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Dispersion Methods in the 2V Sector of the Lee Model*
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The 2V sector of the Lee model is examined from the standpoint of dispersion theory. In this approach,
vertices of the type pointed out by Blankenbecler and Cook are used for the purpose of establishing the
bound state and eigenvalue condition corresponding to the static interaction of two V particles. Following
Amado, we also determine the scattering and production amplitudes characteristic of this sector. In relying
on his methods, we carry out exact dispersion calculations involving the contraction of a composite particle
(the VE bound state). The states found in the V and VE sectors are the only intermediate states used
throughout.

I. INTRODUCTION

'HE Lee model of a (partly) soluble field theory
with a nontrivial renormalization problem con-

tinues in the literature to provide a very valuable
framework for the discussion of many dynamical ques-
tions and techniques of calculation. In recent com-
munications, the Lehmann-Symanzik-Zimlnermann
(LSZ) formalism' and the Tamm-Dancoff (TD) methods
have been used to obtain a complete solution of the 2V
sector, thereby extending the solved aspect of the model.
This sector is more suggestive than the VE subspace
in that both sources undergo renormalization, and is
similar to the V8 sector in that it embraces two elastic
scattering amplitudes, a production amplitude, and a
bound-state problem. In the present paper, we under-
take dispersion calculations of the bound-state param-
eters and the collision amplitudes, assuming, as in
Refs. 1 and 2, that the heavy particles are bosons with
zero separation.

The techniques of dispersion theory have previously
been used by Blankenbecler and Cook' in an attempt to
calculate bound-state parameters of physical interest.
These authors introduce a vertex function closely
related to the Bethe-Salpeter amplitude and show that
its corresponding dispersion relation yields bound-state
information such as the asymptotic D-5 ratio for the
deuteron. Since their effort is limited to the one-pion-
exchange approximation, it is of interest, even at the
static-model level, to apply dispersion methods to
composite particle systems involving more intermediate
states. It will be shown that the 2V system is one such
exactly soluble example.

In carrying out our development of the 2V eigen-
value condition and its corresponding bound state, we
shall accept relevant matrix elements that have already
been treated in the literature. We recall that, in their
effort to clarify a dispersion analysis of the x-meson
lifetime, Goldberger and Treiman' (GT) set up a modi-
fied Lee theory that led them to consider some matrix
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elements in the first nontrivial sector of the original
model. Of these, we shall require the V~~E8 vertex
function E(ce) and the Eg scattering amplitude OR(co).
The former is closely related to the function L(co) intro-
duced by DeCelles and Feldman, ' who discussed a dis-
persion approach to the renormalization constants 5m~
and Z. Note that DeCelles has also pursued this idea
into the realm of quantum electrodynamics. ' Matrix ele-
ments characteristic of the VE sector will also arise
and these are easily found. Our success in achieving a
dispersion solution of the 2V bound-state problem has
its roots in which particles we choose to contract. In
accordance with the route adopted here, we need only
introduce at various stages the intermediate states
characteristic of the V and VE sectors. This is a
distinguishing feature over other possibilities that would
allow the more complicated states of the V8 sector to
enter. The most involved singular integral equations
that we encounter are of the type studied by Blanken-
becler and Gartenhaus, ' examples of which have been
solved in the model context by Amado, by Muta, '
and by Vaughn. "

The basic idea behind our treatment of the above-
mentioned eigenvalue condition is to generate two
simultaneous algebraic relations connecting two vertices
of the type pointed out by Blankenbecler and Cook.
The same situation exists in the analogous, but much
simpler, dispersion calculation of the VE potential
energy. "That case involves the vertices I't ——(X

~
fv ~

Bs)
and F,=(V~ fv ~Bs), where fv (f~) denotes the V (X)
particle current operator at time t = 0 and

~
Bs) is called

the physical VE bound sta, te with eigenvalue 2m+(dp
and normalization constant Zo. Both one-particle
physical states

~
V) and ~X) are assigned the same

energy m. We know that G(~s)=0 and Zs '——G'(a&s),
where the prime denotes differentiation and where
the inverse of G+(IV) Lsee Eqs. (19) and (12)] is the
Fourier transform of the VE propagator evaluated at
the energy iV+2m. The first condition determines roe
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(at zero separation) as a function of the renormalized
coupling constant g. When g is below its critical value
(no ghost condition) ppp is real (negative) and single-
valued. "It turns out that

V

N

V

I I— GOOZO

F2—ZZQ5f7$ p' e (1b)
v

6

Ke shall also accept that bus& and Z have already been
established by dispersion methods.

To obtain the scattering and production amplitudes,
we follow the method devised by Amado. In our case,
however, this requires the contraction technique for
the composite particle (VAr bound state). Thus we
find an opportunity to gain some model experience with
exact dispersion calculations involving the scattering
of an elementary particle by a composite one. Of course,
it would be even more enlightening to explore the
scattering of a 8 by the 2V system, since we could then
investigate the interesting possibility of a three-
particle dynamical pole below the 2V+8 elastic thresh-
old. This aspect is presently under investigation.

A. F Vertex

Our point of departure is the most obvious vertex,
namely,

I'=«lf I» (2)

where ~8) is the physical 2V bound state with eigen-
value 2m+p» that defines rp& as the potential energy
of static interaction. The V-particle current operator at
time t is given by

fv(t) =[ i (d/dt)+m j—Pv (t)

&mvPv (t) (g/Z—)A (t)A (t)—, (3)

where X(cu) and A (t) are abbreviations for f(&u)/(2e~Q)'"
and Pr. X(~)aI,(t), respectively. As usual, the cutoff
factor f(cv) serves to suppress the ultraviolet diver-
gence, and depends only on the relativistic 8-particle
energy co= (k'+tr')'". The quantization volume is Q.
The Hamiltonian H and the equal-time commutators
are given by

H = Z(m+bmv) Pvtfv+mg rvtg rr+ Q piai tap

+gatv'grrA+g4NVvA' (4)

"$.&einberg, Phys. Rev. 102, 285 (1955).

II. BOUND-STATE PROBLEM

In this section, the methods of dispersion theory are
applied to various matrix elements for the purpose of
deriving an eigenvalue condition for the static-inter-
action energy of two V particles. After accomplishing
this, without having to calculate state vectors, we go
on to construct the TD expansion for the corresponding
bound state.
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FIG. 1. Dispersion graph for T(co) according to Eq. (15).

e'™(0
l [fv(t), fvh&(t)

I
&)« (6)

If a complete set of intermediate states is introduced,
we can use the time translation property

fv(t) = exp(iHt) fv exp( iHt)—
to do the integrations, and we find in continuous space
that

1 1
k f'(pp)E(p~) T(pi) —+ —dpp. (8)

CO GO
—G) g

Only the N8 scattering states, chosen as in-states,
contribute, since (0~ fv~ V) vanishes. The functions
E(a&) and T(&u) are defined by

E(cp) =X—
'(p~)(0~ fv ~Ntt„, in),

T(pp)=X—
'(pi)(1VO„, in~ fv~8).

(9)

(10)

The expression given by GT for E(~) is unaltered by
the fact that the sources are being treated as bosons.
Hence

where P(W) is given as

4m' pi'(pi W ie)——(12)

To make further progress, it is clear that we must
now contract a particle in T(pi) In this regard. , it is
convenient to select the 8 particle, since this does not
implicate the complicated states of the Vo sector. The

and

[ap(t),ar (t)]=8)), [Pv(t)pPv (t)]=Z ',
[0~(t),4~'(t)]=1 (3)

Applying the LSZ contraction technique to the V
particle in F, we obtain
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S-particle contraction will be considered briefly later This vertex will be analyzed in Sec. II B.At this stage,
on. Therefore we write r, ro, and P(co) are unknown, but this does not prevent

us from solving the above Omnes-type integral equa-

T ( ) &/V l [ ( ) f ]8( ) l
g )d (13)

tion forT (id) . Standard methods yield

T gt)

where the 8-particle current operator j (t) is defined by

j(~)=~-i(-)[-'(d/«)+-]" (~) = -6-t(i)4 v(~) (14)

As before, we insert the appropriate intermediate states
and do the time integrals to get

gr «Z,r,[1—P(~s—~,)]
1 p (it)) is) M+ is)0 Ct) ii

((u'+de —(re)G+ (~e')

gV2 "k'(u' f'(a)') P (ie') [1—p (~ig —(o') ]did'
(23)

4m'
„

&~o j I/3&
T(ge) =—+I'i

ia) Ct)+COO is) S

Using this result and Eq. (11),we can rewrite Eq. (8) as

(/V
I fv I

2/V 8 in&&2/V8 inl j I »
M +gt) —dt)e

gv2 "kerf'(a&)P(o))[1 —p((vi) —id)]/((u)ko

G+(a))
(24)

in which
&/V

l j l
/V8„, in&&1V8„, in

l fv l
8&

(15)
1 1 )) (2is) —it) e)dts)

J(W) =— Im (25a)
ct) —M+ Ze

(dg 2$'—a) g 2
J(W) =— — + (25b)

W[1—P ((ue)] W[1—P (doe —W)] Z(ge)=X—
'(gd)&1Vl jl/V8„, in)= —g'/go[1 —P(a))] (16)

In-states describing the elastic (g-wave) scattering ni " i tt( ) ( we)(w+tg e)

one 8 by two coincident 1V's are writ«n as l2/V8„, in&. Thisintegrali re dil e 1 t db th th d of GT,
This decomposition of T(co) is represented by the dis-
persion graph in Fig. 1. We have noted that (/Vl jl V&
= —g. Also, in accordance with GT, we have

and
e"i") sinb((u) = —g'k f'((a)/4m go[1 —P ((a)], (1/)

where 8(&u) is the phase shift for /V8 scattering. Further,
we omit straightforward considerations that yield

The matrix element P(co) is the remaining problem
in connection with Eq. (24). On contracting the 8

particle in this function, we obtain

I '(id)&/Vl fv(2/V8„, in)= —ggev2/G+(&o), (18) P((u) =— e'"'&21Vl [j(),')r j]8(—/) l8&« (26).
where

A familiar procedure leads to the expansion

Upon setting

G+(W) —=G(W+ie)
1= 2W[1—p(W)]+Zhnz —ZW. (19) P( ) Z r ~2

M —it)p is)+it)0 —Cs)est

(20)

and transforming to continuous space, we may now
give T(ge) the form

gr ca) pzprp g)/2
T(ge)=-

is) Cs)+(t)p —dt)S 4%

" k'a)'f'(co')P(or')ku'

((e'+o)—cue) G+ (&u')

1 "e"("'i sinb(a)' )T(o)')d(v'
(21)

(u' —s)+ie

Here we ha, ve introduced Eq. (1a) and the definition

+P &2/Vlgl2/V8. , in&&2/V8. , inly l&)

1 1
xl — . I, (27)

kG) +(t) los it) —gt) +zel

which is represented graphically in Fig. 2. In arriving
at Eq. (27), we have noted that &2/Vl jl 80&= —gzp/2.
Inspection of Eq. (27) shows that P(gd)=P(geB N).
This crossing symmetry corresponds to an interchange
of the two outgoing 0's in Fig. 2. The matrix element
M(co) defined by

M(a&) =X '(&o)&2/Vl jl 2N8, in) (28)

is related to 2E8 scat tering, and by analogy with the GT
calculation of OR(~) we find

(22) ~(~)= —2g'/G+(~) (29)
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FIG. 2. Dispersion graph for P(co) according to Eq. (27). To
each of the graphs there corresponds another with the g particles
interchanged.

and

In Sec. II 8, it will be shown that the quantity within
la, rge parentheses on the left-hand side of Eq. (33)
vanishes. Thus we are led to two independent algebraic
relations connecting F and 1 p, the simultaneous solution
of which yields the desired eigenvalue condition for co&.

We do not determine F and Fp in this procedure, only
their ratio. A separate consideration of the bound-state
vector or contraction of Bp in Fp enables us to obtain
expressions for these quantities.

B. I p Vertex

As in the previous case, our treatment of this vertex
also avoids the contraction of a bound state. Instead,
we call upon Eq. (14) and a complete set of states to
write

e'«"' sing (co) = —g'lc f'(co)/27rG+ (co), (30) —
g Pk (Bpl Pivt No„,in)(N0„, inllyv!B). (37)

where g(co) is the corresponding phase shift. The com-
bination of Eqs. (27)—(30) yields the integral equation

1 1
P (~) =gZ, I',v2!

(co —co o co+co p
—cd ii

1
+ e'&'"' sins) (co')P (co')

~
~

1
+ dco'. (31)

cp co+1—o oo +co—coil

This is an integral equation of the type discussed in
Ref. 7, and its solution is

Zcos ( gI
+Zpi'p L1—p (co ii —

coo�)

]
1—p(cps) E cps

—z;roC .—Ool „l)+lcr
=ZpI pj 2coo[1 p (coil—coo)]+ (ZZp ) G(ooii coo) )

2Zo I'pG(cps —coo)C(coil), (33)

where the integrals B(cd&) and C(co&) are defined by

1 " 1 i L1—p (coil —co)]dcd

G+(co)) G(coil —co)

1 1 (d 1—
CO g —M (/M

C(cps) =— Im
G+(co) G(cps —co)

In arriving at Eq. (33), we have incorporated"

1 " 1 ~ (2co—coil)dcd Zo'(coB 2cdp)

!Im =Z-o — — . (36)
ir „G+(co))G(cps —co) G(coil —cop)

B(coil) =

'~ This integral is involved in Eq. (A6) of Ref. 1.

P (cd) =gI',v2G(co co,)/Z, G*—+(oo)G(co co) . (32—)

Collecting the results, Eqs. (24), (25b), and (32), we

have, after some calculation,

It is convenient to convert the field operators in these
matrix elements into currents. For this purpose we

employ

and 6nd

fv= [H,yv]+m4 v,

AY [+4'iv]+ iic4'N

(& Ap l
Bo)——I'o/~o,

(38)

(39)

(40)

The matrix element (NO„,in! f~l Bp) has already been
treated via dispersion methods in an earlier paper. "
Our use of in-states in the present case requires the com-
plex conjugate of P(co) as shown in Eq. (43). When
these expressions are inserted into Eq. (37), we get
(in continuous space)

—gFI 2 g ZZp
Fp ——

lo f'(co)

(b'av

cd) T (co)doo—
X —. (44)

„co(co coo) (co—cog)L1 —p(co)]

Substitution of Eq. (23) into Eq. (44) leads to

I p= —gI I p/copcoe+gzzpI P (cori)

gzzo&2
ZzopcooI o 1—p(cpa coo)]l'(coo)

4~'

"7ccof'(co)P(co)! 1—P(cog —co)]F(co)dco

G'(~)
(45)

(V
l
Pv)B) = —r/~„ (41)

X—'(cp)(N9, in!tv B)=T(~)/(co coe), (4—2)

X '(co)(N8„,—inl p&l Bll)

= (Ne„,in! fN I
Bo)/X(co) (co—coo)
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The integral tin E . (32) into Eq. (53) andThe result of substituting Eq. in

then the latter into 'q.E. 49)is

Iml
E1—p(M) i

1 "1'of'( M)E(co)

47I & M (Ma M)

T co dcd. (55))& [(Ma co) U—(cd)+ T (M)]dM.

T which yieldcan be evaluate y Td b the methods of GT,

cd coa cdp+W cda)L1 P(cdo

+ (c1mv+1V —Ma)/1V(1V+Mp — — co —11V cop —Ma)L1 —P(Ma —1 42 is invoked at this p
'

oint, theM '
ll ld

'
ll Mbracketed terra in e ouin the integran wou

h
q.

E
to find, after some calculation,

s. 32), (45), a,nd (47), we canFinally, by combining Eqs. (3
„

conclude that

ZpA+I G(Ma —cop)B(Ma) ~ (

V article, we findto A and contracting the pTurning to an46
(M —

coo) (co—coa) (co+W—coa)

A ———+

)B( ) (4g)

ns we have foundh t further contractions w

uld still arrive at this resu
(43) which are easy to
h d h

s. (40) and, w
'

prove via t eh contraction technique, a
Eq. 37 as( )

g'Zz "kf'(M) (fimv M) U(M—)dM

co re resen t the matrix elements
1VO„ i !P ! B), respectivelyV!Pv!B) and X '(M)(1VO„,in

For U(M) we have

U(co) = —i '- y!L&(~),y,]e(-i)!B)u, (50)

which in the usual way, becomes

v2 " Io'f'(M')P(co')dM'z,r, g
U(M) =—+

(M'+ M —co a)G+ (co')Mg

1 "e"C"'& Sin1i(M') U(cd')dco'

Co —M+ OO

(51)

e ted the elementary InatrixHere we have also accepte

C. Eigenvalue Condition

condition, we rewrite Eq. 33, using

+Zo oG(Ma —cdo) —2ZZo oG(Ma Mo Ma

i
' '

and ro from this relation, and Eq.Elimination of r an 0 r
48 ives( ), g

2Z Ma Mo)L1 p(cda Mp)) Zp G(Ma cop

1 " 1

7l p

co a co) $1 P(M a co—)jdco— —
(58)

G(cda —co)

This is simplified with q.E . 19) and

r.!'
cd a k1 —P(Ma) ]

&«Z"L1—p(.—.)3—G(.—.B ~ .

54), we's result is combined with Eq.y )

~ ~

. (56). In an case, it isained by ~sing q
clear that our first scheme invo ving
a calculational advantage.

element

X-' M)(x!pv! zve„,in) =gv2/G+(M) .

The solution of Eq. (51 is

(52)
1 " 1 ) dco

A (Ma Mo) = Im

(60)A ZOI pL1 P(Ma cop)j
U(M) =

1—P* M

I d IV2 "k' f'(co') P (cd') Pl P(M a co dM— —

(M'+M —Ma)G'(M')4m-'
„

I1Tl d.=Z;-Z-,
kG(M)

—=Z '+MaA (coa coo)—
kG+(M) G(coa—co)

(53)
+Zp (2cdp —Ma)/G(coa —Mo) . 6
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The final result is tion between I'p and Z~.

D (Ms)
—=Z2(M2) —2emv)

I
1—Zp-2G(M2) —M o)

XA (Ms —Mp)g+Zp G(Ms —cpp) =0, (62)

which is exactly the condition originally obtained in
the LSZ formalism by setting the denominator func-
tion D(W) of the Fourier transform of the 2V prop-
agator equal to zero at the bound-state pole. The
functions G(Me —Mp) and A (Me —cop) are real, since the
Stability Of the 2V SyStem requireS that Ms(Mp+)(c(2p.
We can replace emv I

in Eq. (62)7 with mp —m, where

mp is the bare mass of the V particle. Note that if x is de-

fined as Ms —Mp, and if the quantity 1—Zp 'G(x)A(x)
does not vanish in the seqment cop&@(p, then there is

only one root xs of Eq. (62) in this segment, the value
of which is decided by mp. The reader is referred to
Ref. 2 for further discussion of Eq. (62).

To conclude this subsection, we comment on the
situation that arises when the S particle is contracted
in T(M). In this case, one encounters the graphs shown

in Fig. 3, and

gl' 1 "e"("') sine(M') T(cp') dM'

T(M) =—+—
M —M+26

zs p, (M)= &olf'~apl'vIB)

As before, we obtain

gI' T(M)
Zsq i(M) = X(co) +

MGOg 4)—COg

(67)

X2 (M') T (M') l+g' 2 I. (68)
p' M (M —Mi)) (M —M+2 p)$1 —)9(M )gr

On substituting the expression for T(M), and again
after some calculation, this yields

1
zspi(M) = —zol'ox(M)

I

(Ma —Mo —M

gzsv2
(66)

ZpL1 Zp G(Ms Mp)A (Ms Mo)j
Equations (48) or (57) could now be used to find a
corresponding relation for F. Next, we consider the
expansion coeKcient (()i(M) defined by

&e-I fvl «- )&«-
I f~l B)

+X—
'(M) Q +X '(M)

where
1 ()' 1I„,(Ms —M) =— I~I

kG+(M') r
GO

—(dg

(e„lf, l
xe„.e."&&I(Te..e.-

I f I B)
X P — — . (63)

O' Ic" M +M —Me
(MS—M —Mp)dM

X . (70)
(M +M —Ms)G(Mi) —M )

Here we see that intermediate (in- or out-) states
characteristic of the Ve sector make their appearance.
If the conditions suitable for a discrete VO state are
satisfied, we would also have to include it in Eq. (63).
In view of Amado's work, the matrix elements

I fv I
Ve ') and (e I fvl +e 'e ") p«sent no new

problems. We do not develop this approach, but there
is every expectation that Eq. (62) would again be the
final result.

Hence, in view of Eq. (66), we have

gV2X(M) ( 1
p i(M)=—

1—Zp G(Ms —Mo)A (Ms —Mp) (Ms —cop —co

lZo G(Mi) —Mo)
+ LI„(Ms—M)+A (Me —Mp) 1 I, (71)

4)—GOp

which is in agreement with Eq. (48) of Ref. 2. The
remaining coeKcient isD. Vector

I B)
To deal with the 2V bound-state vector IB), we

6rst note that its normalization constant Z& may be
expressed as

(72)2ZB(()2(M,M ) = (0I ip~1p~akak
I
B).

ZsV2= &OI pvpv I
B&.

The introduction of a complete set of states yields
2zsp 2(M, M') = &o I y~p~ap I Bp&&Bp

I
ag

I
B

yg &0 IP~)va), I
2Xe„,in&&2iVe„, in

I
a),

I
B). (73)I' X2(M)K(M) T(M)

Zs&2= ——P
G)~ Ic 4) CO

—M~
(65)

It is convenient to replace aA, with its corresponding
current. To do this we use

Since E(M) and T(M) are known, we find, after some
calculation, that Eq. (65) gives the following connec- (74)X(M')y=(cH, a),. (+M'ap .

By inserting a complete set of intermediate states
between aA, and aI, , we can rewrite this as

(64)
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Thus Eq. (77) simplifies to

.e
gLX(~) p i(~')+X(~') p (~)5

(ps(rd, Cd ) =
I

(79)

e

N

v

ee-

N.e

..e

which is exactly the TD exPression given for Ps(rd, od')

in Ref. 2, Eq. (43c). Having found ppi(rd), this completes
our determination of the expansion coefFicients, and

lB) is written in terms of normalized bare states as

IB)=ZeLZI2v)+(«) 2 q'i(") llv, 1~,1s)

+Q q s(rd, cd')
l
2N, 1s,1s)5. (80)

FIG. 3. Dispersion graph of T(~) as divided in Eq. (64).

Subsequent manipulations then show

2gZpI'pX(od)X (rd')
2Ze ids(rd, rd') =—

Ã —
COP GO G00—CO g

%2X (o&)X(&d')I' (rd)
+2g'%2X (rd) X (rd')

The normalization constant Z~ follows from the require-
ment (BlB)=1,or from Eq. (5&) of Ref. 2.

III. VN+I} SCATTERING

We now turn to a dispersive treatment of the elastic
scattering of one 8 particle by the composite particle
Bp (the VE bound state). To simplify some of the
calculation we shall make use of certain knowledge
previously gained in the TD method. Ke begin with the
relevant 5-matrix element

X'(rd")P (rd")
XP —. (75)

(rd +id —(de) (rd —pd+Z6')G+(Cd )
On making the partial fraction decomposition

S= (Bo8„,out
l Bo8„,in).

Contraction of the out-state 8 particle leads to

5=5».+2rri5 (rd rd') X—'(rd) V (rd),

where the scattering amplitude F'(pp) is defined by

(81)

(82)

0) —COg CO
—

GO Z6

1 ) 1 1

(d +id rdrr (Cd —rd+fs rd +id —rdel

and using Eq. (31), we obtain

2gZprpX (cd)X (rd ) 4'o= Zo '4'vox.
2Zeg&s((d, od ) =

G00 GO M p
—CO~

2gz,r,x( )x( )

Cd +id —Cdrr rd —rdp rd+Cdp —rdel

42X (od) X(rd')

The current operator fp(t) associated with Bp is found
to be

fp(t) =[ r', (d/dt)+2rrs+—oio5&o(t)

=[H,P,(t)5+(2 + )f (t)
= (rd p

—hm v)Po (t)—g (ZZo)
—'P~ (t)/sr (t)A (t)

gZo Vv(t)gv(t)A (t—). (85)

e'&' "sing(rd")P(rd")
7l CO M —Q7~

(
1 1

X + l. (77)
+rd Cde (d +rd —ppe)

With the help of Eqs. (30) and (32) the integral term in
Eq. (77) becomes

2gx(rd)X(rd') ( Zpl'p Za yr (rd)

(d +(d—(dpi Erd+(do pds X (rd)

Zp~p

As expected,

(oI fol Bo)=o (86)

We now use the usual asymptotic definition of a state
to write

V(rd) = —gV2(ZZp) 'X '(&d)(2vl Bpe„,in)+ix '(cd)

e'&' + p&'(OlLfp(t), j58(t) lBp8„,in)dt. (87)Zsipi(rd )
(78)

X(cd' )Cd+rdp —Cde
The first term on the right-hand side of this equation is

(I)=x '(~)(Bpl jl Boe„,in). (83)

(76) In the spirit of Amado's procedure, we must contract
Bp from the left in V(rd). To do this, let us introduce the
corresponding field operator
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E(pi) =X '(pp)(0~ fp~ 2»8„,in), (90)

»(pi', pr) = [X '(pi')X '(pp)/2Q]

)&(2»8„,m~g~Bp8„, in). (91)

The manipulations leading to the evaluation of E(~)'
and»(co', cv) are direct extensions of the methods used

by GT and Amado, respectively. In the former case
we find

X(pi) = —gv2((u —(up)/ZpG+(cg) . (92)

At co=coo, we note that this vertex function is equal in
magnitude to gZpv2. The integral equation for»(p~', &a)

turns out to be

Ã(~', ~) = gv2Zp~8—» /f (~)

gv2ZO
1 V(co)

20 ~'—~0 ~'—~—Ze

00

+— e'&'"" sing ((vi)»(pi, ,p~)

X —+ — d(oi. (93)
Mi+M —(d CVp

—'ie (di —hl +Zp

This equation has the solution

»(I',cv) = gv2Zguh» / jo(p—i)

+2v2g'/2QZ pG*+ (pi') G (ip+ pop
—pi')

+ g~2& (pp) G+ (co)/2&ZoG*+ (pi') G (pi+a&o pi') (94)

On combining Eqs. (89), (92), and (94), we obtain an
expression for V(p~) that leads us to express Eq. (82)

due to the equal-time conunutator resulting from the
di6'erentiation of the step function. It is convenient
to evaluate the scalar product in this term by exploiting
Eqs. (1) and (19) of Ref. 2. We find

(2v I
Bo8, in) = 2'"ZZp 'gX(~)/D(re+pop) . (88)

Consequently, on substituting intermediate states into
Eq. (87), and recalling Eq. (86), we obtain

—4g' P(~')If-(~')»(~', ~)
V (a&) = +P, (89)

Zp D(co+cop) & pp (M Mp)

where

in the form

S= pic +4vri g'8 (pr cv—')XP (pi)

Z'(pi+pop —2hmv)[1+Zo 'G+(po)A (cv)j Zo 'G+(pp)
X—

G+(pp) D(re+ pi p)
(9&)

When po —& m, we find that Zp pG+(p~)A (p&) approaches
the negative number 1—(ZZpo) '. Recall that ZZp' is
the probability of finding the bare VE component in

~
Bp). We also have that G+ (pi) ~ p~Z in this limit. Thus,

at high energy, it follows that F(pp) behaves like
—2gpoco '(1—ZZpo), where gp is the unrenormalized

coupling constant. This may be interpreted as the Born
approximation for 2»+8 scattering multiplied by the
probability 1—ZZp' of finding

~
Bp) virtually dissociated

into 2»+8. In accordance with the 2V bound-state
conditions stated earlier and exhibited in Fig. 1(a) of
Ref. 2, one can verify that V(p~) is also negative in

the low-energy limit M ~ p.

IV. PRODUCTION

Again, as in Amado's paper, we can now calculate
the S-matrix element for the production process
Bp8 —& 2»+28. We do this by first contracting a 8

particle from the left in

S= (2»8„8~, out ~Bp8„,in).

The result may be expressed in the form

S= (4miQ/v2)

X 8(co+(ap —po' —pi")X(p~)X(a)')X(p~")(P(pp', pp), (97)

where the amplitude (P(cp', &o) is defined by

P(p~', (a) = [X i(p~)X '(~p')/20$

(2»8, out~ y ~
Bp8, in). (98)

A simple calculation involving a complete set of inter-
mediate states and the S-matrix element for 2»+8
scattering leads to

6'(pi', co) =e"« '»(pp' po)

=G*'(~')»(~',~)/G'(~') (99)

Keeping in mind the energy conservation due to the
5 function in Eq. (97), and using Eq. (94) along with
the expression for V(p~), which may be rea, d from Eq.
(95), we write Eq. (97) as

8vri Zog PX (pi) X((o')X(pi")b (pi p+ pi pp' pi") (pi+ pi—p 2—8mv)—
S=

ZpG+((o')G+(pp") D (pp+ p~p)

(100)

An amusing feature about this amplitude is that its cop&pi&p, the functions ~+p~p —28mv and Zp 'G+(cp)/

numerator vanishes when the energy co+2m+pop is Z'[1+Zp 'G+(&v)A (p~)) are negative and positive,

equal to twice the bare V-particle mass. In the segment respectively. Hence the numerator of the 800 scattering
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G+(Mi)4' Zo
This collision process, unlike the previous one, re-

quires a separate treatment, both here in the dispersion
approach and in the TD method. We begin with the
5-matrix element

g v2 '4ck' bkck
.0', (Mi,M'M) = — +

1 1—g&2ZoR (M', M) +.. ., ,.. . .)
S= (21V8„8,out

~
2%8„8„,in). (101)

If a complete set of in-states is inserted into the matrix
element (2178„,out~ 2iV8„8„,in) resulting from the
contraction of 0„.", we find

00

+— e'"' " sing(M2) o, (Mp, M'M)

7l p

amplitude will not have a zero in this segment. Note we are led to the following coupled equations:
that p+Mo —2bmi has been chosennegative in Fig. 1(a) R( ', )= —~2EZoX( )X( ')p'C( ' )of Ref. 2.

gV2 fcif (Mi) 8(Mi, M M)dMi
V. 2N28 SCATTERING (106)

S= p (bk~k~«Skk~ +bkkc~ccSk~ck~c~c

+ (2m i/v2) 8 (M+ M' —M"')X(M'")X(M') X(M)

XQ X(M,)Sk,k. '~'O(M, ,M'M). (102)

In this expression, e(Mk, M'M) is defined by

0', (Mi,M'M) =X '(Mi)X—'(M')X '(M)

X (2%8
„

in
~ g ~

2' 8„8,in) (103)

and Skk '~' is the S-matrix element for 2iV+8 scattering
given by

Skk. '~' bkk. —4m=iX'(M) b (M —M') g'/G+ (M) . (104)

Introducing the definition

g(M, M)=X i(M )X '(M)(Llo~ j~2iV8 8, in), (105)

1 1
dMp. (107)

(Mp —Mi+CP Mi+Mp —M —M —ZP

These equations are analogous to those developed by
Srivastava" for the %+28 amplitude. The extra term
in Eq. (106) accounts for the fact that

~
2cV8„8„,in)

contains a component consisting of two bare V particles,
as shown by

C(M', M) = Z '(2i
~

2lV8„.,8„,in) . (108)

By appealing to Eq. (35) of Ref. 2 and Eqs. (24) and
(25) of Ref. 1, we find

2'i'g'X (M) X(M') G (co+M' —M o)
C(M,M) = (109)

Zp'D (M+M') G+(M) G+ (Mu c)

The result that we obtain for 8(Mi,M'M) is

—g'2 ~~,I; ~1;,a
Q, (Mk, M M) = +x'( o G'c ) ~'( '))

4g 42G(M+M Mp)

Zp'G*+(Mi)G+(M+M' —coi)G+(M)G+(M')L1 —Zp 'G(M+M' —Mp)A (M+M' —Mp)]

4g4&2G(M+M' —M o)
(110)

Zp G*+(Mi)G+ (M+ M' —M i)G+ (M) G+ (M') D (M+ M') L 1—Zp G (M+ M' —M p) A (M+M
'—M p)j

Finally, the combination of Eqs. (102), (104), and (110) yields

S= p (Skskeii Skksi +Skk ionic Siikk~k )+8 l'Zg p8(M+M —M —M )X (M )X(M )X(M )X(M)

Z'(M+M' —28m')Zo 'G+(M+Mo'c —Mp)

X (111)
G+ (M)G+ (M') G+ (M")G+ (M"')D (M+M')

The 5'~'-matrix elements in this expression have an
obvious interpretation, while the last term incorporates
the e8ect of the coupling to the two V particles. Note
that the connected amplitude vanishes when the energy
2m+M+M' equals twice the bare V-particle mass.

We have shown, in Sec. II, that the 2V bound state
provides another exactly soluble problem in dispersion

theory. As a convenient illustration, we have considered
both V and X as Bose particles with zero separation.
It was found that there are essentially two ways in
which one can approach the solution of this problem.
The one that we have presented includes the intermedi-
ate states characteristic of the V and VÃ sectors, but
circumvents those found in the Vo sector. For this

"P.K. Srivastava, Phys. Rev. 131, 461 (1963).
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reason, we are inclined to state that this way is the path
of least mathematical resistance. We leave it as a
future exercise to discuss the exact solution for the
case in which the X particle is contracted in T(~).

In dealing with the bound-state eigenvalue condition,
we encountered the vertex I'p=(80l jl8). On inserting
the known structure for j, we maintained a course that
ultimately led to the eigenvalue condition. On the
other hand, if we had contracted Bp at this point, we
would have found the connection between Fp and Zg
as given in Eq. (66). Similar contractions in I'i and I'2

lead to Eqs. (1a) and (1b). For example, in the case of
F~ we have

Fg=Zp '6rny

q'&2"+~o)t(alt f (&) f t]8(t)
l
V)df (112a)

where Zp 'gamy has come from an equal-time com-
mutator. Proceeding in the usual way, we find

Z 1
I'2 ——Zo 'Sly 1+— Im do), (112b)

G+(~)

which reduces Lwith Eq. (60)) to I'~ ——ZZ06m~.
Since all previous dispersive treatments of the ordi-

nary Lee model have dealt with questions involving only

c(&,&)—= (o IT(4 (&)4 (&))I8)

and the integral equation that it satisfies.

(113)

"N. Mugibayashi, Progr. Theoret. Phys. {Kyoto) 25, 803
{i961).

one V particle, we have also found it interesting to
extend this method of solution to the collision processes
in the 2V sector. In particular, these calculations have
the merit of allowing us to illustrate fully, in an exact
manner, the mechanism for the contraction of a com-
posite particle. Of course, Bp is an elementary example
of such a particle, but we can also think of applying
similar techniques to the 8 particle. For this case, we

would introduce the field operator Q~=ZIi 'P~P~ and

its corresponding current f~ [H,P——~j+ (2m+&vii)Pii
The contraction of 8 could be useful in the calculation
of the S-matrix element (88„,out l88„., in).

Finally, we wish to include a remark concerning an
alternative approach to the 2V bound-state problem.
It has already been shown by Mugibayashi" that the
Bethe-Salpeter equation for the VS system is an

exactly soluble example with no redundant states.
Therefore it seems worthwhile that, in a future in-

vestigation, we give similar consideration to the Bethe-
Salpeter amplitude


