduce
from (9), after a, st:raightforward calculation, that

singularities are precisely the crossed effects of the
I-channel Regge pole, with the crossing governed by
(16). This is expressed more precisely by the following
recipe. Let

f'(s, t) = contribution of a, t-channel Regge

pole to f'(s, t) . (18)

The contribution of the same 'Regge pole in the u
channel to f"(s,t) is then f"(s,t), which, when crossed
over to the t channel according to (16) and (8), gives
OR '(s, t)tROR(s, u) f'(s, t). The complete contribution
associated with a given Regge pole is taken to be

f~,i, '(s, t) = f'( st)+ OR'(st)(ROR(s, u) f'(s, l) . (19)

Clearly this satisfies (17) identically. Substitution of
(19) into (12) yields the contribution to f'(s, t) as-
sociated with a given Regge pole:

f~,i,'(st) =OR(st) f'(s, t)+ (ROR(s, m) f'(s, l), (20)(16)f'(s, t) =OR
—'(st)(ROR(s, N)f"(s, t) .

The s-I crossing relation follows from (12), (8), and (6):

f'(s, t) = OuR(s, u) f (s,t) . (15)

Comparison between (15) and (12) yields the t n-
crossing relation:

Using (8) again, we convert this to

f'(s, t) =OR '(st)%OR(s, u) f'(s,u), (17)

which is the Pauli principle stated in terms of t-channel

helicity amplitudes. It is important to note that (12)
and (15) are completely equivalent if f' and f are the
exact helicity amplitudes. In an approximate calcu-
lation, we must maintain this equivalence in order to
preserve the Pauli principle. One way to do this is to
insure that (17) is satisfied.

Let us examine the implication of (17) for Regge
poles. A Regge pole in the t-channel is a pole in the
complex angular-momentum plane of the partial-wave
amplitudes of the t channel. Its contribution to f',
through the Sommerfeld-%atson transformation, can
be uniquely isolated from contributions from other
poles, cuts, and "background terms, " and has the
general form

f( t) =P(t)Q--« —(—)(1~ '"'")/ o (t),

where Qs is a Legendre function of the second kind,
and spin complications have been ignored for the present
purpose. The functions n(t) and P(t) are arbitrary, but
whatever they are f(s, t) cannot satisfy (17). We there-

fore conclude that whenever a Regge pole occurs it
must be accompanied by other singularities that
conspire with the Regge pole to satisfy the Pauli
principle. " That is, there must always be additional
additive contributions to f(s,t). We shall not inquire

into the detailed nature of the conspiring singularities, "
but merely note the obvious fact that they reflect the
existence of the same Regge pole in the I channel. It is
therefore intuitively suggested that the conspiring

"Symmetry in a given channel generally requires a conspiracy
of Regge singularities in a crossed channel. The more familiar type
of conspiracy arises from the conservation of angular momentum.

"They could consist of an infinite family of poles.

which satisfies (6) identically. The recipe can also be
used for a Regge cut. In general, the second term of (20)
is negligible in the diffraction region (0 —+0), but it
becomes comparable to the first term as 0 —+ 90'.

Since the recipe (20) has not been proven, the
question arises whether we have counted the same
Regge pole twice. We have learned' in the case of
pion-nucleon scattering that a simple addition of
Regge poles in the t channel to those in the s channel
(direct-channel resonances) is incorrect, for the result
is inconsistent with analyticity. We believe that no
double counting is involved in the present case, for
(20) does not represent a simple addition of t and-
n-channel Regge poles, but the relative amounts of
t- and n-channel contributions are uniquely determined
by the Pauli principle. A preliminary study of the
consistency of (20) with finite-energy sum rules"
reveals no inconsistencies. This analysis is in progress
and the results will be published separately in due time.

As an indication for the validity of the recipe (20),
we may compare pp scattering with pp scattering at
8=90'. The latter differs from the former only by a
charge conjugation of either the initial or final state
in the t channel. A Regge trajectory even (odd) under
charge conjugation makes the same contribution to the
two processes with the same (opposite) sign. Since the
Pauli principle does not apply in pp scattering, a
t-channel Regge pole need not be accompanied by
conspiring singularities. This means that the conspiring
singularities in pp scattering must consist of singulari-
ties of both signatures under charge conjugation, so
that they add for pp and cancel for pp. The I channel
of pp scattering is diferent from that of pp scattering
in that it has baryon number 2 instead of 0. Although
there is no known Regge trajectory of baryon number 2,

'8 R. Dolen, D. Horn, and C. Schmid, Phys, Rev. 166, 1768
(1968).
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a cut may be coupled to the I channel, e.g. , the nucleon-
nucleon cut, which we neglect.

Suppose (20) were incorrect, and that somehow
the t-channel Regge pole alone can be so arranged as
to satisfy the Pauli principle, at least near 0=90'. (We
have seen that this is impossible for all 8.) Then, if a
single trajectory dominates the scattering, we would
expect that pp and pp have the same cross section at
8=90'. Experimentally, ' " however, the pp cross
section at p~,b ——5.9 HeV/c and g=90' is greater than
that of pp at least by a factor of 10. This indicates that
there are additional contributions (which we attribute
to the I channel) present in pp but not in pp. In Sec.
5 C we point out that the assuniption of single-trajec-
tory dominance is justified, and make an absolute
calculation of the pp section using parameters deter-
mined by fitting the pp cross section based on the
recipe (20). The right magnitude of the pp cross section
is obtained where the experimental statistics are good.
At 8=90', where statistics are poor, the theoretical
prediction seems to be too large by a factor of 2—3.
The discrepancy may be accounted for by other eGects,
such as a cut in the I channel.

TABI E II. Helicity states of definite angular
momentum and parity.

State

I 0+&

I 1+&

Charge
conjugation

(—)'
(—)'
(-)~

—(—)~

Pari. ty
—(—)'

( )J
(—)'

—(—)'

Total
spin Trajectory

s, B(1+)

Ag

and related to the original partial-wave amplitudes by

(++ IG I++)= s(Goo~++Goo' ),
(++ I

G'I ——
&
= l (G.o'+ —Go '-),

(+- IG'I+-) =-:(G."+G- -),
(+- IG'I-+&=!(G '+-G "-),
(++ IG'I+ —)=-;G»".

For the purpose of Reggeization, it is convenient to
define new helicity amplitudes more directly related
to Gq„~+. Following Ref. 20, we define five t-channel
amplitudes g;(s, t), which are free of kinematic singu-
larities in s:

composition

.g, no' st) =Q(2J+1)(cA
I
G (t) I Db&di„(si), (21) gs(st) = E (2J+1)Goo (t)eoo +(si),

3. PARTIAL-WAVE AMPLITUDES
gi(st) = 2 (2J+1)G«'+(t)eoo'+(s3),

We define t-channel partial-wave amplitudes by the z=o

de

X=D—b, p=c —A,
go (st) = Q (2J+1)I G,i +(t)eris+(s, )

J=l

+Gris (t)eris —
(s,)],

g4(st) = Q (2J+1)LGias (t)eris+(s, )
J=l

+Gris+(t)eii (s,)),

(22) gs( t)= Z ( J+ )Gio"() ."(s),
J=l

with the inverse relations

Goo +(t) =-', dS Cpp +gy )

G,:-(t)= Ct Cpp gg,

+1

ds(C11 gs+C11 g4) q
Gris+(t) =—,

'

where d&,„s(s,) are the usual rotation coeKcients. 13

For a given J, the four independent helicity states
I++), I

——), I+—), and
I

—+) can be recombined
to form four eigenstates of parity":

lo-&=2- "(I++&- I--&),
Io+&=2 '"(I++&+

I

——&),

I1+&=2-"'(I+—)+ I

—+&)

I1—)=2 '"(I+—
&
—

I

—+&),

where, in the symbol I'A+&, X stands for the total
angular momentum along the direction of relative
momentum, and & corresponds to the eigenvalue of
parity &(—)s. Table II gives the conserved quantum
numbers for these states and the known Regge trajec-
tories coupled to them. The only nonvanishing off-
diagonal transition matrix element is that between
IO+& and

I
1+). We can define five new partial-wave

amplitudes with definite parity, denoted by G&,„s+(t)," (25)

"J. Orear (private communication); A. Asbmore, C. J. S.
Damerell, W. R. Frisken, R. Rubenstein, J. Orear, D. P. Owen,
F. C. Peterson, A. L. Read, D. G. Ryan, and D. H. White,
Phys. Rev. Letters 21, 387 (j.968).

~ M. Gell-Mann, M. L. Goldberger, F.E.Low, K. Marx, and F.
Zachariasen, Phys. Rev. 133, B145 (1964).

"They are related to the amplitudes of Ref. 14 by Goo ——fo,=,V Goo +=f11, GII +=f22, GI0 += fI2g I p 00

Gii (t) = q

Gio +(t) =-',

+1

dS(C11 +g4+Cli gs) ~

+1

ds cyp +g5
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where under the integrals c~„s"=c~„s+(z), and g,
=g(s(t, s),t), with s(t,s) = —2kP(1 —s). The functions

eq„J+ and c),„J+ are defined in Ref. 20, with relevant
ones given explicitly below:

epp +=PJ)
e»'+=[J(J+1)j '(P-'+sP"),
ero'+= [~(J—+1)?'"Ps'
cpp +=PJ,
crrs+= (2J+1) '[(J+1)Ps r+JPs.rj,
cro"= —(2J+1) '[J(J+1)]'"(Ps-r—Ps+r)

eoo'

e»'- —— LJ—(J+1)] 'Ps-",

e1o'

cooJ =0,
C11 =PJ )

C1oJ

(26)

where PJ is a Legendre polynomial in s, and a prime
denotes differentiation with respect to s. In the limit
2, , ~~, e~„J+ dominates over e),„J,so that g1, g3, and

go are dominated by Regge poles of parity (—)s, and
g', g4 are dominated by those of parity —(—)s. The
relation between g; and f' is

where
f'(s, t) = Z(s, t)g(st), (27)

1 0 0
—1 0 0
0 1+s, 1+z&
0 1—s, —1+st
0 0 0

1
Z(s, t)= ,' 0-

0
0

0
0
0
0

e(so 1)1/2

. (28)

g3=g3 g4=g4

g t1/2g

(29)

Then g, (s,t) are free of kinematic singularities in both
s and t, and we assume that they have Mandelstam
representations. When g; is substituted in place of g;
in (25), the resulting partial-wave amplitudes have
Gribov-Froissart representation similar to those for
the scattering of spinless particles, i.e.) they are linear
combinations of terms of the form J'ds A(t, s)Qs+&(s),
where Qs(s) is a Legendre function of the second kind.
The continuation into the complex J plane, and the
introduction of signature, proceeds in a manner analo-
gous to the spinless case. Assuming the convergence of
the Gribov-Froissart integrals, we have the Mandelstam
symmetry2'

G~„s+(t)=G~„i s»+(t) for J=half-integer, (30)

which follows from the fact that Qs(s)=Q s-, (s) at
half-integer values of J. We further have'4

G»s+(t) =Gr i s '&+(t) for J=O, —1. (31)

As discussed in the Appendix, these symmetries give
rise to possible compensating trajectories, but we shall

"L.L. Wang, Phys. Rev. 142, 1187 (1966)."S.Mandelstam, Ann. Phys. (N. Y.) 19, 254 (1962).
"See Ref. 20, Eq. (B16).

The amplitudes g, (s,t) have no kinematic singularities
in s, but they still have kinematic singularities in t. The
latter can be isolated'4" by putting

g1= ~g g1) g2= ~g g2 )

not make use of compensating trajectories in later
developments.

4. REGGE POLES

We consider only the three partial-wave amplitudes
to which the P trajectory can be coupled: Gpp+(t),
Grrs+(t), and G~ps+(t). When continued into the Jplane,
each of these give rise to two signatured amplitudes,
which coincide with G~„s+(t) at J= even or odd integer,
respectively. To avoid a profusion of superscripts, we
denote the continued amplitudes of de6nite signature
(even or odd) simply by Gop(J, t) Gyr(J, t) and Gyp(J t).
The P trajectory is coupled to the even-signatured
amplitudes.

A Regge pole at J=n(t), of parity (—)s and of given
signature, occurs in the form

t', (t)
Gz„(J,t) = +Rg„(J,t),J—n(t)

(32)

where R~„(J,t) contains other singularities in the J
plane, in particular those necessary to satisfy the Pauli
principle, as discussed in Sec. 3. For practical purposes,
we ignore singularities of the latter type, for their
e8ects can be taken into account through the use of the
recipe (20), as explained earlier.

From (25) and (26), it is seen that Grp(J, t) contains
kinematic branch cuts through a factor of LJ(J+1)J".
As functions of t, G~„(J,t) have threshold branch cuts
at kt ——0, which can be removed by dividing the ampli-
tudes by kps. p' The functions n(t) and t'z„(t) have no
left-hand cuts in t, and are therefore real for t&4p, '."
Through the use of two-body unitarity one can show"
that for 4p, '&t&16p', where p, is the pion mass,

t'oo(t)P (t) = tAo(t) j' (33)

This relation is assumed to hold for all t.
To take into account all the properties described

above, together with the kinematic singularities in t

'e See, e g , E.J.Squ.ire. s, Comptex Aegatar 3Eomeeta and parteete
Physics (W. A. Benjamin, Inc. , New York, 1964), p. 46.

~6 A. O. Barut and D. Zwanziger, Phys. Rev. 127, 974 {1962);
R. Oehme and G. Tiktopoulos, Phys. Letters 2, 86 (1962).

'7 V. N. Gribov and I. Ya. Pomeranchuk, Phys. Rev. Letters
8, 343 (1962).
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displayed in (29), we write

P,P(t) = (k,%I) 'n) P,

pii(t) = ()it'/») 't(n+1)XI,

Pip(t) = ~(& '/») 't'"l:n(n+1) j'"() I) p)'"

where s& is an arbitrary scale. For t&4p', 'Ap and P & are
real functions of t having the same sign:

) g) p~&0.

Appendix. The formulas we shall use are

~ (e,t) = —p-(t)&(t)e(n)(-s)-',
gp(stt) 0 t

g (e t) =p»(t)k(t)Ln/(n+1) je(n) (—s )

g (e,t)=p (t)$(t)L( —1)/(+1)3 ( )(— ) '

f (e t) = —pio(t) $(t)l /( +1)1'"e( ) (—s )

where $(t) is defined by (37), and

e( )= 2 I'( +l)/L '"I'( +1)j.

(39)

(4o)

where

e(et) =-poo(t)&(t)&oo'(-s),

gp(st) =0,
Sp(~t) =p»(t) &(t)~»'(—s ),

g (st) =p„(t)](t)a„.+(—s,),

&(t) =7r(n+-', ) (1+41e ' ~)/sin4rn.

(36)

(37)

The function Ei ~+(s) is obtained from eq„~+(s) of
(26) by replacing P (s) with

6' (s)= —(4r ' tan7rn)Q . I(s)
=" '"l- (n+i)/ (n+')j(")

XP( ,'n, —',—-', n; —,
' —n; —s-'—). (38)

Explicit formulas for the relevant Ej,„+are given in the
Appendix.

In subsequent developlnents we expand (36) in
inverse powers of s& and neglect terms of order s&

' in
comparison with 1. These terms amount to about 10%
corrections, and are not physically signi6cant because
they are of the same order as contributions from un-
known low-lying trajectories, as discussed in the

The respective factors n and 1+n in ppp and pii and
the factor t in p» are introduced here merely as a
convenient way to satisfy the factorization property.
They could be removed by poles in ) p and X&. For the
I' trajectory the factor t in pii should be present, and
expresses the fact that at I,=O the trajectory chooses
evasion rather than conspiracy. Possible zeros and
poles in ) p and X~ depend on the choice of "compen-
sation" mechanisms discussed more fully in the
Appendix.

The process of Reggeization consists of converting
the sums in (24) into Watson-Sonunerfeld integrals,
and of evaluating the contributions from singularities
in the complex J plane. Following the procedure of
Ref. 20, in which the Mandelstam symmetry (30)
enables us to push the "background integral" suK-
ciently far to the left as to be negligible, we find that
the contributions from the pole term of (32), corre-
sponding to a Regge pole of parity (—)~ and signature

p, are given by

where nt=—n(t), and

coset= L) (t)+t) I(t)3/L) p(t) —t) I(t)& (42)

A 4= -', n't'P, p(t) —AI(t) 11'(nt+-'P)I'(1 —n, )
&(L(S—u)/2SIj '(nt' —-'t) '(e—' ~ +It) . (43)

The condition (35) guarantees that lcosttttl &1 for
t &0. Both signs in front of Pip in (34) are covered when
tttt varies from 0 to 24r. Note that tIbt is a function of t
only, but A & depends on both I, and s, with the latter
dependence coming solely from the factor (e—N)~t.

When (41) is substituted into (20), we obtain the single
Regge-pole contributions to the s-channel helicity
amplitudes":

fi'(st) =A, l
sin'(x t+-', @t)—(n,s,)

—' sin'-,'pbt j
+A„Lsin'(X„+-', ttt )—(n„s„) ' sinP-,'ttt„j,

fp (st) = —A t cos (Xt+ ptttt) —A tt cos (Xtt+ pttttt),

f4'(s, t) =A tocsin'(Xt+-', yt)+ (n,s,)
—' sin'-', tt tj

—A„cos'(X +prttb„),

f4'(s, t) =A t cos'(X,+ rpttbt)
—A „Lsin'(X„+pittt„)

+ (n„s„)—' sin'-,'y„),
fp'(s, t) = ——',A, sin(2Xt+tttt)+ prA sin(2X„+ttt ),
where A is obtained from A & by replacing t by I at the
same s. Similar definitions apply to X, ttt„, and n„. The
unpolarized differential cross section for one-pole

"Similar formulas, but without the I-channel contributions,
have been given earlier by I. J. Muzinich, Phys. Rev. DO, 1571
(1963); D. H. Sharp and W. G. Wagner, tbitt 131, 2226 (19.63).

To obtain the contribution of a Regge pole to the
cross section, the steps are as follows. (a) Obtain the
contributions of the pole term of (32) to the amplitudes

g of (24); (b) substitute the result into (27) to obtain
P; (c) substitute f' into (20) to obtain f„i,', and (d)
substitute fp, i,' into (5) to obtain der/dQ. The treat-
ment of a Regge cut is similar.

Substitution of (39) into (27) yields the simple
result

COS ptttt

COS -Q
f'(stt) =A, —(1+n —'s —') sin'-'y

(1—n, 's, ') sin'-',

tent

p Slntttt
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f'(s, t) =A,

sin Xg
—cos Xg

SlIl Xg

COS2+g

—
~ sin2&t, ,

Sln Xtb—COS Xtb

+A „—cos'X
—sin +
g sln2X~

(47)

where the information about the specific trajectory
used is contained solely in the functions 2 & and A„. In
fact, the effect of n Regge trajectories can be taken
into account by a redefinition

n

A, =+A„,

dominance is given by

4s'$(do/dQ), .(.
=

I
A I'+

I
A- I

s+Re(A *A-)[cos(2«+2x-+ei+y-)
—(n,s,) ' sin'rsP, —(n„s„) ' sin'isa„$+O(s, '). (45)

This does not depend sensitively on the angle (t „which
depends on the relative coupling Pit/Ppp in the t channel.
In fact, (45) is more sensitive to the parameters con-
tained in A, than to P, . We shall make the simplest
choice"

(46)

or, equivalently, P» ——0, which means that we neglect
the coupling to the triplet spin state of pp in the t

channel. The hypothesis can be directly tested only by
measuring the individual helicity amplitudes. It is very
expedient for our purpose, for (44) becomes

gi(s t) =
dn (s—u

(c '-+r/)lb(n, t)
sinwn( 2s,

+O(s, '),
g2 g3 g4 —g5 —0 ~

where

(52)

p(, t) = ' ( +-,')[r( +-,')/r( +1))D,(,t). (53)

containing terms necessary for the Pauli principle can
be electively ignored.

If we regard a Regge cut as having its dynamical
origin in the simultaneous exchange of more than one
Regge pole, then in contradistinction to a Regge pole,
we would generally expect the same Regge cut to
appear in partial-wave amplitudes of both signatures
and both parities.

The properties of Pi„expressed by (34) are shared by
pz„, for they are general properties of partial-wave
amplitudes. In particular, a factorization property
analogous to (33) can be proved for y),„by an analogous
method based on two-body unitarity. In analogy with
(34) and (46), we put

happ(n, t) = (kP/ss)
—

'Dp(n)t), pip(n, t) =yii(n, t) =0, (51)

where s2 is an arbitrary scale. Little is known about
Dp(n, t) except that it is real, and should vanish at the
branch point n=n, (t).'P If G),„(J,t) has parity (—)~
and signature p, then the Regge cut represented by the
first term of (50), with the choice (51), gives the follow-
ing contributions to g, (s,t):

which holds for any number of Regge trajectories,
under the assumption (46) for each trajectory. We
note in passing that

X,+X„=X„cosX,= [tu/(t 4//s') (u—4r/s') 5'—"

5. REGGE CUTS

The presence of a Regge cut from J= —~ to J=n, (t)
in a signatured partial-wave amplitude of given parity
means that we can write

G),„(J,t) = 2a.i
ac(&) pi (n t)

dn +S),„(J,t), (50)

which is analogous to (32). Again, the part of Sx„(J,t)

'9There is some evidence that P~~ is small compared to P00.
First, phenomenological fits in the diffraction region have this
property. Secondly, it is expected that P»=0 at a=0 /see Eq.
(Ag)g, and if P&r were elsewhere large we would expect the cross
section to have a dip at a=0, which according to our later choice
of 0. corresponds to —t =2 (BeV/c)'. There is no dip in the data.

where A „.is the quantity corresponding to (43) for the
ith trajectory. Substituting (47) into (5), we obtain

da/dD= (4s ss)-'

+Re(A,*A„)cos(2X,+2X„)j+0(s, '), (49)

Asymptotically we expect

g (s,t) -(c '-'+V)[($—u)/» 3" '
(S—tb)-+&O

&&(»[(s—u)/» j} ' V(t), (54)

where s)0, and f(t) is some average of lb(n, t)/sin7rn
about n =e,.An important simple feature of this formula
is that, just as in the case of Regge pole, its phase is
given by ——',xn, for r/=+1, and by —tsar(n, —1) for
r/= —1. However, evaluation of (52) with various
simple forms of )/b(n, t) indicates that the approach to the
asymptotic phase is logarithmically slow. Typically,
one finds an asymptotic criterion of the form

ln[(s —u)/2ss])) s-.

As an estimate for orientation let us take s2 ——1 BeV2.
Then in order that ln[(s —u)/2ssj) 5', say, we must
have pi,b) 2700 BeV/c. In energy ranges now available
in the laboratory, therefore, the phase of (52) probably
bears no simple relation to e, and g. For practical
purposes we adopt the phenomenological form

gi($ t) —[($ u)/2$ jag le((a aalu/s) —g&—
' V. N. Gribov, I. Ya. Pomeranchuk, and K. A. Ter-Martoro-

syan, Phys. Rev. 139, 8184 (1965); J. S. Bronzan and C. E.
Jones ibid 160, 1494 (19.67).
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where co and R' are real functions of t and lns. We shall
ignore the dependence on lns, for it changes little over
the experimental range of s. The amplitude (56)
contributes to the s-channel helicity amplitudes
through an additive term 3&' in the function A& of
(47), with

A, '= [(s u—)/2sg j ~ exp[i(o) —g~n, )]R, (57)

of (59) is strikingly demonstrated in the experiment
of Ref. 7. Its s dependence involves a more detailed
knowledge of A &, and is not our concern in this section
(see Sec. 7 and Fig. 4), but it is expected to be a rapidly
decreasing function of s.

To turn to our main task, we And it convenient to
regard the cross section as a function of t and 8, instead
of the more usual variables t and s. This means that s
and u take the forms

where ~ and R are in principle functions of t and lns,
but in practice are taken to be functions only of t.

6. DETERMINATION OF EFFECTIVE
TRAJECTORIES FROM EXPERIMENTS

s=4(tt'+m') =4m' —2t(1—cos8) '

u= t cot'-,'8.

We also write

(60)

We shall present experimental evidence that (a) at
large t, the p—p cross section is dominated by a single

trajectory in some range of —t, and by another trajec-
tory in an adjacent range of t; (b)—the properties of
the two trajectories are consistent, respectively, with
those of the P trajectory and the P-P cut generated

by it.
Evidence for (a) is fairly direct. Evidence for (b), of

course, makes use of theoretical ideas about the P
trajectory. What we do is to compare the cross section
(49) with experiments, using

s—u) ")
l~(t),

2si i
(58)

where l). (t) is an arbitrary complex function. Since (43)
and (57) both have this general form, we are testing
the hypothesis that a single trajectory dominates, be it
a pole or a cut.

We first note a prediction of (49) which depends

mainly on the Pauli principle. Differentiating (49) with

respect to sin8 at constant s, we obtain

8 d )
ln—

/

8 sin8 deal g=gp

8k'
+

1+kg cos4X A

1-A" A'~'-
+— ——

~

cos4X—2X" sin4X, (59)
2 A A)

where &= X&, A =2 &, and a prime denotes differentiation
with respect to t at fixed s. The right-hand side is to be
evaluated at 0= 90', where t= —2k'. The notable

property of (59) is that it is finite. This is mainly a
consequence of the Pauli principle, which makes the
cross section symmetric in u and t. The contribution to
(59) from the t channel alone is proportional to Bt/8 (sin8)
=2k'tan8, which diverges at 8=90'. However, the
u-channel contribution, which is proportional to
Bu/8 (sin8) = —2k' tan8, cancels the divergence and

makes the result 6nite. In elastic scattering of non-
identical particles such as P7i and grP, we expect the
quantity corresponding to (59) to be infinite. It would

be interesting to test this experimentally. The finiteness

1 t(3+cos8)i
A, —=A (t,8) = X(t) 4m.'—

2$y 1—cos8 )
1 ( t(3—cos8)i

A „=A(t, 8) =—X (u) ~

4m'—
2s, l 1—cos8 )
2ss'(1 —cosS)—S)'"

X,=—X(t,8) =cos '—
t—4m'

(61)

(do/dQ)i gp'= [47r'(2m' —t)] '~ A (t,90') ~'

&& (1+—', cos4X), (62)
X=X(t,90') .

As 8 is decreased from 90' at fixed t, the u-channel
contribution A„becomes increasingly small, provided
that n(u)(0. The rapidity of the decrease depends on
n(u) and on the scale si, which cannot be determined a
priori For the prese. nt we shall make the rough guess,
to be justified by the consistency of the results, that A„
can be neglected to 10%%uo accuracy for 8(80'. We
then have

(do/dQ)& g (gp =(8grg[2mg —t(1—cos8) ']) "

&& iA(t, 8) i'. (63)
Let us put

I (t,8)—= (do/dQ), t)/(do/dQ) i gp'.

Dividing (63) by (62), and using (61), we obtain

(64)

(4mg t(3+cos—8) (1—cos8) ) )g~&')

Z(t,8&80')=i (mg ——,'t)
4m' —3f

X(1+-' cos4X) '[2m' —t(1—cos8) ')—' (65)

The important thing about this expression is that the
arbitrary function )i(t) no longer appears. Solving for

2ss'(1 —cosc) —S)"'X„—=X(t,8)=cos '—
~
—4' tan2-', 0

At given 3 and 8=90 the differential cross section is
given by
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n(t) we obtain
in{I (t,8) (1+-,' cos4X)L2m' —t (1—cos8)-'j (yP —-'t)—ij

n(t)
'

21n{L4m —t(3+cos8)(1—cos8) '](4m2 —3t) ')
(66)

where X is defined in (62), and I(t,8) is to be calculated
from experimental data. This formula is approximately
valid only for 8&80', when the right-hand side is
supposed to be independent of 0.

The approximations involved in (66) are the follow-

ing. First, we have neglected 0 (s, 2) in do/dQ. Secondly,
as indicated by (46), we have neglected the coupling of
the trajectory to the triplet spin state of Pp in the t

channel. Finally, we have neglected A„ in (63). Un-
fortunately these approximations are unavoidable, for
we would not have been able to extract n(t) purely from
the data without them. It means, however, that the
expression (65) has a theoretical uncertainty in addition
to experimental errors. As a guess, we assign to I(t,8)
a theoretical uncertainty of 10%.

To calculate I(t,8), we use the data in Refs. 5—7 for
t& 2.5 (B—eV/c)' and for 57'(8(78' to evaluate the

numerator of (66). The denominator at the same t is
taken from the data of Refs. 4 and 7, either directly
or by interpolation. Experimental errors range from
3 to 10%. The result for n(t) calculated in the manner
described is shown in Fig. 1.

It is consistent with the data to suggest that a single
trajectoryni(t) dominates the range 3( t(5 (BeV/—c)',

iso(( t)
2- 0 0

n, (t) =1+n,'t, (1=1,2)
ni'= 0.55+0.05 (BeV/c) '

1 1
O'2 = gQy .

(67)

In the region 5( —t(7 (BeV/c)', both ni and n2 are
important, as evidenced by the fact that the effective
trajectory lies between ni and n&. At t= —7 (BeV/c)',
where n& ———3, n~ takes over completely. The sharpness
of the transition from n~ to n2 indicates that the contri-
bution of n~ tends to zero at 0 = —3. This suggests that
o ~ has positive signature, for in that case nq ———3 would
be a nonsense wrong-signature point, where the contri-
bution of n~ should vanish in the absence of a fixed
pole. On the other hand, at the nonsense wrong-
signature point o ~

———1 there Inust be a fixed pole, for
otherwise the contribution of the trajectory e& would
vanish, and the effective trajectory should switch to a
different trajectory at that point. It is therefore
consistent with the data to suggest that n& is a trajec-
tory whose intercept at t =0 is consistent with 1, and
whose signature is positive. It seems irresistible to
identify 0 ~ with the P trajectory.

Further support for the identification comes from
the behavior of o 2. If o & is the P trajectory, then
exchanging two P trajectories in the t channel theo-
retically gives rise to the P-P cut, ' whose branch point
should have the trajectory

and another trajectory n~(t) dominates the range
7( t(13—(BeV/c)', with

n, (t) = 2ni(t/4) —1.
Using the linear form (67) for ni, we obtain

n, (t) = 1+~ni't,

(68)

(69)

-14 -l2
I I I

9eV/c) ~

which is consistent with the identification n2= n, .
The exchange of e P trajectories in the t channel

should lead to a Regge cut with branch point trajectory
given by'

n. (t) =nni(t/I') n+1—
which for linear o j becomes

(70)

FIG. 1. The effective trajectory n(t) for large-angle pp scattering.

n„(t)= 1+ni't/e. (71)

Since they have successively smaller slopes, those with
e) 2 may dominate over n2 as —t increases. The
tendency for n in Fig. 1 to deviate upwards away from
n2 at t&12 (BeV/c)' rn—ay be attributed to the in-

creasing importance of 0 for e&3. On the other hand,
the fact that n2 takes over from o & only when —t is
sufficiently large, and that e„& 2 begins to take over
only when —t is still larger, suggests that the effective
coupling of n„& 2 is much smallel than that of O2, and
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that the effective coupling of e2 is much smaller than
that of e~.

For —t(3 (BeV/c)' there is a distinct tendency for a
in Fig. 1 to deviate from n~ towards the known trajec-
tories of co and P'. This is consistent with our knowledge
that the latter gives important contribution in the
diff raction region.

The type of fixed poles and Regge cuts considered
here have a common dynamical origin, i.e., the third
double spectral function of M andelstam. ' " Thus one
expects that 6xed poles and cuts generally go hand in
hand. The fact that our interpretation of OI~ as the P
trajectory simultaneously calls for a fixed pole at
n~ ———1, and the identification of n2 as the P-P cut is
in conformity with this expectation.

While the foregoing interpretation is consistent with
the data, it is of course not required by them. For
example, an alternative interpretation may be that n2

is the P trajectory. This would make a& a new trajectory
so far undiscovered, for all known trajectories other
than the P trajectory have steeper slopes. The relation
n2' = ~ or ~' would then appear to be an accident. Hence
it should be emphasized that our interpretation is
motivated mainly by the fact that with it, all salient
features of the data seem to fall into place naturally,
and conversely all salient features of the theoretical
model seem to find reQections in the data.

Assuming the correctness of our identi6cations, we
summarize the findings as follows:

(a) The I trajectory nt is consistent with a straight
line of slope 0.5 (BeV/c)'. A linear extrapolation of the
trajectory passes through n = 2 near the masses of the
fe and fs' mesons 2'

(b) The I Icut trajectory -has half the slope, and it
has a much smaller effective coupling than P. There is a
hint of the P-P-P and higher cuts, whose effective
couplings would be smaller still.

(c) There is a fixed pole at the first nonsense wrong-
signature point n~ = —1, but there is no 6xed pole at the
second nonsense wrong-signature point or~ = —3.

Thus the most remarkable feature of the cross section,
namely, the break first observed at 8=90' in the
Argonne experiment, 4 is attributed to the fact that
at that point P passes through the nonsense wrong-
signature value n~ ———3. Similar phenomena associated
with nonsense wrong-signatures points of various
trajectories have been observed before in m p charge-
exchange scattering (p trajectory), " 2rP backward
scattering (nucleon trajectory), " and 7r' photoproduc-
tion (cu trajectory). " In all these cases, however, dips
in the cross sections occur at the first nonsense wrong-
signature point, whereas in our case the dip (modified

"A linear trajectory passing through f0' would have n' =0.435.
For fo it would he a'=0.64."F. Arbab and C. B. Chiu, Phys. Rev. 147, 1045 {1966}.

C. B. Chiu and J. Stack, Phys. Rev. 153, 1575 (1967).
24 M, P. Locher and H. Rollnick, Phys. Letters 22, 696 (1966).

by cut contributions) occurs at the second nonsense
wrong-signature point. Why this is so seems to be
entirely a dynamical question, which we shall not
discuss here.

The considerations here have the virtue that they
are independent of detailed assumptions concerning
pole residues and cut discontinuities. However, they
involve approximations that cannot be improved
without destroying the very purpose they serve. It is
therefore important that we try to fit the cross section
in detail, for failure to fit will disprove the interpretation.

5(p(.b(26 BeV/c,

3( t( 18 (Be—V/c)'
(72)

where the effects of the P' and or trajectories are
assumed to be negligible. A model is set up using the P
trajectory plus the first two Regge cuts generated by
it, with the P trajectory taken to be

Crt(t)=Qi~= 1+tr t,
n'= 0.55 (BeV/c)

(73)

The two cuts included are the P-P and P-P-P cuts,
whose branch points have respective trajectories

n2(t)
—= tr2, ——1+-2,n't,

trs (t)=us, ——1+2n't .
(74)

The s-channel helicity amplitudes are given by (47),
with

where

A, =A i (s,t)+A 2 (s,t)+A 2 (s,t),
A „= At(s, u)+A 2(s,u)+A 2(s,u),

(75)

Ai(s, t)=Ki exp(- i 2n 2r)Ii'(1 n„)(1+—n )t
X sinL2'2r(1+trt, ))$(s—u)/2si) ",

A2($ t) =K2c2 expL2(Co2+ 22rtx2t))t (s u)/2$2) 2' (76)

As(s, t) =Kscs expL2(&os+-,'2rns ))L(s—u)/2$2) I&,

where
c2 ——(tn 2,/222) 2,

c2 ——(t/222) 2,
(77)

and E;, or;, and s; are real constants, with E,&0, s;)0.
The choice for Ai corresponds to (42) with ti = 1, Xi——0,
alid

l~s(t) = 22r '~2K, (2222 —rt)L(1+n, )1 (tr,+2))
—', (78)

where a fixed pole at o &
———1 is assumed, as suggested

in Sec. 6. The factor m' —~ t is thrown in for no
reason other than to make the final formulas simple.
The factor (I'(a, +22)) ' is explained in the Appendix

/. A MODEL

A. Cross Section

We make use of the ideas expressed in Sec. 6 to fit
the pp cross section in the region
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IOI

x)Jm ]Q
sb c,'

FIG. 2. The pp differential
cross section as a function
of invariant momentum
transfer squared —t at
fixed c.m. scattering angle 0.
Solid curves are theoretical
fits. Numbers attached to
data points correspond to 6E.

Statistical errors, wherever
not shown, are equal to or
smaller than the size of the
points. The data are taken
from Refs. 4—7, but not all
data points are shown.

lo'

I I I

9 10 I I 12 lh
—t (BeV/c)

So )O. )s. 8

I I I I I I I I

2 5 4 5 6 7 8 14 15 16 17 18 19

Lsee Eq. (A6)j.The forms of A, and A3 correspond to
(57), with R taken to be, respectively, proportional to
(n, t)' and t for the two cuts, and &o,=const. We have
no reason for these choices apart from the fact that

they give a good fit to experiments. Other variations
considered are listed in Table III. The cross section is
given by (49), which will contain eight real adjustable
parameters: E~, K2, E3, s~, s2, s3, co2, and co3.

IO~= )

10

- lo-I

'I- iO-s

FIG. 3. The pp differential
cross section as a function of
invariant momentum transfer
squared —t at fixed incident
laboratory momentum P»b.
Data points at 8=90', shown
in Fig. 2, are omitted here.
Solid lines represent theoretical
fits. Data points used in the fit
are a subset of the data points
shown here plus the points at
8=90'. Sources of data are
Refs. 4—7.
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-t (BeV/c)



I.ARGE —ANGLE pp SCATTERING 1927

100

Io—

~lab 5'0 (~E'V/g) „

A total of 97 data points, selected for their small
statistical errors, are used in a least-squares fit to
determine the eight parameters. "The best fit has an
average y,

' of 6.6 per datum point, " and corresponds
to

Et=0.20, +st= 1.75 BeV,

Es 0.00——57, ass ——0.925 BeV, a&s ———2.89,
Es=0.0011, ass ——2.50 BeV, ccs ———0.354.

(79)

IO-'—

We have tried replacing c& and cs in (77) by other
choices. For the record they are listed in Table III

IO 2
IO

IO-'—

IO4—
o Ake

~ Allo

Clyde (

Ankenbrondt et ol. (Its~. c)

D Alloby et ol. (Gj (a~. e)

I l I l 'l I I I I l 1

.85 .90
sin 8

I l l l l

~95 1.0

lo-l

FIG. 4. The pp differential cross section as a function of sin8,
where tII is the c.m. scattering angle, at fixed incident laboratory
momentum pl b. The finiteness of the slopes of the curves at
sin8=1 is a consequence of the Pauli principle. If there were no
Pauli principle, the slopes would have been infinite. Solid curves
are theoretical fits. Except for the open squares, pi b for the data
points are the same as those labeled on the nearest theoretical
curve. The open squares are new data available after the fits were
made. It is apparent by inspection that they differ significantly
in absolute normalization from older data from the same labora-
tory (solid circles).

lo-4— a (t)=-5

TABLE III. Various choices for c& and cz Lsee Eq. (77)].

C2

(«2t!ra)'
(tn2g/m)'

(tnmg/m)'

(«„/m)2
1

t/m

tn3(/m

{t 3]/m)'
(tn3]/m)3

1

Ave. ys/point

6.6
9.2
9.7

11.0
19.0

It was noted in Sec. 5 that a Regge cut is generally
expected to be coupled to partial-wave amplitudes of
both signatures and parities. Signature, however,
becomes lost when we use the phenomenological forms
in (63), for in those forms the signature can enter only
through or& and co2, which are adjustable parameters.
We specifically neglect partial-wave amplitudes of
parity —(—)~ for simplicity.

lO-5-

o((t) =-5 t
l06 I I I I I I

2 4 6 8 lo 12 l4 l6 l8
-t (BeV/c)~

I'IG. 5. The upper curve represents the theoretical fit to the
differential cross section at 8=90'. The lower curve is obtained
by omitting contributions of the Regge cuts in the theoretical
formula. The break at —t= 7 (BeV/c)' is caused by the fact that
the 1' trajectory passes through the nonsense wrong-signature
value n= —3 at that point. At n= —1 a fixed pole is assumed to
be present.

"We thank Dr. W. Rarita for making available to us the com-
puter program vARMIT, with which the fit was carried out.

6 The g takes into account only statistical errors in the experi-
ments, and not systematic errors. Thus the x' value is not meaning-
ful as an indication of how well the model agrees with experiments.
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!0

iO-I

~p-2

bIcl

that in our model the break is associated with ni(t) = —3.
The cause of the shift, of course, is the I-channel
contribution. At 9=90', we have t =u and at the break
ni(&) =ni(u)= —3; but at 8= 70', ni(n)W —3 at the
break.

After we had completed our fit, some 86 additional
data points became available from the CERN group, '
some of which are plotted as open squares in Fig. 4.
It is seen that they follow the shape of the theoretical
curves, but do not agree in normalization. The reason
is that they differ significantly in absolute normalization
from earlier data by the same group, indicated by
solid circles. Although we understand that the absolute
normalization of the new data is more reliable, we have
not readjusted our fit to the new data.

The fit to the cross section shows that there is so far
no inconsistency between experiments and our hy-
potheses regarding the P trajectory and associated cuts.

B. Polarization

The polarization parameter 6' is defined by

iO-4

lO-5

lO 6
2 4 6 8 IO I2 !4 !6 I 8

-t (Bev/c)

FiG. 6. Same as Fig. 5 except for 8= 70'. The break shifts to—t=6 {BeV/c)', because of u-channel contributions.

The amplitude f5' vanishes at 8=0 because of angular-
momentum conservation Lsee (21)], and vanishes at
8=90' because of the Pauli principle Lsee (6)j. The
polarization must therefore vanish at 0= 0 and at
0=90'. This should be true regardless of the model in
which (P is calculated.

For single Regge-pole exchange, (P=O in the diffrac-
tion region 8 —+ 0, because in that region the e-channel
Regge pole can be neglected, and the t-channel Regge

with the &' of the fits. The case (77) is the on.e with the
least X'. We note, however, that while a majority of the
data points used in the fit have statistical errors of

3% the theoretical formulas cannot be trusted to
better than 10%, even if the model is basically valid.
Hence it is not meaningful to distinguish between
values of X' below 10.

A comparison between theory and experiment is
shown in Figs. 2—4 in various methods of plotting.
More data are plotted than the 97 points used in the
fitting. In Figs. 5 and 6 are shown the contribution
from the P trajectory alone as compared with the total
contribution from 8+cuts, for 8=90', 70'. It is seen
that for —t(S (BeV/c)' the cuts can be neglected, and
for t) 6 (BeV/c)' the pole can be neglected.

It is evident in Figs. 5 and 6 that for different 0 the
sharp break in the differential cross section does not
occur at the same value of —t. As 8 decreases from 90',
the break shifts towards a smaller value of —t. This
may seem puzzling at first sight, in view of the fact

60 30

~ 4o

(Q

"30

20

V

Ql

O

IO

4m
I I I

0 I 2 3

P+ P'+co

I I I I

4 5 6 7

P P+cut1

I I I I I I

9 IO I I I2 I3 14 15 I6

cut 1 cut 1+cut 2+ ~ ' ~

FIG. 7. Dominating trajectories for various ranges of —t are
indicated below the abscissa. Shaded areas correspond to kine-
matic regions in which pp scattering is dominated by a single
trajectory, and in which the I-channel contribution is negligible.
Hence they are regions in which the polarization should be small.
Because of the Pauli principle, the polarization must vanish along
the line 0=90 .
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P+P +(U
4

pi,b
- 6 BeV/c

P

for we can neglect all but the P trajectory. '

4nms(da/dQ)(P= Im(A&*A~) sin(2X, +2X„+P,+P~), (81)
r

I

t-u I
I
I inter terence
I I
I I
I I
t I
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I I I I I I

lsl (o)
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FIG. 8. Qualitative predictions for the behavior of the polari-
zation in pp scattering. The relative signs of the polarizationin
diferent regions are uncertain. Dominating trajectories for various
ranges are indicated.

pole contributes the same phase to all f Any obs.erved
polarization in the diffraction region must therefore
be attributed to the existence of more than one Regge
pole, presumably P, P', and co. We are, however, not
concerned here with the diffraction region.

According to our model, the P trajectory alone is
dominant in the region 3(/&5 (BeV/c)'. Therefore, in
that region we expect (P=O for 8(&90', where the I-
channel contribution can be neglected. As 8 increases
towards 90', the u channel becomes important, and its
interference with the t channel would produce polari-
zation. However, (P= 0 at 8= 90', as noted previously.
Hence, we expect that (P passes through a maximum
(or minimum) before 8=90', in the region of t con-
sidered. In the region where the P-P cut alone domi-
nates, a similar phenomenon occurs, but in other
regions where more than one trajectory contributes
there would always be polarization.

The regions in which the polarization is expected to
be vanishingly small, according to our model, are the
shaded regions in Fig. 6. For illustration, suppose (P is
measured as a function of 8 at pi,b=6 BeV/c. Then
according to Fig. 6, we expect P to be dominant in the
region 65'&8&90', and the measurement might look
qualitatively like the plot given in Fig. 7. Our expec-
tation for pi,b= 20 BeV/c is shown in Fig. 8.

A measurement of (P near 8=90' for pi,b 6 BeV/c
would give further information about the P trajectory, '7

' Polarization at large angles have been measured below
pi, b= 2.5 BeV/c by M. J. Longo, H. A. Neal, and O. E. Overseth,
Phys. Rev. Letters 16, 536 (1966); and H. A. Neal and M. J.
Longo, Phys. Rev. 161, 1374 (1967). However the energy is too
low for our model to apply, for at their energies the effects of P'
and ~ are important for the whole angular range.

where Ai is given by (43) with &=1, and where the
approximation (46) has not been made.

We shall not write out a general expression for (P,

taking into consideration the P trajectory plus cuts,
and keeping both singlet and triplet spin states in the
I channel. With neglect of the triplet state, (P is still
given by (81) with Pi=&„=0,and with Ai given by (48).

I06
I I I

PP PP

I05—
PI,b

= 2.7 BeV /c
EEXPTS' 0 f 59lob

THEORY f lgb = 5.9

I04-
d

IO3 d N g „-gpo

0
IPa—

10

a

if

I.O—

OI—

.OI

8= 90'
I I I

4 5
-t{geV/c)

I

6 7

Fro. 9. Elastic pp scattering. The data are taken from Refs.
19 and 38. The solid curve is an absolute calculation at P~ b=5.9
BeV/c assuming E-trajectory exchange Only, with parameters
taken from our Qt to pp scattering,

C. Proton-Antiproton Scattering

The relation between pp scattering and pp scattering
has been discussed at the end of Sec. 2. We neglect the
u channel entirely. If a single trajectory dominates in
the t channel, then the t-channel amplitudes are given

by (41), which leads to the differential cross section

(82)

where A, is given by (43), and no special assumption
has been made about P,. At a sufficiently high energy
this should be valid in the interval 3(—t&5 (BeV/c)',
where according to our model P dominates.
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exponential decrease with (—t)'~', which is the most
rapid decrease allowed by analyticity. "The amplitude
(84) leads to an expression for do/dt .which depends on s
only logarithmically, if C and p are constants. An
energy-independent limiting function" of t results if
Cu (1ns) ' and y~ exp(lns) '

The only available experimental data that cover a
wide angular range are measurements made at p„b——2.7
BeV/c" and p~,b ——5.9 BeV/c."Although our model is
not expected to be good at these low energies, it may
still be interesting to compare the data with (82), in
which A& is calculated with the parameters of I'
determined from our pp fit. The cuts are unimportant.
The result of this absolute calculation of the pp cross
section at 5.9 BeV/c is shown in Fig. 9.

We note that the bumps in the cross section are not
reproduced. They are presumably due to interference
from the I" and ~ trajectories, which have been left
out. In the interval 3( t(5 —(BeV/c)' the theoretical
curve seems too high by a factor of 2—3, although the
statistics are very poor there. If the discrepancy is real,
it would indicate that the contribution of a nucleon-
nucleon cut in the I channel may not be negligible.

APPENDIX: COMPENSATION

The symmetry properties (30) and (31) imply that
(a) If at t= ts a Regge trajectory passes through

u(ts) =half-integer except —-'„with residue Pq„(ts) in
Gq„(J,t), then either P&,„(ts)=0, or another trajectory
of the same parity and signature must pass through—u(ts) —1, with the same residue in Gq„(J,t).

(b) If at t=ts a Regge trajectory passes through
u(ts) =0 or —1, with residue Prt(ts) in Gtt(J, t), then
either P»(ts) =0, or another trajectory of opposite
parity and opposite signature must pass through

u(ts) —1, wit—h the same residue in the amplitude of
opposite parity and signature to Gtt(J, t). The addi-
tional trajectories called for by (a) or (b) above will
be referred to as compensating trajectories of type (a)
or (b), respectively. They cancel unphysical singulari-
ties which would otherwise be present in the scattering
amplitude. To see this we have to examine more closely
the properties of Eq„+(s).

We have the explicit representations

8. SPECULATIONS ON PHENOMENA AT
EXTREMELY HIGH ENERGIES

We make some projections into the extremely high
energy domain, say, for p] b) 200 BeV/c. On the basis
of our model, we expect the following phenomena to
occur:

~ d„(u)
J-„+(z)=0'.(s)=ac( )(1—

n=y Z»

&»+(s)= —s '~(u)l
i u+1i

c(u) ( ~ (u —2n)'d (u))
(83) (1+u) k =& s'"

(A1)( S \+a't/n

ks,

(a) At a given s, the effects of cuts are still negligible
in a small neighborhood of t= 0, in which the di6raction
peak becomes dominated by I' alone. This neighbor-
hood, however, shrinks to zero as s —+~. Outside of
this neighborhood, cuts become dominant and give
da/dQ a smaller slope with respect to t. At any given t

in the cut-dominant region, when s is sufFiciently large,
many cuts will contribute simultaneously, so that the
slope of do/dQ is not simply related to the parameter
of any single cut.

(b) In the cut-dominant region we can describe the
qualitative behavior of the scattering amplitude f by
neglecting spin and by taking into account only the
cuts generated by P:

where n' is the slope of the I' trajectory. We have
assumed the simple form y" for the coupling of the
mth cut, where p may be a function of lns. The I
channel is neglected for simplicity. As s —+ at 6xed t,
the sum can be evaluated approximately by replacing
it by an integral over m, and by calculating the integral
by the method of saddle-point integration:

(u —2n) (u —2n —1)d „(u)
)

n=l z2"
where

c( )=2-1'(+-,')/L "r(+1)j,

c(u) t
Frt (s)= —s '

l (u 1)—
(1+u) k

f~ (rr'"u'Cs ins) (—P t)'~' expL —2 (—u)'~'j
(84)

X= —u'(Ins) (in') . d. (u)=
2 '"(1—u) (2—u) . (2n —1—u)

n!(——u) (——u) (n ———u)

(A2)

Thus the exponential decrease with —t„which is
characteristic of a single trajectory, is changed to

'8 V. Domingo, G. P. Fisher, L. Marshall Libby, and R. Sears,
Phys. Letters, 24B, 642 (1967).

"F. Cerulus and A. Martin, Phys. Letters 8, 80 (1964); T.
Kinoshita, Phys. Rev. Letters 12, 257 (1964).

~ Such a limiting behavior has been suggested from an entirely
different point of view by H. D. I. Abarbanel, S. D. Drell, and
F.J. Gilman, Phys. Rev. Letters 20, 280 (1968).
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Note that c(n)/(1+n) is finite at n= —1. At integer
values of n we have

Eoo +(s)=coo +(s)
=0

Eip~+(s) = eip +(s)
=0

for n=0 1 2

for n= —1 —2) )

for n= 0) 1) 2,
for n= —1, —2, (A3)

Eii +(s) =eii +(s)
= finite
=0

for

for
fol

n=1 2 3) ) )

n=0, —1
n= 2 3)

These functions have poles at n=half-integer, with
residues satisfying

ResE),„+=—ResE),„' ~ "+
at n = half-integer except —i . (A4)

The pole at n= ——,
' is not relevant to our discussion,

because it is cancelled by a factor n+-', in (36). As

(A3) shows, Eii + has the peculiarity that it fails to
vanish at the nonsense values n=0, —1. At these
values one can show that

Ei, ~(s)=Eii~ '&+(s) at n=0, —1. (A5)

The symmetries (A4) and (A5), respectively, correspond
to (30) and (31) for the partial-wave amplitudes.

Because of the behavior mentioned above, unphysical
poles may occur in the scattering amplitudes g; of
(37), as follows:

(a) At n= s, +s, +s, +$, , all g; may have
poles coming from the poles of Eq„+.

(b) At n= 0, —1, gs and g4 may have poles, because

&(t) has a pole at either n=0 or n= —1, depending on
the signature, and E~~ +40 at these points.

These poles are in fact absent, for they are always
cancelled, either by compensating zeros in pz„"~,
or by compensating trajectories, as we have already
mentioned.

If compensating trajectories of type (a) occurs, their
contributions to g, must be added to (36). A cornpen-
sating trajectory of type (a) will be below the original
trajectory n if n) —-„and above the original trajectory

if n& —-', . In the former case its effect is small except
in the neighborhood of the point of compensation. In
the latter case it will dominate the original trajectory.
For simplicity, we assume that the latter case does not
happen. Accordingly, we must require Pi„——0 at
n= ——,', ——,', . This may be satisfied by putting

x,(t) (r( (t)+-,'))—',
Xi(t) ~ [I"(n(t)+s)] ', (A6)

where Xo and ) i are defined in (35).
If compensating trajectories of type (b) occur, their

contributions to g, must be taken into account through
the signatured partial-wave amplitude of opposite
parity and signature to the ones considered in (36).
To avoid complications that cannot be subjected to
unequivocal experimental test in our work, we assume
that compensating trajectories of type (b) do not
exist. Accordingly, we must require

Pit=0 at n=0, —1,
which may be satisfied by putting

~ (t)-( (t)j'

(A7)

(AS)

The reason for n' instead of the simplest choice n is to
avoid introducing a branch point in Pip through the
factor +Xi. In our actual fit, in fact, we made the even
simpler choice X~—=0, which is of course consistent
with (AS).

The choice (A6) and (AS) with no other zeros or
poles in Xo and ) & corresponds to the dynamical proposal
of Chew. "We emphasize that it merely represents one
out of an infinite number of choices in compensation
schemes. So far there is neither theoretically compelling
reason nor clear experimental test for the correct scheme.

Even with our choice, the question of compensating
trajectories of type (a) for n)-,' remains open. If they
exist, their contributions to the scattering amplitude
are of order 2'~ '. To avoid discussing them we neglect
terms of this order.

"G. F. Chew, Phys. Rev. Letters 16, 60 (1966). Soine other
alternatives are discussed in C. B. Chiu, S. Y. Chu, and L. L.
Wang, Phys. Rev. 161, 1563 (1967).


