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The 2V sector of the Lee model is examined from the standpoint of dispersion theory. In this approach,
vertices of the type pointed out by Blankenbecler and Cook are used for the purpose of establishing the
bound state and eigenvalue condition corresponding to the static interaction of two V particles. Following
Amado, we also determine the scattering and production amplitudes characteristic of this sector. In relying
on his methods, we carry out exact dispersion calculations involving the contraction of a composite particle
(the VN bound state). The states found in the V and VN sectors are the only intermediate states used

throughout.

I. INTRODUCTION

HE Lee model of a (partly) soluble field theory
with a nontrivial renormalization problem con-
tinues in the literature to provide a very valuable
framework for the discussion of many dynamical ques-
tions and techniques of calculation. In recent com-
munications, the Lehmann-Symanzik-Zimmermann
(LSZ) formalism! and the Tamm-Dancoff (TD) method?
have been used to obtain a complete solution of the 2V
sector, thereby extending the solved aspect of the model.
This sector is more suggestive than the VN subspace
in that both sources undergo renormalization, and is
similar to the V8 sector in that it embraces two elastic
scattering amplitudes, a production amplitude, and a
bound-state problem. In the present paper, we under-
take dispersion calculations of the bound-state param-
eters and the collision amplitudes, assuming, as in
Refs. 1 and 2, that the heavy particles are bosons with
zero separation.

The techniques of dispersion theory have previously
been used by Blankenbecler and Cook?® in an attempt to
calculate bound-state parameters of physical interest.
These authors introduce a vertex function closely
related to the Bethe-Salpeter amplitude and show that
its corresponding dispersion relation yields bound-state
information such as the asymptotic D-S ratio for the
deuteron. Since their effort is limited to the one-pion-
exchange approximation, it is of interest, even at the
static-cmodel level, to apply dispersion methods to
composite particle systems involving more intermediate
states. It will be shown that the 2V system is one such
exactly soluble example.

In carrying out our development of the 2V eigen-
value condition and its corresponding bound state, we
shall accept relevant matrix elements that have already
been treated in the literature. We recall that, in their
effort to clarify a dispersion analysis of the w-meson
lifetime, Goldberger and Treiman* (GT) set up a modi-
fied Lee theory that led them to consider some matrix
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elements in the first nontrivial sector of the original
model. Of these, we shall require the V & N§ vertex
function K (w) and the N6 scattering amplitude 9 (w).
The former is closely related to the function L(w) intro-
duced by DeCelles and Feldman,® who discussed a dis-
persion approach to the renormalization constants émy
and Z. Note that DeCelles has also pursued this idea
into the realm of quantum electrodynamics.® Matrix ele-
ments characteristic of the VN sector will also arise
and these are easily found. Our success in achieving a
dispersion solution of the 2V bound-state problem has
its roots in which particles we choose to contract. In
accordance with the route adopted here, we need only
introduce at various stages the intermediate states
characteristic of the V and VN sectors. This is a
distinguishing feature over other possibilities that would
allow the more complicated states of the V@ sector to
enter. The most involved singular integral equations
that we encounter are of the type studied by Blanken-
becler and Gartenhaus,” examples of which have been
solved in the model context by Amado,® by Muta,’
and by Vaughn !

The basic idea behind our treatment of the above-
mentioned eigenvalue condition is to generate two
simultaneous algebraic relations connecting two vertices
of the type pointed out by Blankenbecler and Cook.
The same situation exists in the analogous, but much
simpler, dispersion calculation of the VN potential
energy.!! That case involves the vertices I''=(N| fv| Bo)
and To=(V| fx| Bo), where fy (fv) denotes the V (V)
particle current operator at time =0 and | By) is called
the physical VN bound state with eigenvalue 2m—+w,
and normalization constant Z,. Both one-particle
physical states |V) and |N) are assigned the same
energy m. We know that G(wo)=0 and Zy2=G'(wo),
where the prime denotes differentiation and where
the inverse of Gt(W) [see Egs. (19) and (12)] is the
Fourier transform of the VN propagator evaluated at
the energy W+2m. The first condition determines wo
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(at zero separation) as a function of the renormalized
coupling constant g. When g is below its critical value
(no ghost condition), w, is real (negative) and single-
valued.? It turns out that

I'i=—weZo,
P2= ZZoémV .

(1a)
(1b)

We shall also accept that émy and Z have already been
established by dispersion methods.

To obtain the scattering and production amplitudes,
we follow the method devised by Amado. In our case,
however, this requires the contraction technique for
the composite particle (VN bound state). Thus we
find an opportunity to gain some model experience with
exact dispersion calculations involving the scattering
of an elementary particle by a composite one. Of course,
it would be even more enlightening to explore the
scattering of a 8 by the 2V system, since we could then
investigate the interesting possibility of a three-
particle dynamical pole below the 2V 46 elastic thresh-
old. This aspect is presently under investigation.

II. BOUND-STATE PROBLEM

In this section, the methods of dispersion theory are
applied to various matrix elements for the purpose of
deriving an eigenvalue condition for the static-inter-
action energy of two V particles. After accomplishing
this, without having to calculate state vectors, we go
on to construct the TD expansion for the corresponding
bound state.

A. T Vertex

Our point of departure is the most obvious vertex,
namely,

r=(V|fv|B), 2)

where | B) is the physical 2V bound state with eigen-
value 2m-+-wp that defines wp as the potential energy
of static interaction. The V-particle current operator at
time ¢ is given by
Fr()=[—i(d/d)+mv ()

= —omy ()= (&/ZWn (DA(),  (3)
where X (w) and 4 (¢) are abbreviations for f(w)/(2w2)!?
and > ; X (w)ax(¢), respectively. As usual, the cutoff
factor f(w) serves to suppress the ultraviolet diver-
gence, and depends only on the relativistic §-particle
energy w= (k*+u?)"%. The quantization volume is .

The Hamiltonian H and the equal-time commutators
are given by

H=2Z(m+mv)¥v'y V+m¢NT¢N+Zk: waiay

+gpviynA+gynyvAat  (4)

2S. Weinberg, Phys. Rev. 102, 285 (1955).
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F16. 1. Dispersion graph for 7 (w) according to Eq. (15).

and

Lax(@,ae’ () ]=6r, WvO¥v' () ]=271,
nv@O¥n'@®1=1. (5)

Applying the LSZ contraction technique to the V
particle in T'; we obtain

0

om0 |Civ @, v B (6)

I‘=i/

If a complete set of intermediate states is introduced,
we can use the time translation property

fv()=exp(iH1) fy exp(—iH) ()

to do the integrations, and we find in continuous space
that

1~ 1 1
I‘=——/ kj%w)K(w)T(w)(——l———)dw. (8)
4r?/, ®w w—wp

Only the N6 scattering states, chosen as in-states,
contribute, since (0| fv|V) vanishes. The functions
K (v) and T'(w) are defined by

K(w)qul(w><O|fVlN0w: in)) (9)
T(w)=X""(w){N0a, in| fv|B). (10)

The expression given by GT for K (w) is unaltered by
the fact that the sources are being treated as bosons.

Hence
K(w)=—g/[1-Bw)], (11)
where (W) is given as
W kfA(w)dw
sny=—S0 [F R
dn? J, o?(w—W—1e)

To make further progress, it is clear that we must
now contract a particle in T'(w). In this regard, it is
convenient to select the 6 particle, since this does not
implicate the complicated states of the V@ sector. The
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N-particle contraction will be considered briefly later
on. Therefore we write

T(w)=—i / N[5, fvI0(—0) | B)d, (13)

where the 6-particle current operator j(¢) is defined by
JO) =X () —i(d/d)+w]ar ()= —ghn' (v (1) (14)

As before, we insert the appropriate intermediate states
and do the time integrals to get

r Bo|j| B
T(w)=g—+r1< |71B)

w wtwo—wp

(V| fv|2N0.:, in)2N0,, in| j| B)

P2 w'+tw—wp
<N|]|N0w’7 ln><N0¢~"7 ll’llf ‘B>
+5 A D)
P4 W' —wt1e

In-states describing the elastic (S-wave) scattering of
one 6 by two coincident N’s are written as |2N6,, in).
This decomposition of 7T'(w) is represented by the dis-
persion graph in Fig. 1. We have noted that (N|j|V)
= —g. Also, in accordance with GT, we have

M (w) =X (@)(N|j| N, in)=—g/w[1—B(w)] (16)

and
e? @ sind(w) = — g2k f2(w)/4rw[1—B8w)], (17)

where 6(w) is the phase shift for N6 scattering. Further,
we omit straightforward considerations that yield

XY w)XN| fr|2N8,, in)=—goV2/Gt(w), (18)
where
Gr(W)=G(W-+ie)
=2W1—-BW)1+Zémy—ZW. (19)
Upon setting
P(w)=X"Y(w){2N4,, in| j| B) (20)

and transforming to continuous space, we may now
give T'(w) the form

gF woZ()Fo g\/,’z

T(w)=—-— ——
w wtw—wp 4
® ke’ f2(w) P (00")dw’
s (W'Fw—wp)Gt(w)
1/°° e @) gind (o) T (') dw’
u

(21)
T w'—wt1ie
Here we have introduced Eq. (1a) and the definition

To=(Bo| j| B). (22)
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This vertex will be analyzed in Sec. IT B. At this stage,
T, T'y, and P(w) are unknown, but this does not prevent
us from solving the above Omneés-type integral equa-
tion for T'(w). Standard methods yield

1 /el woZol'o[1—B(wp—wo) ]
T(w)= i
@ l—ﬁ*(w)\w
2 ko f2(w)P(w)[1—B(wp—w’) Jdw’
_g_\c fH")P(w")[1—B( )] ) 23)
(w4t 0—wp)Gt ()

2
42/,

w+twi—wp

Using this result and Eq. (11), we can rewrite Eq. (8) as
gl[1—J (wp)=—woZel'o[1—8(wz—wo) ]J (wo)
gV2 2 kw f2(w) P (w)[1—B(wp—w) T (w)dw

, (24)
42/, Gt (w)
in which
1 1 \ (2o—wp)dw
JW)=—| 1 (25
) w/u m(l—a(w>/(w—w3)<w+w—w3> @52)

This integral is readily evaluated by the methods of GT,
and we find

wp 2W—wsp
J(W)= ‘

+ —. (25b)
W[1—B(ws)] W[—Bws—W)] Z

The matrix element P(w) is the remaining problem
in connection with Eq. (24). On contracting the 6
particle in this function, we obtain

0

P<w>=-i/ ¢ 2N | [7(0),730(~1)| Bydt.  (26)

A familiar procedure leads to the expansion

1
P (w) = gZOF()\/j( )
wtwi—wp

+3 (2N|j|2N6,:, in)(2N8,,, in| j| B)
-~

1 1
x( ), @
w'tw—wp w—w'tie

which is represented graphically in Fig. 2. In arriving
at Eq. (27), we have noted that (2N | j| Bo)=—gZ2.
Inspection of Eq. (27) shows that P(w)=P(wp—w).
This crossing symmetry corresponds to an interchange
of the two outgoing #’s in Fig. 2. The matrix element
M (w) defined by

M(w)=X"(w)(2N| | 2N0,, in) (28)

is related to 2V scattering, and by analogy with the GT
calculation of 9 (w) we find

M(w)=—2g"/G*(w)

wW—wp

(29)
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T16. 2. Dispersion graph for P(w) according to Eq. (27). To
each of the graphs there corresponds another with the 6 particles
interchanged.

and
€@ sing(w) = — g2k 2(w)/20G+ (), (30)

where 7(w) is the corresponding phase shift. The com-
bination of Egs. (27)-(30) yields the integral equation

P (w) = gZQPQ\/§<

Ww—Wwo

)
w+twi—wp

1 0
+*/ e« siny (') P (w')
T u

1
X( } >dw’. (31)
w'—w+tie w'4+w—wp

This is an integral equation of the type discussed in
Ref. 7, and its solution is

P(w)=gTV2G (wp—w0)/Z¢G*T ()G (ws—w). (32)

Collecting the results, Eqs. (24), (25b), and (32), we
have, after some calculation,

Zwp (—gF
1—B(ws)

+Zo[1—B(wp—wo) ]

—Zo_lI‘oG(wB—wo)B(wB)>+ ZgP
= Z()F(){ 2(.00[1 -—6 (wB—wo)]—i— (ZZgz)_IG (wB—wo)}

_2Z0—1POG(°~’B_‘*’0)C(“‘)B)) (33)
where the integrals B(wp) and C(ws) are defined by

1 p 1 \[l—ﬁ(wg—w)]dw
B wWB)=— I y 34
(s) r,/:, m(G“'(w)/ G(wp—w) (34)
. 1, 1 \w[l—-ﬁ(wg—w):]dw
C WR)=— In . 35
(ws) 7r/u n<G+(w)/ G(wp—w) (33)
In arriving at Eq. (33), we have incorporated'
1> 1 2w—wp)dw o2 (wp—2wq
~/ Im( \! ) =Z~2—Z ( ). (36)
7). \G+(©)/ Gls—w) Glwp—wo)

13 This integral is involved in Eq. (A6) of Ref. 1.
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In Sec. IT B, it will be shown that the quantity within
large parentheses on the left-hand side of Eq. (33)
vanishes. Thus we are led to two independent algebraic
relations connecting IT' and T', the simultaneous solution
of which yields the desired eigenvalue condition for wg.
We do not determine T' and T’ in this procedure, only
their ratio. A separate consideration of the bound-state
vector or contraction of By in T’y enables us to obtain
expressions for these quantities.

B. I' Vertex

As in the previous case, our treatment of this vertex
also avoids the contraction of a bound state. Instead,
we call upon Eq. (14) and a complete set of states to
write
To=—g(Bolyn'| V)V |¥v|B)

—8 2k (Bol¥n'| Nbo, in)(N6,, in|¢v|B). (37)
It is convenient to convert the field operators in these

matrix elements into currents. For this purpose we
employ

fr=[HyYv]+mpv, (38)
fv=[Hyn]+mpy, (39)
and find
(V¥n|Bo)=—Ts/wo, (40)
(V|gv|B)=—T/ws, (41)
X w){Nbo, in[yy|B)=T(0)/(0—ws), (42)
X7 (w){Nba, in|¢x|Bo)
= (N0, in| fw| Bo)/ X (@) (w—w0)
gz Iy Ty
- (w—wo)m—ﬁ*(w)](wf' w0>' )

The matrix element (N6, in| fx|Bo) has already been
treated via dispersion methods in an earlier paper.!
Our use of in-states in the present case requires the com-
plex conjugate of 8(w) as shown in Eq. (43). When
these expressions are inserted into Eq. (37), we get
(in continuous space)

— Ty g2Z7,
" h 4r?
® kfAw)(dmy—w)T (w)dw
X/,‘ w(o—wo) (@—wn)[1-B()]
Substitution of Eq. (23) into Eq. (44) leads to

Wow B

(44)

F0= —gI‘I‘g/wOwB—f—gZZOI‘F (0)3)
gZZQ\[Z

472

—ZZOZCOQF()[l_ﬁ(wB”wU>]F(w0)_

* ko f2(w) P (w)[1—B(wp—w) |F (w)dw
X/ f2(@) P (w)[1—8( ) JF (@) )

G*(w)
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The integral

F(W)%/j Im(1—;(w)>

(dmy—w)dew
(0—wp) (w—wp) (0+W—wg)
can be evaluated by the methods of GT, which yield

F(W)= (dmy—wo)/ (wo—wg) (wot+ W —wp)[1—8(wo)]
+ (my—wp)/W (wp—w)[1—B(ws)]
+ (BmV—H/V—wB)/W (]/V—i-wo'—w];)[l '—ﬁ(wg"' PV):] .
(47)

Finally, by combining Egs. (32), (45), and (47), we can
conclude that

gl /wp=Z'[1—B(wp—wo)]
—Zi TG (wp—wo)B(wg).

Thus without further contractions we have found
another relation connecting I' and T',.

If Egs. (38) and (39) had not been used in deriving
Eq. (48), we could still arrive at this result. To see this
let us accept Egs. (40) and (43), which are easy to
prove via the contraction technique, and then write
Eq. (37) as

ToA 227y r” kf*(w) (dmy—w)U (w)dw
/u w(w—wo)[1—B(w)]

where A and U(w) represent the matrix elements
(V|gv|B) and X' (w){Nb.,in|yv|B), respectively.
For U(w) we have

(46)

(48)

, (49)

P0=g
o 472

)

Ulw)=—1 / ewt(N (50)

Li¥v16(—1)|B)dt,

which, in the usual way, becomes
gA Zoly V2 2 k' f2(0")P(w)dw’
U(w)=—H L

12 w—{—mo—wlgl 4r?), (o'+o—wp)Gt ()

(51)

T W' —wt1e

1/‘” €@ sind (w’) U (w’)de’
M

Here we have also accepted the elementary matrix
element

X (w)(N[¢v|2Nb,, in)=gV2/G* (w).
The solution of Eq. (51) is
1 /51} Zlo[1—B(wp—wo)]
1-—,3*(w)\ w

(52)

Ulw)=

w+twe—wp

gV2 2k f(w)P(w)[1—B(wp—w’)Jdo’

— . (53
4#2/“ (0’ +o—wp)Gr(w’) ) (59)

DISPERSION METHODS
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The result of substituting Eq. (32) into Eq. (53) and

then the latter into Eq. (49) is

ZO2P0[1 —B(ws "'wo):]
= —gZA+TG(wp—wo)B(ws). (54)

Turning to A and contracting the V particle, we find

I' 1 2kf(w)K(w)
/u w(wp—w)
X[ (wp—w)U(w)+T (w)]dw.

Of course, if Eq. (42) is invoked at this point, the
bracketed term in the integrand would vanish and
Eq. (48) would follow at once from Egs. (54) and (55).
In the present approach, however, we must put the
known expressions for U(w) and T'(w) into Eq. (55)
to find, after some calculation,

A=——rv
wp 4m?

(55)

gZ()A= +I‘0< 1)
wp[1—B(wn)] 1—B(ws)
X{ZH[1—B(wp—wo)]—G(wp—wo)B(wn)} .

Lastly, when this result is combined with Eq. (54), we
again come up with Eq. (48), which may also be ob-
tained by using Eq. (41) in Eq. (56). In any case, it is
clear that our first scheme involving the currents offers
a calculational advantage.

(56)

C. Eigenvalue Condition

To continue with our derivation of the eigenvalue
condition, we rewrite Eq. (33), using Eq. (48), as

2gZP= ZoI‘o{ 2Zw0[1 —ﬂ(wg—wo)]
+Zi G (wp—wo)— 222G (wp—wo)C(wg)}. (57)

Elimination of T' and Ty from this relation, and Eq.
(48), gives

22(&)3*(»0)[1—6({»3*&’0)]—‘ZOZG(COB"'COU)

1 1
=2727:G (wB—-wo)—f Im(———)
T Gt (‘*’)

(@p—w)[1—-B(wp—w) Jdw

(58)
Gwpg—w)
This is simplified with Eq. (19) and
A )_1 °°I ( 1 ) dw (59)
re —r,[,‘ Gt(w) G(wB——w)’
1= 1
~/ Im(———)dw=Z(,2—Z’1, (60)
T Gw)
2 e 1 wdw
~/ Im( >———————-=Z”2+wBA (wp—wo)
) Gt (»)/G(wp—w)
+Z02(2w0——w3)/G(w3—wo). (61)
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The final result is

D(wp)=2Z*(wp—20my)[1—Zy G (wp—wo)

XA(wB—wo)]—l-Zo‘zG(wB——wo)=0, (62)

which is exactly the condition originally obtained in
the LSZ formalism by setting the denominator func-
tion D(W) of the Fourier transform of the 2V prop-
agator equal to zero at the bound-state pole. The
functions G(wp—w,) and 4 (wp—wo) are real, since the
stability of the 2V system requires that wp<wo+p<2u.
We can replace émy [in Eq. (62)] with me—m, where
mo is the bare mass of the V particle. Note that if x is de-
fined as wp—wo, and if the quantity 1—Z¢?G(x)4 (x)
does not vanish in the seqment wo<x<u, then there is
only one root x5 of Eq. (62) in this segment, the value
of which is decided by m,. The reader is referred to
Ref. 2 for further discussion of Eq. (62).

To conclude this subsection, we comment on the
situation that arises when the IV particle is contracted
in T'(w). In this case, one encounters the graphs shown
in Fig. 3, and

T () ="t~

w T

gl 1 = ¢?@) sing(w’) T (o) dw’
/,‘ o' —w-t1e
(0u] fv| V0w XVbur | fn| B)
o' —wp
(8| fv| N0 8o YN0 | f| B)

w'+w’—wg

+ X (w) ; +Xw)

XX

kR

(63)

Here we see that intermediate (in- or out-) states
characteristic of the V8 sector make their appearance.
If the conditions suitable for a discrete V@ state are
satisfied, we would also have to include it in Eq. (63).
In view of Amado’s work, the matrix elements
{8,| fv|VO.) and {(8,]fr|N6,0, ) present no new
problems. We do not develop this approach, but there
is every expectation that Eq. (62) would again be the
final result.

D. Vector | B)

To deal with the 2V bound-state vector |B), we
first note that its normalization constant Zp may be
expressed as

ZpV2= <OW/V¢V I B). (64)
The introduction of a complete set of states yields
r X2(w)K ()T (w)
ZpVl=———3% —— (65)
wp k w (w—wB)

Since K (w) and T (w) are known, we find, after some
calculation, that Eq. (65) gives the following connec-
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tion between I'y and Zp:
gZB\/Z
Zo[1— Z G (wp—wo) A (0p—we)]

Equations (48) or (57) could now be used to find a
corresponding relation for I'. Next, we consider the
expansion coefficient ¢1(w) defined by

Zpei1(w)=0|¢nav|B).
As before, we obtain
I T(w)
Zpei(w)= X(w)<i—+——w—

wwp W—Wpg

(66)

(67)

ey X2(o")T (w") > ®)
¥ o (o' —awp) (@' —wtig[1—8() ]/

On substituting the expression for 7'(w), and again
after some calculation, this yields

Zpp1(w)= —ZUPQX(w)(

WB—Wp—w

_2G (w B— wo)

+Z; [Lop(wp—c)+4 (ws—wou), (©9)

wW— Wy
where

fes (wB_w)E;r/,‘w I’"(G+tw')>

(wp—w'—wq)dw’
(@' +o—wp)Glep—a’)
Hence, in view of Eq. (66), we have
VX () (1
1— 262G (0 p—wo) A (0 5—w0) \o& g— wo— 00
Zi*G(wp—wo)
7

(70)

P1 (w) =

[Lup(ws—w)+A <ws~wo>3), (1)

wW—wy

which is in agreement with Eq. (48) of Ref. 2. The
remaining coefficient is

2Z poa(w,w’)= (0| Yn¥narar (72)

By inserting a complete set of intermediate states
between ay, and @y, we can rewrite this as

2Z g2 (w,w’) = (0¥ n¥nax| Bo)(Bo| ar | B)
+> 0|¥ympnai|2N6,, in)(2N6,, in|aw|B). (73)
o

B).

It is convenient to replace a4 with its corresponding
current. To do this we use

X(w’)j:: [:H,ak']—}—w'ak: . (74)
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Subsequent manipulations then show

27 ( ’) 2gZoI‘0X(w)X(w’)
BeRee)= (w—wo) (w'+wo—wp)
V2X (w)X ()P (w
+ (u)r <_ P eax@x @)

X2(w")P(w")

kz'; (0""+w'—wp) (w”—w-i—ie)G*(w”)' (73)
On making the partial fraction decomposition
1
(" o' —wp) (@ —wFie)
_ 1 ( 1 1 )’ 76)
w’+w—w3\w”~w+’[e W'+t w'—wp

and using Eq. (31), we obtain

- ZgZ()FoX (w)X(w')
2Zppa(ww’)=
(O)—wo) (w’—}—wo—w};)
2gZOP0X(w)X(w’)/ 1 1
: .
o' tw—wp \w—wg wtwi—wp

V2X ()X (o) =
—— e sing(0)P(w")
(o' +w—wp)/,

1 1
x( + ) (77)
w’'+w—wp w’'tw'—wg

With the help of Egs. (30) and (32) the integral term in
Eq. (77) becomes

2gX(w)X(w’)/ Zo ZB(pl (w)
w'+w—wp \w+w{;'—w3 X (w)
Z()Po Z3<p1(w’)
). (78)
wtwi—wp X (o)
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Thus Eq. (77) simplifies to
X (@) e1(@)+X (@) e(w)]

P2 (w)w’) = ]

(19

wp—w—w’

which is exactly the TD expression given for ¢.(w,w’)
in Ref. 2, Eq. (43c). Having found ¢;(w), this completes
our determination of the expansion coefficients, and
| B) is written in terms of normalized bare states as

| B)=Zs[Z|2v)+ (v Z) Zk: e1(w) [ 1v,1x3,1%)

+Z ‘p2(w7w,) | 2N;1k)1k>]’

kk’

(80)

The normalization constant Z s follows from the require-
ment (B|B)=1, or from Eq. (54) of Ref. 2.

III. VN+60 SCATTERING

We now turn to a dispersive treatment of the elastic
scattering of one @ particle by the composite particle
By (the VN bound state). To simplify some of the
calculation we shall make use of certain knowledge
previously gained in the TD method. We begin with the
relevant .S-matrix element

S= (B, out| Bof,, in). (81)
Contraction of the out-state 8 particle leads to
S=0pr=+2mid(w—0') X2(w)¥ (w), (82)
where the scattering amplitude ¥ (w) is defined by
Y (w)=X"1(w){Bo| 7| Bofa, in). (83)

In the spirit of Amado’s procedure, we must contract
By from the left in ¥ (w). To do this, let us introduce the
corresponding field operator

Yo=Zo Wryn. (84)

The current operator fo(¢) associated with By is found
to be

- foO)=[—1i(d/dt)+2m~+wo (1)

=[H Yo (&) ]+ 2m~+woldo(?)
= (wo—dmv o () — g(ZZo) nw (YN (DA ()
—gZi v (v (AT (D). (85)
As expected,
(0] fol Bo)=0. (86)

We now use the usual asymptotic definition of a state
to write

Y (w)=—gV2(ZZo)' X (0)(2v| B, in)+iX(w)

% / ei@m+a (0| [ fo(£),710(2) | B, inddz. (87)

The first term on the right-hand side of this equation is
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due to the equal-time commutator resulting from the
differentiation of the step function. It is convenient
to evaluate the scalar product in this term by exploiting
Eqgs. (1) and (19) of Ref. 2. We find

<2V | Bgb.,, 1n)= 23/2ZZo_ng (w)/D (w-l—wo) . (88)

Consequently, on substituting intermediate states into
Eq. (87), and recalling Eq. (86), we obtain

—4g2 2(0") K (") N (o
V)= 4 +f()()t(,), (89)
Zo*D(w+wy) ¥ ' (w'—wp)
where
K(0)=X"(w){0] fo| 2N 8., in), (90)
N (o' w)=[X"(") X (w)/20]
X{(2N6b,, in| 7| Boba, in). (91)

The manipulations leading to the evaluation of K (w)
and N (0’w) are direct extensions of the methods used
by GT and Amado, respectively. In the former case

we find
K(w)= —gV2(w—wo)/ZoGt (w). (92)

At w=uwy, we note that this vertex function is equal in
magnitude to gZ¢vV2. The integral equation for N (v’ ,w)
turns out to be

N (0 w) = —gV2Zowdir/ f* ()

27, 1 1
+ m)( )
2Q

w—wy w—w—1ie

1 0
+—/ eV siny (w1) N (w1,w)
T

1 1
X( 1 )dwl. (93)
wiFw' —w—wy—ie wi—w'47ie

This equation has the solution
N (o' w)=—gV2Zwdiw/ f*(w)
+2V2¢3/2Q7 G* (') G (0 wo—w”)
+ V2V (0)GH () /222 G* ()G (wtwe—w') . (94)

On combining Egs. (89), (92), and (94), we obtain an
expression for ¥ (w) that leads us to express Eq. (82)

g 812288 X (w) X (") X ()8 (wotw— ' — ') (wtwo— 26my)
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in the form
S= b Amigd(w—w') X2(w)
Z2(w+wo—26my)[14+Z5*G (w)4 (w) ]— Zi G (w)
X G+(w)D (w+wo) )

(95)
When w— o« , we find that Z;2G*(w)4 (w) approaches
the negative number 1—(ZZ¢?)7.. Recall that ZZ¢ is
the probability of finding the bare VN component in
| Bo). We also have that G*(w) — wZ in this limit. Thus,
at high energy, it follows that ¥ (w) behaves like
—2gfw*(1—ZZ), where go is the unrenormalized
coupling constant. This may be interpreted as the Born
approximation for 2N4-6 scattering multiplied by the
probability 1—ZZ of finding | Bo) virtually dissociated
into 2N-+6. In accordance with the 2V bound-state
conditions stated earlier and exhibited in Fig. 1(a) of
Ref. 2, one can verify that ¥ (w) is also negative in
the low-energy limit w — u.

IV. PRODUCTION

Again, as in Amado’s paper, we can now calculate
the S-matrix element for the production process
By — 2N+26. We do this by first contracting a 6
particle from the left in

S=(2N08,.0,, out| B, in). (96)
The result may be expressed in the form
S= (4miQ/V2)
X8 (wtwi—w' —w”) X ()X ()X (0")P ' w), (97)
where the amplitude ®(w’,w) is defined by
@0 w)=[X" ()X ()/22]
(2N8,,, out| 7| Boba, in). (98)

A simple calculation involving a complete set of inter-
mediate states and the S-matrix element for 2N-+6
scattering leads to

® (0 w) = 1@ N (o w)
= G* ()N (o @)/GH') . (99)

Keeping in mind the energy conservation due to the
6 function in Eq. (97), and using Eq. (94) along with
the expression for ¥ (w), which may be read from Eq.
(95), we write Eq. (97) as

(100)

ZGH ("Gt (") D (w+wo)

An amusing feature about this amplitude is that its
numerator vanishes when the energy w42m-4-w, is
equal to twice the bare V-particle mass. In the segment

wo<w<y, the functions w-wo—26my and Zi Gt (w)/
721+ Zi Gt (w)A (w)] are negative and positive,
respectively. Hence the numerator of the Bof scattering
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amplitude will not have a zero in this segment. Note
that u+wo—26my has been chosen negative in Fig. 1(a)
of Ref. 2.

V. 2N26 SCATTERING

This collision process, unlike the previous one, re-
quires a separate treatment, both here in the dispersion
approach and in the TD method. We begin with the

S-matrix element
S=(2N0, 8., out|2N6,.6,, in). (101)

If a complete set of in-states is inserted into the matrix
element (2N6,, out|2N6,.8,, in) resulting from the
contraction of 6., we find

S=5 Ok ko Skt N OA-bppr 11 S 2N
+ 271 /V2)d (w+w'— o) X (") X (0") X (w)
X2 X (1) Sk V@ (wr,w'w).  (102)
k1

In this expression, @ (wi,w'w) is defined by
Q(w,w'ow)=X"1(w)X (o) X (w)
X (2N8,, in| 7| 2N6,.0,, in)  (103)

and Sy is the S-matrix element for 2V -6 scattering
given by

DISPERSION METHODS IN THE LEE MODEL
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we are led to the following coupled equations:
R(e') = =g 2L ZX (@)X @) C'0)
V2 kif?(w1) @ (wi,w'w)dw
¢ f Plealowde
42 Zo) u Gt (w1)
and "3 s 5
.@(wl)wlw):— g / o =7 ot )
X2(@)\GH(w) G+@')

1
—gV2ZR (w’,w)< +

Wo— W1

)
witwi—w—w’

1 0
i / €109 Sinp (ws) @ (wn0w)
TJ u

1
X( -+ >do.»2. (107)
we—witie witwi—w—w' —1ie

These equations are analogous to those developed by
Srivastaval* for the N+4-26 amplitude. The extra term
in Eq. (106) accounts for the fact that |2N6,.6,, in)
contains a component consisting of two bare V particles,
as shown by

C(o w)=Z"2y|2N6, 0., in). (108)

By appealing to Eq. (35) of Ref. 2 and Eqgs. (24) and
(25) of Ref. 1, we find

Sk 2V0= 8 —4miX?(w)d (w—w’)g?/Gt (w). (104) 28222 X () X (w0")G (w40 —wq)
. . Clw'w)= - (109)
Introducing the definition Z¢D(w+w")Gt(w)Gt (o)
R(w w)=X"Yw") X (w)(Bo| j|2N 6.0, in), (105) The result that we obtain for @ (w1,w'w) is

—gV2/ b Okyk
@ (w,w'w)= ( —+ >

X (w)\Gt(w) GH(w)

N 4¢'V2G (w+w'—wq)

o Zo*G*F (01)GH (w0’ —w1)GH(w)GH (w")[1— Zi 26 (w0’ — wo) A (wtw'—w)) ]
4gV2G (w+w'—wq)

- . (110)
Zo*'G* (01)GH (0t —w1)GH ()G (") D (w+t o) [1— Zi26 (w+o'—we) A (0w’ —wo) ]
Finally, the combination of Egs. (102), (104), and (110) yields
S=’%(Sk’k"'2NOSkk"2N0+Skk’/'QNaSk’Ic“2N0)+8#ig45 (w-l—w’—w"—w”’)X (w"')X(w")X(w')X(w)
22 (wtw'—20my) Z¢2GH (w+w'—w))
( nZTGH 2o

The S?N8-matrix elements in this expression have an
obvious interpretation, while the last term incorporates
the effect of the coupling to the two V particles. Note
that the connected amplitude vanishes when the energy
2m+w—+w’ equals twice the bare V-particle mass.

VI. CONCLUDING REMARKS

We have shown, in Sec. II, that the 2V bound state
provides another exactly soluble problem in dispersion

GH(w)GH(w")GH ()G (") D (wtw')

theory. As a convenient illustration, we have considered
both V and N as Bose particles with zero separation.
It was found that there are essentially two ways in
which one can approach the solution of this problem.
The one that we have presented includes the intermedi-
ate states characteristic of the ¥V and VNV sectors, but
circumvents those found in the V6 sector. For this

14 P, K. Srivastava, Phys. Rev. 131, 461 (1963).
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reason, we are inclined to state that this way is the path
of least mathematical resistance. We leave it as a
future exercise to discuss the exact solution for the
case in which the NV particle is contracted in T (w).

In dealing with the bound-state eigenvalue condition,
we encountered the vertex I'v=(By| 7| B). On inserting
the known structure for 7, we maintained a course that

ultimately led to the eigenvalue condition. On the.

other hand, if we had contracted By at this point, we
would have found the connection between I'y and Zp
as given in Eq. (66). Similar contractions in I'; and T,
lead to Egs. (1a) and (1b). For example, in the case of
T’y we have

Iy= Zo_lémv
+i / ) etCmtet(O[[fo(®), 10| V)de, (112a)

where Z¢'omy has come from an equal-time com-
mutator. Proceeding in the usual way, we find

Z [ 1
I‘2=Zo_15mV|:1—|—-—/ Im< )dw}, (112b)
TJu Gt (w)

which reduces [with Eq. (60)] to T'y=ZZbmy.
Since all previous dispersive treatments of the ordi-
nary Lee model have dealt with questions involving only
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one V particle, we have also found it interesting to
extend this method of solution to the collision processes
in the 2V sector. In particular, these calculations have
the merit of allowing us to illustrate fully, in an exact
manner, the mechanism for the contraction of a com-
posite particle. Of course, By is an elementary example
of such a particle, but we can also think of applying
similar techniques to the B particle. For this case, we
would introduce the field operator yp=Zp Wy and
its corresponding current fp=[Hp |+ 2m+tws)Ys.
The contraction of B could be useful in the calculation
of the S-matrix element (B8, out| Bf,, in).

Finally, we wish to include a remark concerning an
alternative approach to the 2V bound-state problem.
It has already been shown by Mugibayashi'® that the
Bethe-Salpeter equation for the VN system is an
exactly soluble example with no redundant states.
Therefore it seems worthwhile that, in a future in-
vestigation, we give similar consideration to the Bethe-
Salpeter amplitude

P (t1,t2)= (0| T(Wv (t)¥v (1)) | B)

and the integral equation that it satisfies.

(113)

15 N. Mugibayashi, Progr. Theoret. Phys. (Kyoto) 25, 803
(1961).



