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In paper II of this series, the mass-shell singularities of the Green s functions of quantum electrodynamics
were investigated. In this paper, the relationship between these singularities and the asymptotic states of
the theory is studied by considering the nature of the intermediate states that can contribute to the corre-
sponding discontinuity functions. The basic principle underlying this work is that the asymptotic states of
the theory should not be specified a priori but should be determined from the structure of the Green's
functions themselves. The pure soft-photon asymptotic states, which can be created from the vacuum by
operators constructed from the soft-photon part of the electromagnetic field, are studied first. These
states are defined by appropriate weak limits and are shown to span a space with the same structure as in
the noninteracting case. Next, states containing a single particle (massive particle or hard photon), together
with soft photons, are investigated. These states can appear as intermediate states in the two-point function.
They are again defined by weak limits, and are shown to be stable in the absence of external currents. It is
demonstrated that the near-mass-shell components of the field operator, acting on the vacuum or on a
soft-photon coherent state, yield a state containing one particle and a soft-photon coherent state. Finally,
the analysis is extended to two-particle and multiparticle states. The only essentially new feature here is
the appearance of factors related to the "Coulomb phases. " General reduction formulas are obtained that
permit matrix elements between arbitrary asymptotic states to be extracted from the Green's functions.
In effect, these matrix elements may be identified with the coefficients not of poles but of branch-point
singularities.

1. INTRODUCTION

'HIS is the third in a series of four papers' devoted
to the development of a new field-theoretic ap-

proach to the problem of the infrared divergences of
quantum electrodynamics.

In paper II, we investigated the mass-shell singulari-
ties of the Green's functions of the theory. Here we shajl
study the asymptotic states implied by this singularity
structure. As in a conventional field theory without
massless particles, the Green's functions must contain
complete information about the theory. It should be
possible by studying them to determine, firstly, the
nature of the asymptotic states and, secondly, the scat-
tering matrix elements between these states. For ex-

ample, in the usual case, the presence of stable particles
is implied by the existence of mass-shell poles in the
Green's functions, and the technique for extracting the
scattering matrix elements from the Green's functions is

provided by the reduction formulas of Lehmann,
Symanzik, and Zimmermann. ' The scattering matrix
elements are in effect identified with the residues of
mass-shell poles. In the present case, the Green's func-
tions do not in general have poles, but rather branch
points. What we are seeking is a generalization of these
methods appropriate to the case of massless particles.

Sections 2 and 3 are preliminary in character. In Sec.
2, we examine certain properties of the generalized co-
herent states defined in I. Then, in Sec. 3, we recall
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brieRy the definition of asymptotic states in a conven-
tional field theory without massless particles.

In Sec. 4, we discuss the special case of the pure soft-
photon asymptotic states, that is to say, the states that
can be obtained from the vacuum by the action of
operators constructed from the soft-photon parts of the
electromagnetic field operators. Since soft photons in-

teract effectively only with external charged lines, it
turns out that the structure of these soft-photon asymp-
totic states is exactly the same as in the noninteracting
theory. Thus, in particular, we can define soft-photon
generalized coherent states analogous to those intro-
duced in I. In the absence of an external current these
states are stable.

Next, in Sec. 5, we examine the two-point function,
and, in particular, the nature of the states that can con-

tribute to its discontinuity function in the neighborhood
of the mass shell. This discussion is ma, inly heuristic and
is intended to show that the discontinuity function can
be correctly reproduced if it is assumed that the con-

tributing states contain a single particle (by which we

mean a massive particle or hard photon) in addition to
soft photons. The proper definition of such states is

given in Sec. 6 in terms of an appropriate weak limit, and

used to obtain a one-particle reduction formula. The
Lorentz covariance of the definition, which is somewhat
complicated by the conventional separation between
hard and soft photons, is established in Sec. 7. In Sec.
8, we derive an expression for the matrix elements of
time-ordered products between two such states.

The definitions are extended to the case of two-

particle sta, tes in Sec. 9.The extension is straightforward

except for the appearance of additional factors related

to the formally divergent Coulomb phase factors that
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appear whenever there is more than one charged particle
in either the initial or the final state. The extension to
general multiparticle states encounters no further prob-
lems and is indicated briefly in Sec. 10, where the con-
clusions are also discussed.

Let us recall here the essential results of Il that we
shall need in our discussion. We considered the Green's
functions in the presence of an external current Jwhose
Fourier transform vanishes outside the soft-photon
region 0',

G(xi x
l
J)=(0,outl T[gi(xi) Q (x )]l0,in)J, (1.1)

where the right-hand side is a formal expression that
must be modified by the addition of extra terms in the
case of fields P, of spin greater than i2. We showed that
the soft-photon contribution to the Fourier transform of
(1.1) could be isolated in a single function 5'. For sim-

plicity, let us assume that the only "core" diagrams
(those obtained by removing all soft-photon lines) that
can contribute significantly in the region of interest have
r straight-through lines, joining pi . .p„to p,+i p2„,
and are otherwise connected. (See Fig. 1.) Then the
structure of the Green's function is given by

n dg2~+& dg~
x g ([&";(p,)]'~'&,(p;)}

g=2r+i (2ir)4 (2ir)4

x&'(pi p.p2.+i p ) p.+i —p2—,g~.+i g~ l J)

&&(2 )'~( E e)~"(a.+ " V-) (1 2)
j=2r+ j

Here M" denotes the contribution of the connected part
of the core diagrams (with external lines removed), Z",
is the wave-function renormalization "constant" with
soft-photon contributions removed, Aj is a spin matrix,
and Cj j+„is a charge-conjugation matrix, one of which
is required for each straight-through line.

All soft-photon contributions are contained in the
function 6' that modifies the external lines. We may
write the expression [II, (3.19)]for this function in the
form

&'(pi "p.; vi "a-IJ)=

FrG. 1. Structure of the Green's
function. The function 3f" repre-
sents the connected part of the
core diagrams. The sof t-photon
contribution is contained in the
function 6'.

l I l ~ f J [ 2 C+ I J ( ~ ~ fl J I

and I&i... is the function given by [II, (3.20)], namely,

n

E&i „(k)=...J&(k)+i P — exp( ik—y, )

&&Lexp( —»~ipse k) —1] (1 3)

t'.
e"=expl i x(k) l,

(2ir) 32ko
(2.1)

where k'=
l k l. However, this integral may diverge, and

must then be interpreted according to the rules given
in I and summarized below. (For the precise conditions
on the functions f and X, see I.) Two functions f&(k)
and g&(k) whose difference is proportional to k& define
the same coherent state. In a specific (physical) gauge,
the functions are restricted by the condition

2. GENERALIZED COHERENT STATES

For later convenience, we summarize in this section
some of the results of I, and derive certain additional
relations.

In this paper, we shall restrict our considerations to
physical gauges, such as the radiation gauge. Each
physical gauge is characterized by a real, symmetric
gauge function y„„(k)that for k'=0 reduces to the pro-
jector on the two-dimensional space of allowed polariza-
tion vectors. For example, the radiation gauge is char-
acterized by the matrix function whose only nonvanish-
ing components are

ypo ———k'/k' y; = 5,"—k;k;/k'.

The generalized coherent states of the free electro-
magnetic field are denoted by l f,X), where f stands for
the photon wave function f&(k) and X stands for a real
function X(k) that specifies the generalized phase of the
state. Formally, it represents a phase factor

00 n

d~i "d~. exp[ —i & (p —~).y
j=l

v"(k)f"(k)=f.(k).

We shall frequently use the notation

(2 2)

where

i P 0;(m—'+p')] expX, (1.3)
j~I f„*(k)g~(k)

(2')'2k'
(2.3)

dk y„,(k)J,....(k)* 1,....(k)
~ (2n.) ' k' —ce

without the parentheses used in I. Again, however, the
integral may diverge.
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U(f) v(» Io)= If,»,
together with the multiplication laws

(2.5)

V(» V(y) = V(X+@), V(» U(f) = U(f) V(X),

U(f) U(g) = U(f+g) VL2~(f*g g*f)), — (2 6)

where, of course, 2i(f*g—g*f) denotes the real function

l~Lf, *(k)e(k) —g, *(k)f"(k))

The operators V(» play the role of generalized phase
operators, and commute with all physical observables,
so that states differing only in the generalized phase
label X are physically indistinguishable.

For later use, we shall have to evaluate the vacuum
expectation value of a product of these unitary opera-
tors, which will play an important role in our discussion
of asymptotic states. Using (2.6) repeatedly, we can re-

duce a product of any number of these operators to a
single pair U(f) V(». Hence, using (2.4) and (2.5), we

find

(o I
U(h, ) U(h. ) I

o)
= exp( —

~ P h, +h, Ph;*h, ), (2—.7)

where, as usual, the convention involved in the inter-
pretation of (2.4) is implied. We note that any matrix
element between coherent states can be reduced to the
form (2.7) by using (2.5).Thus we obtain more generally

(f,~ I
U(hi) U(h-) I g,~)= (fh.

l g,~)

Xexp(g(f*h, —h;*g) ——,
' Q h, *h,—Q h, *h,). (2.8)

Here, of course, the factor (f,XI g,p) is to be written in

the form (2.4) and the exponents combined before the
integration over k is performed.

It will be useful also to note the Lorentz-transforma-
tion properties of these states. Let U(a, h.) be the unitary
operator that represents the transformation g —+ a+Ax
of the Poincare group. Its action on a coherent state is

The scalar product of two generalized coherent states

I f,» and
I g,p) is represented by the formal expression

(f ~
I g,~)= exp(f*g —2f*f—2g*g—~~+iu), (2.4)

using the notation of (2.1) and (2.3).The scalar product
is equal to (2.4) provided that this integral converges.
It is zero by definition if the integral diverges. We shall
use this notation frequently in what follows. In each
case, a similar interpretation is to be applied. We must
collect together all terms in the exponent before per-
forming the integration over k, and assign the value zero
to the exponential if the integral diverges.

We also recall the definition of the unitary operators

U(f) and V(». (We now drop the subscript used in
I.) They may be defined by their action on the vacuum
state lo)= lo, o),

3$iR—3C j33C (2.14)

where 3C" is the hard-photon Fock space, and is separ-
able. In K" we can, and generally will, use a basis con-
sisting of states containing definite numbers of hard
photons. In general, in what follows, "coherent state"
will mean a soft-photon generalized coherent state,
unless otherwise speci6ed.

It should be remarked that the decomposition (2.13)
is not Lorentz-invariant. Under a Lorentz transforma-
tion, a soft-photon coherent state will go over into a
state containing some hard photons.

3. ASYMPTOTIC STATES IN A CONVENTIONAL
FIELD THEORY

Let us begin by recalling briefly the situation in a con-
ventional theory without massless particles. First, we
look for stable single-particle states, whose presence ls
indicated by the appearance of mass-shell poles in the
Green's functions. To do this we examine the propagator
function

where (a,h)f. denotes the transformed photon wave
function

(aA)f&(h)=A&„f"(A 'h)e *' . (2.10)

Of course, if we want to stick to a specific gauge, we may
have to make an additional gauge transformation. For
example, in the radiation gauge, we require

(a,A) f'(h) = (A' —h'A') fi(A
—'h) e-*' ". (2.11)

A special case of (2.9) is the relation
I I, (21)), namely,

e '
I f,&)= l(a)f,&), (2.12)

where (a)f= (a, 1)f. LIn I, (a)f was denoted by f,.)
The separation between 0" and 0', introduced in II,

defines a corresponding separation of the space of real
photon momenta, characterized by the conditions k'= 0
and ho& 0, into regions where

I
k

I
&E and

I
k

I
(E, re-

spectively. If f&(k) is any photon wave function, we may
write f=f"+f', where f" is nonvanishing only in 0" and
f' is nonvanishing only in O'. Because of the exponential
structure of' the unitary operators that generate the
coherent states from the vacuum, we may write the
coherent state as the product of a hard-photon state
and a soft-photon state,

lf,»= lf",~")lf, ~ ), (2.13)

where X= X~+X' is the corresponding decomposition of
the real function P,(k). Since the integral f*f diverges,
if at all, only at k= 0, f"*f"is certa, inly finite. Moreover,
the integral of P" is also finite and contributes only a
finite phase factor, so that there is no loss of generality
in setting X"=0. It follows that the hard-photon co-
herent states belong to the photon Fock space and have
a convergent expansion in terms of states containing e
hard photons. The decomposition (2.13) then corre-
sponds to the tensor-product decomposition of the non-
separable Hilbert space defined in I,

given by
U(a, A) If,»= I(a,A)f,z), (2 9)

G(P) = d '" '(ol 2'I:&( ),&(0)) I 0), (3.1)
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where p(x) =Q'(x)C ' and Q' is the charge-conjugate
field to P. (More generally, it may be necessary to con-
sider propagator functions for composite fields if there
are bound states in the theory, but the general prin-
ciples are the same. ) According to the general principles
of quantum field theory, G(p) is the boundary value of
an analytic function of p whose singularities are located
at the positions of real intermediate states. For p') 0
the discontinuity function

discG(p) =G(p+ie) —G(p —ie), (3.2)

where prie denotes the four-vector (p'+is, p), may be
written in the form

tion is

~(p) = (p'+~, )/2~y, (3 9)

p(p) (p) e PL—i(p"—.)ij
(2')4

XZ '" dec '""'(OIT[g(x)g (x) P„(z)]Io),

but we shall find the added generality useful, because
(3.9) is inconvenient for the case of massless particles,
for which the denominator can vanish.

Then we consider the limit for large positive t of the
matrix element

dlscG(p) =~ &oly(0) I~&(2~)'~(p —p-)(~le(0) Io&, (3 3)

&ol4(0) In)=z'"~(p),
(pli(0) I»=z'"~(n), (3.5)

where u(y) and N(p) are spin wave functions. Here we

use a covariant normalization

(n~l p'P&=(2~)'2p'~(n —u')~-s, (3 6)

with p'=(y'+m')'". The corresponding normalization
of the spin wave functions is given by

~-(v)~s(n) = ~-P,
2 N-(u)~. (V) =A(p),

(3 7)

where E is the normalization factor introduced in [II,
3.10)$.

Although we have written these formulas in the no-
tation familiar for the Dirac-field case, they are in a
form applicable to fields of any spin.

If the propagator function has a pole at p'= —m',
then any other Green's function involving the same
field P will also have a pole there. The reduction for-
mulas of Lehmann, Symanzik, and Zimmermann' es-

sentially provide a method of isolating the residues at
these poles.

Let us choose any spin and mornenturn-space wave
function p(y), and any smooth function 0(p) satisfying
the conditions'

0(p)=1 for p'=cup,

~(p)=0 f«p'= —~„ (3.8)

where the sum is over a complete set of intermediate
states.

If G(p) has a pole at p'= —m', then in that vicinity

discG(p) =Zh(p)2~8(p'+m') (3 4)

The only states that can contribute to the sum in (3.3)
and yield (3.4) are stable single-particle states, whose

amplitude is determined by the relations

where N is the normalization factor of (3.7). As ~ —moo,

the values of x' that contribute also tend to+ oo, so that
P(z) maybe taken outside the time-ordering sign. More-
over, because of the exponential factor depending on t
the only momentum components that survive in the
limit are those with p'=~„which come from stable
single-particle intermediate states. Thus, using (3.5), we
find that

hm iV
—'

f~oo

dp
p(p)o(p) exp[—i(p' —~,)ij

(2~)'

dp
[4(n)~(p)j&pl.

(2n)'2p'
(3.11)

Here a sum over spins is implied, but will not generally
be indicated explicitly. Clearly, the effect of the limit
in (3.10) is to isolate the residue of the pole at p'= ns'. —
It may be expressed more formally by the relation

&pie[~, (z,) "y„(*„)jlo)

=Z'I'~(p) lim i(m'+p') dye —'&*
@0~0)p+M

x&ol~[&(*)& (z) ~-(z-)jlo). (3.12)

The relation (3.10) or (3.12) eijectively de~es the
one-particle states as (weak) limits. Because the mass-
shell singularities in the remaining variables are un-
affected by going to this limit, we can proceed to define
multiparticle states by the same method. The formula
(3.10) remains valid if arbitrary states (f; outl and
Ii; in) are written in place of the vacuum state, and then
defines the state (f,f; outl containing one additional
particle.

4. SOFT-PHOTON STATES

xz "' d" '"'(oIT[&(*)&(") . .~-(

-)halo&

=&~i~[~.(") ~-(*-)jlo&, (3.»)
where (Pl denotes the single-particle state

~here ~ = (p'+m')'" The usual choice for this func- We now wish to examine the pure soft-photon asymp-
' The second condition is not strictly necessary here but wi]] be totic states, that is to say, the states that can be created

convenient later. from the vacuum by the action of soft-photon operators.



We consider first the special case e= 0 of the Green's
function (1.1), namely, the functional

G(J) = (0; out
l 0; in).J.

In this case, there are, of course, no core diagrams, so
that (1.2) and (1.3) yield simply

lim G(xi x„lJ-I-J,(t))
$ ~eo

=P llm {0;outl T{pi(xi) .
Q (x„))lu; in)g

&&{o'IT exp i dx A„(x)Jr&(t,x) IO), (4.5b)

This is precisely the expression for the vacuum-to-
vacuum transition amplitude for a free field interacting
only with the external current J, as it must be, since
the soft photons cannot interact directly with each
other, but only with external charged-particle lines, of
which there are none in (4.1).

This result suggests that the structure of the states
obtained from the vacuum by the action of soft-photon
operators must be just the same as in the free-field case,
so that, in particular, we should be able to define asymp-
totic coherent states {f,X; out

I
and

I f,X; in) that span
the space of asymptotic soft-photon states.

To define such states, let us choose a photon wave
function f and introduce an external current Jr&(t,x)
depending on the parameter t as well as on the space-
time variable x, and defined in momentum space by

Jt"(t,k) = io(k) f"(—k) expl i(ko —
I kl)t)

+i(r*(—k) f~*(—k) e pxLi( 'k+ Ikl)t), (4.3)

where 0(k) is now required to vanish outside &', and
within this region to satisfy the conditions (3.8) with

In the radiation gauge, J~& has no time component,
and thus its effect in an arbitrary Green's function may
be represented by the appearance of a time-ordered ex-

ponential factor

G(xi x„lJ+Jt(t))=(0; outl T (t)i(xi) (t.(x.)

X p d A.( )J "(t,x) Io;
'

) (44)

LIf Jt)'(t) had a time component, we would need an

extra factor representing the direct Coulomb interac-
tion. ) Because of the structure of (4.3), it is easy to see

that, as t —+ &~, the values of x' that contribute in

(4.4) also tend to +~, so that the exponential factor
may be removed from the time ordering and allowed to
act directly on the vacuum state. Provided that the
current J&(x) falls off in a suitable manner as x' —+ ~ oo

(which is a necessary condition for the existence of
asymptotic states, and is assured by our assumption
that its singularity at k=0 is no worse than 1/k), we

should thus expect to obtain in the limit

»m G(x," x„lJ+J,(t))

=Q lim (0IT exp i dx A„(x)Jr"(t,x) l~)
t ~+~

X{n;outlT{g'(x') . p„(x„))I0; in)J (45a)

where lo.) denotes a complete orthonormal set of soft-
photon states, and where the matrix elements involving
Jf(t) are the same as in the free-field case. (The sum over

I
n) contains uncountably many terms, but only a count-

able subset will, in fact, give nonzero contributions. )
Because of the exponential structure of the operators

involving Jt(t), it is easy to compute these free-field
matrix elenients, and we obtain

lim (0IT exp i dx A, (x)J& (t,x) l(i)

={—f, —}),l(i), (4.6a}

»m {~ITexp i dx A„(x)J,~(t,x) I0)

={~I f,», (4.6b)

where the phase X arises from the phase factor relating
the time-ordered operator to the corresponding un-
ordered operator and is given by the formal relation

dk y„„(k)
Jg"(tk)" JJ(,t,k))

o* (2~)' k'

dk l~(k) I'
J."(i)J (i)),

(2n.)4 k'

e'"= lim exp —,
' i

t ~goo

=exp i (4 7)

where the integral is a principal-value integral.
Because of (4.6) the effect of the sums over n in (4.5)

is to replace {o.
l

with ( f, —&I —and l~) with
I f,X).

Thus we should obtain

lim G(x, .x„lJ+J,(t))
t ~+oo

={ f, —&; o«I TL4—i(*i) 4.(x.))I0; in)z, (4.8a)

luii G(x, x„lJ+Jt(t))
g ~oo

={0;outl TL4i(xi) Q (x„))lf,X; in)~. (4.8b)

Hence, provided that we can establish the existence of
these limits, these equations define the asymptotic states
( f X' outl and If X; in).

To prove the existence of the limits we examine the
structure of the Green's function (4.4). It is given by
(1.2) and (1.3), but with the exponent X replaced with

g(t) =-', i LI",...„(k)+ ~J(t, ))k*
o (2~)'

X Py„„(k)/(k' i~))P'i .(k)+—J,"(t,k)) ... (4.9).
Because of the structure of (4.3), it is easy to see that in
the cross term between Ii...„andJt(t) only those mo-
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mentum components with k"= +
l
kl survive, and we

obtain
using (4.12) with I)'(k) =Jg (k). This agrees precisely
with Eq. (59) of I. Thus, when there are no external
charged particles, the scattering in a soft-photon state
is the same as in the free-field case, as we should expect,
since the soft photons then interact only with the exter-
enal current. In parti. cular, for J=O,

using again the formal notation of (2.3). l
Note that we

no longer distinguish, as we did in I, between Ii...„(k)
and its mass-shell restriction obtained by setting
k'= lkl. Its appearance in a. combination like f*I,...

„

implies this restriction. )
Hence the function (4.4) does possess well-defined

limits as t —& &~, which define the asymptotic soft-
photon states by (4.8).

To evaluate a general matrix element between soft-
photon states, we have to apply both formulas (4.8). We
thus replace Jr(t) with J r(t)+J, (t') and consider the
limits t —+~, t'~ —. The limit of the exponent
X(t,t') corresponding to (4.9) is then

lim lim X(t,t') =X+(f*g ,'f*f——,'g*g —9—+i—tg)t~~ t'~oo

yi (f*I,...„yI,...„*g)=Xt)„g„,(4.10)

say, where —X and tg are related to f and g, respectively,
by (4.7).

Hence, applying both parts of (4.8), we see that 'the

matrix element

Gf)egge(xi ' xe,g I J)
=(fgl13 outl Tl gti(xi) $.(xee)flggtg; in)J (4.11)

is again given by (1.2) and (1.3), but with X replaced
with the function Xri,„defined in (4.10).We note that,
formally,

expXr, „——(f l),
I g, tg)

XexpLX+i(f*Ii. ..„+Ii...„*g)]. (4.12)

This structure for the matrix element (4.11) is pre-
cisely what we should have obtained by treating the ex-
ternal soft photons in the asymptotic states according to
the usual rules of perturbation theory, as may easily be
verified. However, our derivation does not assume the
existence of these asymptotic states a priori, but defines
them by the limits (4.8), which may be regarded as soft-
photon reduction formulas. Note that, since the phase
X can be adjusted at will by a suitable choice of the func-
tion gr(k), we can define any asymptotic soft-photon
state in this way.

We note that for n = 0 our formula for (4.11) reduces
to

Gr)„,„(J)=(fx; outlg, tg,
' in)q

= (f 1
~ g,e) exp(g(PS+ J&3)

(f,l; o«lg, t; in)=(f, &lg,t ), (4.14)

so that we need not distinguish the in and out states.
When there is no external current, the pure soft-photon
states are stable.

S. TWO-POINT FUNCTION

The next step is to consider the nature of the states
that can be created from the vacuum, or, more generally,
from a pure soft-photon state, by the action of field
operators with momentum components close to the
mass shell. We should expect these states to contain a
single particle together with some soft photons, and
therefore that a suitable basis spanning the subspace of
such states would be (I; f;A; out

l
or

l
I; f,X; in), where

l denotes the particle momentum (and suppressed spin
index) and f, t( are the usual coherent-state labels. Here
and in what follows, we use the word "particle" to mean
any particle other than a soft photon, including charged
particles and hard photons.

What we have to do is to define these states (or,
rather, wave packets formed from them) by appropriate
limiting formulas analogous to (3.10) or (4.8). To guide
our choice, we begin by examining the two-point
function

Gt)„,„(p,—g)C
—'= dxdy

X= (2po.)s~*s„—s„*s„, (5.3)

Xe "*+"(f,

I'LL-y(x),

j(y) jig,„),(5.1)

which is the special case e= 2 of the function defined in
(4.11). (Since we have set J=O, we may omit the "in"
and "out" labels on the coherent states. )

In this case, the only core diagrams that can contri-
bute are those with a single straight-through line. Hence
(1.2) reduces to

Gfi, -(p, 9)C '= ~'(p)—A(p) ~'f~, -(p, V) (5.2)

The exponent X defined by (1.3) now has only a single
term, which may be recognized as the term —,'I» of
LII, (4.4)j.As we saw in II, the contribution to it from
the pole at p k=0, namely, LII, (4.19)j, is linear in K
and therefore negligible. Thus we need only retain the
contribution LII, (4.20)$ from the pole at k'=0. Using
again the formal notation introduced in (2.3) and (2.12),
this term may be written (for p') 0) in the form

+ ',i-dk y„,(k)
3"(4)" 3'"(4)), (4.13)

~ (2ir) 4 k' —ie

where s„denotes the photon wave function

s,„(k)=y„„(k)ep"/pk. (5 4)
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The other terms in the expression (4.12) for Xrq g„
may be written, in the same notation, as

i(f*rl+Il*g) = f*—(y+2P&)su+f*(y)sg
+(y+2P )"*g (y—)s.*g

Thus we obtain

6'f&, ,„(p,q) = dy e
—'&"—"'"

X e 'gl"—'+g'l(f ),
I g,p& expL(2P0)s„*s„—s„*s„

f*(—y+ 2P )s.+f*(y)"
+(y+2P~)s.*g—(y)"*g].

As we have already remarked at the end of II,
there is, in the radiation gauge, one special point at
which the Green's functions do have a pole on the mass
shell, namely, y= 0. This is clear from (5.5). For in that
gauge s~ vanishes when p= 0, so that (5.2) and (5.5) yield

r~, g.(p, -v)C 'I g=o

=Z"(0)A(0) 2n-b(p' —q') (2gr)'8(ll)

x L
—i/(m' —pg' —ig)](f,x I g,p&. (5.6)

Thus the y= 0 component of p, with pg close to m, must
have the effect on a soft-photon state of simply adding
a single particle, with no change in the soft-photon state.
The generalization of (3.5) that correctly reproduces the
discontinuity of (5.6) is

& Iy(o)lo; p&=[z~(0)] l ~(0)& Ip&,

&o; ~lq(o) I
p&=LZ~(0)] 2@0)&~lp&,

(5.7)

where &a
I

and
I P) are arbitrary soft-photon states, linear

combinations of the coherent states.
It should be remarked that we have not written "in"

or "out" labels on the states in (5.7), although, unlike

the pure single-particle states, they are not obviously
stable. In fact, it will be shown later that these states
are actually stable. Physically, this is because, in a state
containing only a single charged particle and soft pho-

tons, the soft photons cannot transfer a significant
amount of momentum to the particle, which is therefore
effectively unaccelerated and does not radiate. (An
argument to this effect has also been presented in a
different context by Storrow. g) For the moment, how-

ever, we must regard the Eqs. (5.7) merely as indications

of the kind of structure we may expect rather than as
proven.

We could obtain from (5.7) corresponding equations
for arbitrary momentum by applying a Lorentz trans-
formation, but this is dificult to do directly for two
reasons. Firstly, the transformation properties of @ are

rather complicated in the radiation gauge, particularly
in the case of 6nite transformations, 5 and, secondly,
a Lorentz transformation applied to a soft-photon state
in general yields a state containing some hard photons.

It will be more convenient, therefore, to obtain corre-
sponding formulas for other momenta independently by
a heuristic argument based on the structure of the
Green's functions, and later to verify their consistency
with Lorentz transformations.

To do this it will be useful to make a transformation of
variables in (5.5). We first introduce a new variable of
integration x, and an associated 5 function with the
Fourier representation

g-ik (z+y+2go)

(2n-)'

Then we can replace 2pa where it occurs in the expo-
nent with x—y and perform the integration over 0.
Using the fact that (x—y)s*s= (x)s*(y)s, we may then
write (5.5) as

&-ia ~-i(I-&-y). &

&'r&, ,„(p,g) = i dxdy-
(2gr)'m'+p' —2p k —ie

x(f 7'
I g,p& exp'(x)s, *(y)s,——,

' (x)s,*(x)s„
', (y)s,*-(y-)s„f*(x)s,—+f'(y) s,

+(x)s *g-(y)s.*g] (5 8)

Next, we observe that k may be treated as small. For,
if we were to expand the exponential, we would find in
each term that the x integration yields a 8 function that
sets k equal to a sum of soft-photon momenta. Thus we

may add a term k' to the denominator, and transform
to the new variable l= p —k so that it becomes (m'+P
—ie) '. LRecall that such terms were dropped in ob-
taining the original formula (1.3).] Moreover, s~ is a
slowly varying function of p, as are Z"(p) and h(p), so
that in these it is legitimate to replace p with /. Finally,
we note that the exponential factor in (5.8) has just the
structure of the right-hand side of (2.8) with hl ———(x)sl
and hg ——(y)sl. Thus we obtain

g
—i(y—l) .x—i(L—q) ~ y

6 fl„gg(P,g) =
(2lr) ' m'+ P ic

x&fl'IUL —(x)sl]~l (y)st]lg, &&. (5.9)

Now let us substitute in (5.2) and evaluate the dis-
continuity function in the variable p. This is clearly
given by the 5-function part of the denominator in (5.9),
and thus, inserting a complete set of soft-photon states,
we obtain

dlscGrl„gg(p) g)C = dxdy

dl
sit ~ (g-glZh(i)A(l)

(2n.)'2P

x2 &f l
I &L—(x)sl]l ~&&~l UL(y)s~] lg, ~& (5 1o)

On the other hand, if we insert a complete set of states
4 J. K. Storrow, Nuovo Cimento &4, 15 (1968). directly in the matrix element (5.1) with the time-'D. G. Boulware, thesis, Harvard University, 1962 (unpub-

lished). ordering symbol removed and restrict this sum to the
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n

Gf~,-(pi" P-l J)= II f[Z" (P )3'"~ (Pf))
j=l

dlscGfi, gp(pq g)C = dxdy
dies dion

X (Pi' P '0i ''. 9 IJ)
(2zr) 4 (2w) 4

X(2zr)'8(pi+ . +g„)M"(qi g„). (6.1)
dl

P (f,X~y(x) ~1; n.)
(2zr)'2io a

X e
—iy x+iq y

It will be convenient to apply to the variables as-
sociated with pi the same transformation as that which
led to (5.9). We begin by adding a small imaginary part
to the denominator pi k in (1.5), so that the two terms
involving pi may be separated. Then, as before, we in-

troduce new variables xi (=yi+2pioi) and li and per-
form the integration over 0 I, to obtain

I &(y) l a, z ) (5»)

Thus, comparing (5.10) and (5.11), it is natural to
suppose that the correct generalization of (5.7) is

& l~()ll;p)
= [Z"(l)j'"zz(l)e' '(n

~
U[—(x)sij ~P), (5.12a)

states ~l; n) containing a single particle and soft pho- set r=0 in (1.2) and obtain
tons, then we obtain

(1; nip(x) ip)
= [Z"(l)g'~'zz(l)e "'(n

~
U[(x)sij ~P). (5.12b)

It is easy to verify that these relations are consistent
with translational invariance, using the relation

f$ (p, p„'gi g„~J)= —z dxidyi

dli exp[ —i(pi —ii) xi—i(li —gi) yi]

zrzl + li zE

e ' *~l; f,X)= ~1; (x)f,h)e "' (5.13) X dy2 dy

00 n

diaz do„exp(—i p (p;—g,) y;
j-2

They also clearly reproduce (5.7).
These relations have a very interesting physical in-

terpretation. They show that when the field operator
@(0)creates a particle of momentum 1, the change in the
soft-photon state is just that corresponding to the crea-
tion of additional soft photons in the coherent state
~si,0). The behavior of P(x) is similar. , but with the
translated function (x)si in place of si.

One point of arbitrariness should be noted. The
correspondence between (5.10) and (5.11) would be un-

affected if we multiplied the two relations (5.12) by any
generalized phase factor depending on l and by its com-

plex conjugate, respectively. There could, of course, be
analogous phase factors even in (5.7), but these can be
removed by appropriate choice of the phase of the state

~
Q; P). However, once this phase is fixed, the phases in

(5.12) are also fixed, in principle, if we want the states

to transform correctly under Lorentz transformations.

That the correct choice of phase is in fact that given in

(5.12) will be demonstrated later, in Sec. 7.

6. ONE-PARTICLE REDUCTION FORMULAS

Now that we know the structure of the two-point

function, we are in a position to give a proper limiting

definition of the states containing a single particle and

soft photons, which are defined in a purely formal sense

by (5.12).
We begin by examining the singularity at Piz= —miz

of the general function Gfi,„defined in (4.11). For

simplicity, let us again suppose that we are interested in

a region of momenta in which only completely connected

core diagrams can contribute significantly. Then we may

n

i Q af(rfzf—z+P,')) expX'fi g„, (6.2)
j=2

where X'f), ,„

is obtained from Xf), gy by the replacement

I~,...„(k)~ i[e,l,~/(l, .k —i~)g

)&[exp(—ik xi) —exp( —ik yi)/+I"z. ..„(k). (6.3)

Now let us examine the various terms in X'fg gp, .
Those involving only the variables with subscript 1 are
of the same form as in (5.8), but with li in place of p
and x&, y& for x, y. The cross term between the two parts
(6.3) is

dk eely"
[exp(ik xi) —exp(ik yi) j

~ (2zr)' li 0+is
v"(&)

&& I"z-..(l ) . (6.4)
k z6

The mass-shell singularity of (6.1) at Piz= —zzziz with
pio&0 is governed by the asymptotic behavior of (6.2)
for large x~ with x~'&0. Hence in the first of the two
terms here (but not in the second) we may complete the
k' contour in the lower half-plane. Since signi6cant con-
tributions to (6.2) come only from the region where li is
close to pi and lio) 0, this contour excludes the pole at
li k = 0, and so, provided that J&(k) has no singularities
in this half-plane, we obtain simply i(xi)si Iz...„,where,
of course, s~ is s~ evaluated for /= lj. Actually, the condi-
tion on J here may be considerably relaxed, since singu-
larities a finite distance below the real axis do not mat-
ter. What is excluded is, for example, a pole on the real
axis, corresponding to a charge persisting to infinite
times. We could deal with such cases too, but it will be
unnecessary to do so. Indeed, for most applications we
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For certain special cases, e.g. , e= 1, the notation for this function might be ambiguous. However, we shall avoid
this by always using l, to denote a variable on its mass shelL Thus 6'(p; q) denotes the special case n= 1 of (1.3),
while 6'(1 q) is a special case of (6.12). We may regard (6.12) as a "truncated" form of (1.3).

Now let us return to the question of defining the asymptotic states (1; f,X; outI as weak limits. To do this we
must, of course, work with wave packets formed out of these states, of the form

dl
[ip(l)u(1)](1; ni, out I,

(2n.)'2P
(6.13)

where P(1) is a prescribed spin and momentum-space wave function and where, for each 1, (ni I
is some soft-photon

state —in general, a linear combination of coherent states.
The limit (3.10) yields a nonzero result only because of the pole in the Green's function. In our case, the Green's

functions have no pole, in general, so that the same technique fails. What we can do, however, is to modify the soft-
photon state in such a way as to construct a function that does have a pole.

Let us de6ne
(6.14)

Then we choose to define the state (6.13) by the limit

d1
—[ip(1)Q(1)](1;ni,' ollt

I T[&2(x&) p„(x„)]I p; in) j
(2ir)'2P

dl
=lim X—' — mt(l)o. (t) exp[—i(l' —oui)t][Z",(1)]- t'

(2~)'

X dx e "'(ni—„,out
I T[yi(x)y, (x,) y„(x„)]I P; in)g. (6.15)

We now must show that this limit exists. To do this we insert our expression for the Green s function on the right-
hand side. As far as its dependence on the variable pi is concerned, the Green s function has the structure of (6.9),
but with a four-dimensional integration over li and a denominator (nti2+li2 —ie) '. Hence, taking the I'ourier
transform, we set xi ——x and obtain for the right-hand side of (6.15) the structure

lim (—i)$ ' iP(1)o.(l) exp[—i(P—&o&)t][Z",(l)]-i&2 dx
(2ir) 4

dl»
[~" (l )]'"ti (l )

(2s.)4

exp[—i(l—li) .x]
X (n, I

U[(x)si]U[- (x)si] , (6.16)
mi'+li' —ie

were, as before, the remaining factors are independent
of x. But now from the structure of the x integration
it is clear that l—l» is small, Hence we can replace l» with
l in the slowly varying function s&. But then the two
soft-photon unitary operators cancel, and the x integral
yields simply (2m)'8(l —li). Thus we obtain

dl exp[ —i(P —&ui) t]
lim (—i) — iP(1)o(l) (n,

I

".(6.17)
t', -+go (2n.)4 ~12+12 Z~

In this form, it is clear that the limit exists and has the
effect of picking out the residue at the pole, yielding

— g(1)(«I . .
(2s.)'2P

(6.18)

The result that we obtain in this way for the matrix
element (6.15) agrees precisely with (6.11). Hence we

have shown that the states (6.13) can be defined as weak
limits. We still must show that our labeling of these
states is consistent with Lorentz covariance, but we
shall do this later.

Qf course, this limiting formula (6.15) is not a com-
plete reduction formula for the state (6.13), in that it
does not define it directly in terms of the action of field
operators on the vacuum. However, we already know
how to create soft-photon states from the vacuum, by
using (4.8). So we could, if we wished, combine this for-
mula with (6.15) to obtain a complete reduction for-
mula for (6.13). However, we shall not write out the
result explicitly.

It is clear that the in states containing a single particle
and soft photons could be de6ned in a similar way, by
examining the mass-shell singularity of (6.1) for Pio&0.
Then we should have to complete the k contour in the
opposite half-plane, so that (xi)si would not appear in
(6.5) as an addition to f, but subtracted from g, and
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thus in the combination U[—(xi)si)lg, p&. The net re-
sult is that, in the formula corresponding to (6.11) with
an antiparticle of momentum —li in the initial state, we
have only to replace u(li) with u'( —Ii) and to evaluate
(6.12) for lio&0.

The modification of (6.11) required to accommodate
disconnected core diagrams is obvious, and we shall
not write it down explicitly. However, it will be useful
to give an explicit formula for the special case e= 2, for
which the only core diagrams are those with a single
straight-through line. For this case the appropriate
form of (6.11) is

)&expl f*(y)s( (y)st*g+—i(f*J+J*g) 2s&*s—(—

dk el~e'""y (k)J (k)
~ (2n-)4l k io k'—~o—

+,'i-dk y„„(k)
J"(k)" Jjk)). (6.20)

(2')4 ko —io

The corresponding formula for the matrix element

&f,X; outlg(x) Il; g,p, in&1 is obtained by replacing y
with x, u(1) with u(1), and changing the signs of 9' and
e (and hence of s'). We note that for J=O these for-
mulas reproduce(5. 12), as they must for consistency.

7. LORENTZ INVARIANCE

Although we have shown that the limit (6.15) defines
asymptotic states containing a single particle and soft
photons, we have yet to show that our labeling of these
states is consistent with Lorentz invariance. To do this
we have to verify the Lorentz covariance of the rela-
tions (5.12).

Since these relations are clearly invariant under trans-
lations and spatial rotations, we need only consider pure
Lorentz transformations. Moreover, it is clearly su%-
cient to restrict our discussion to infinitesimal trans-
formations, which for our purpose have the great ad-
vantage that they do not a6ect the property of being
a soft-photon state. We therefore take A to be of the
form h.".=8&„+o&„,where the only nonvanishing com-
ponents of e„„areeo,.= —e,o.

What we have to show is that for any such A

&f,~lU 'P)4(0) U(A) I1; g,u&

=&(A)f,~l4(0)I1'; (A)g,"&, (7 1)

dy e*'o'&I; f X; outlg(y) lg,p; in&z

=u(l)[Z"(1)]'"a' i (l ql J), (6.19)

where we have used the fact that t—q is small to permit
the replacementofq with lin Z"(q) andh. (q). Thus, using
(6.12) and taking the Fourier transform on q, we obtain

(1; f,X; outlp(y) Ig p, ; in)~

=u(1) LZ'(l))'"e ' "&f,~lg, ") bu(1) = io"So—,u(1), (7.4)

where So, is the appropriate spin matrix.
To find the variation of the soft-photon factor, we

note that
bs"(k) =(h. ')s'."(k)—s)"(k)

is in fact independent of l and given explicitly by

bs&(k) = —e(ko)—iy, ,(k) eo;

(7.5)

as is easy to verify. [Basically, this is because the right-
hand side of (7.5) is nonzero only in virtue of the ex-
plicit dependence of s' on the timelike unit vector e.]
Then, because of the exponential structure of the soft-
photon matrix element, we have

b&f,~l U[—s']Ig,")
=(fXIU[—s~)

I g,p&( f*bs+bs*g—'bs*s 's*—bs—)—-
= &f,~lUL —»]lg,"&«"

a (2~)'2ko

el'
X f,*(k)—g, (k) —y, (k)— (76)

Finally, the variation of Z"(l) is given by

8 8)
bZ"(l) ="

I l, l, IZ"(1). ——
5 8P BP)

(7.7)

&ow let us examine the left-hand side of (7.3). The
Lorentz transformation of P is described by"

i[&(0),Jo—,)=—i5o,4(0)+ieho, (0) 4(0), (7.8)

v here ) 0; is the parameter of the associated gauge trans-
formation that is required to bring us back to the radia-

fjon gauge in the new frame and the dot denotes a sym-

where U(A) = U(O,A) and i'"=h.",1", and where the left-
hand side is to be evaluated using the known transfoi-
mation properties of @.SinceA isinfinitesimal, theright-
hand side is again a matrix element between soft-photon
states, and thus, according to (5.12), may be written as

[Z"(l'))'" (1')&(A)f,~l U[— ]1(A)g, &

The soft-photon matrix element itself is invariant under
indnitesimal Lorentz transformations, as may easily be
verified from (2.11).Hence we may write equivalently

[Z"(1')]'"u(1')&f,~lUL —(A ')s') lg, "&.

In infinitesimal form, (7.1) reads

-'" &f,"I['(0),J;]Il; g,.&

=B([Z"(1)]'"u(1)(f,XIU[—sg]lg, p», (7.3)

where the right-hand side stands for the difference be-
tween (7.2) and (5.12). It may be written as a sum of
three terms corresponding to the variations of the three
factors.

The variation of u(1) is described simply by
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dk kpA, (k)+k,A p(k)

k'(2pr)'

metrized product. Explicitly, Xoj is given by

Xo,(0)= (1/V') (aoA, +8;A o)

(7.9)

To do this we must evaluate the matrix element that
appears on the left-hand side, which may be written in
terms of the function

dxds e '" * "'(fX
~
T[$(x),A„(s)]

~
1; g, ). (7.11)

When we substitute these relations into (7.3), we find
that the first term in (7.8) cancels the variation of u(l)
given by (7.4). What we have to prove, therefore, is that

ie(f,Z
~
X„(0)y(0)

~
I; g,&)

= [Z"(l)]'lou(l)(f, l~
[ U( —si) ( g,u)

Let us 6rst consider the soft-photon part, for which
k&0'. This function may be obtained from the conju-
gate equation to (6.20) by differentiating with respect
to J„(k)and then setting J=O. The result is to multiply
the corresponding formula for the matrix element with-
out A„bya sum of three terms, namely,

X e
el'—

f;*(k)-g, (k) -v, ~(k) ——
o (2s)P2(ko)'

' ' ' l. k

8 8
+-,'~ l,——lp—[lnZ'(l)] . (7.10)

k Bip BP

i[f e(k)8(ko)+g ( k)8( ko)52sb(ko)

Et follows from (7.9) that

ie(f X~li p'(0) p(0) ~1' g,u)

dk kob;"+k, bo"

(2s)' k'
ds e-'"'(f,~

~
T[y(O),a„(s)]~1; g,&)

= —ie[Z"(l)]"'u(l)(f,X
~
U( —s ) ~g,u)

~ (2pr) 4

dk kpb, ~+k, b,~

k'

j y„„(k) el"
[f„*(k)8(k')+g( „k)—8( k'—)]27rb(k') —i

~

. (7.12)
k' ip l k—+ipl

Now in the last term of the integrand no contribution
can come from the term in 5(l k), since this is odd in k.
Hence we may close the contour in either half-plane and
obtain a contribution only from the pole at k'=0. The
k integral thus reduces to the same form as the k integral
in (7.6), so that the soft-photon contribution to the
left-hand side of (7.10) cancels the k integral on the
right.

Next, we must consider the hard-photon part of
(7.11).This function is, of course, just a special case of
the function (6.11). However, in several respects it is
different from cases that we have considered before.
Firstly, since the electromagnetic Geld is neutral, the
corresponding part of the function 6' would be simply
a momentum 8 function, so that we may omit it and
regard the hard-photon line as being attached directly to
the core of the diagram. Secondly, since we have chosen
to work with a renormalized electromagnetic field, there
should be no corresponding factor [Z"(k)]'".The most
important new feature, however, is that we are no longer
interested only in the region where p is close to its mass
shell, so that our earlier formulas in which p'+two was
assumed to be small are inapplicable. It is no longer
possible to replace the propagator function G"(p) with
its pole term alone. However, this circumstance also

introduces a corresponding simplification. When p'+m'
is not small, there is no significant interaction between
the line of momentum p and the soft photons, so that
this line too may be attached directly to the core of the
diagram.

At first sight one might think that the neighborhood
of the mass shell would require special treatment, but,
in fact, this is not necessary. We are dealing in effect
with an internal line, and have to integrate over all
values of p. Provided that the dependence on p of the
remaining factors in the diagram is smooth near the mass
shell (as it is here), the soft-photon contributions do not
aGect the value of the integral. Were this not so, we
should have had to consider soft-photon corrections to
internal lines in our original analysis. To see that it is so,
take an internal line with soft-photon corrections whose
ends have momenta pi and qi, and consider its contri-
bution near the mass shell written in terms of (6.2).
If we multiply this function by slowly varying functions
of pi and qi and integrate, we obtain an integral over xi
and y~ restricted to small values. This means that the
corresponding terms in (6.3), which represent the soft-
photon contributions, drop out. Only if the other func-
tions of pi and qi vary appreciably in a region of the size
of 0' can the soft-photon contributions be important.
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In the region of interest we thus find that (7.11) is
given by

dxds e-"--'k'(f, ~
~
rt y(x),W„(s)]~1; g,&)

dg
G"(p)D"p.(k)(2x)'~(P+k —q) «""(P,q)

(2n-) 4

XL '(q)]'"~'f~.,(q; i)~(1). (7 13)

Here G'(p) is the complete propagator function with the
(irrelevant) soft-photon contributions removed, D'(k)
is the corresponding function for the electromagnetic
field, and ei'"(p, q), the vertex function with soft-photon
contributions removed, plays essentially the role of M'"

in (6.11).
In the non-soft-photon parts of (7.13) we may replace

q with /. Thus, as in (7.12), we obtain

ie(f,Kilt"„(0)P(0) ~1; g,p)

dk k,b;~+k, h, ~

~ (2ir)4 k'
Cke

—"'

X(f,~l Thy(0), ~„(s)]ll;g,&)

= —eLZ"(i)]'"(fl
I U( —s~) lg, ~)

dk k, fi,'+k, fi;
G"(i—k)D„„'(k)

~ (2m) 4

Xel'""(l—k, l)u(1) . (7.14)

The dependence on the soft-photon states here is the
same as in (7.10).Hence the two sides of (7.10) are equal
provided only that

where the superscript h on the left-hand side indicates
that this expression is to be evaluated with the neglect
of all soft-photon contributions. Hut then, if we apply
the same argument as before to the Lorentz transfor-
mation properties of (7.16), we get exactly (7.14), but
without the soft-photon matrix element. This then leads
to (7.15). Of course, it should also be possible to estab-
lish (7.15) directly from the definition of Z"(l) in terms
of the residue of 6" at its mass-shell pole. However, we
shall not attempt such a derivation here.

Thus we have established the Lorentz covariance of
the relations (5.12).

8. MATRIX ELEMENTS BETWEEN
ONE-PARTICLE STATES

Starting from (6.11), we may apply the one-particle
reduction formula (6.15) again to obtain a matrix ele-
ment between initial and Anal states each containing
one particle.

The mass-shell singularity of (6.11) in the variable

P2 for P2o(0 has essentially the same form as before. As
in the derivation of (5.9) and (6.2), we introduce new
variables xg (=y2+2p~o~) and l~, eliminate o~, and
separate the terms in I2...„depending on x2 and y2. The
only new feature is in the term in X~», given by (6.7),
involving y& and x2, namely,

dk eall"

* (2m)'li k+ie

&„.(k) e,i;
Xexp(ik yi) exp( ik»). —(8.1)

k' —iel2 k —ie

cj 8)—2n(1) f,——4—~DnZ" (i)]
BP Bt&)

= —e2
dk ko8,'+k;S,~

G"(i—k)D"„,(k)
k~ (2m)'

X I'""(l—k, l)u(1) . (7.15)

In order to prove this, we clearly have to assume, as
we have done before, that the theory without soft pho-
tons has the desired property. It is easy to see that this
assumption does indeed lead to (7.15).For Z"(l) may be
dehned formally by the relation

(oly(0) ll)&=Lz (i)] N(1), (7.16)

Now we are interested in the behavior of this function
for large negative x2'. Hence we may complete the k'
contour in the lower half-plane. Since l~') 0 and l2'(0,
this contour excludes both the poles at l~. k =0 and
l2 k= 0. Thus (8.1) reduces simply to (y,)sr*(x&)s;, and
combines with the term —(yi)si*g in (6.5) to yield

—(yi)»*Lg—(»)']. (8 2)

Thus the conclusion that x2 and the soft-photon state

~ g,p) appear only in the combination. UL —(x2)s2]
~ g,p)

is unchanged.
The rest of the analysis goes through exactly as be-

fore, and we obtain

dx3 dx„exp(—i Q p,'x, )(li, f X; out~ T(p, (x,) p„(x„)]~—12, g,p, in)s

dgy dg
=~(1)~ (—1.)II {LZ,"(p~)]'"A,(p, )& ~ f ..(i.t.,p' p. ; q

(2m-)4 (2m. )4

X(2~)9(q&+ +q )M"(qi q„), (8.3)
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where

A j)„()p(lit2)p3 ' p«) qi' (2«'l J)

dyidy, exp( —i Z (l,—q.) y) dy3 ~ ~ p dy
n n

do.3. da„exp(. —i Q (p, q, ) —y, i Q—a, (m. )'+ p,'))

X(j)l)e) «P('(j")» +)&—»-"))+-'le
dk y„„(k)

I"( ) - -(k) " I"( ) " -(k) I (8 4)
~ (2x)4 k' —ie

in the same notation as (6.8), with

Here, of course, the prime signifies that in both the
terms 11 and 22 the contribution of the double pole is to
be dropped, leaving only ——,'s&*s&——,'s.*s&.

The inclusion of disconnected core diagrams again
poses no difFiculty, except in one special case, that of a
straight-through line joining the two mass-shell lines 1
and 2. This case requires a rather different treatment.

It will be sufFicient to illustrate the method by examin-
ing the simplest case n= 2. Thus we start with (6.20)
and examine the asymptotic behavior for large nega-
tive y', so that we may apply the appropriate limiting
formula to get a particle in the initial state. The only
term in the exponent of (6.20) that may give trouble is
the one linear in J.For large negative y', we must com-
plete the k' contour in the upper half k' plane. Since
l'& 0, the pole at l k = 0 is thus included within the con-
tour. The reason why this case is special is now clear.
Whenever we consider a new line, we may choose the
sign of the imaginary part in the denominator l k at will,
and we choose it so that this pole is excluded from the
contour. But in this case, we have already chosen the
sign of the imaginary part, in such a way that, when we
considered the limit of large positive x', it would not
contribute. Because for y' we are interested in the op-
posite limit, we now get a contribution.

The pole at k'= —IkI yields iJ*(y)s&, which com-
bines correctly with iJ*g to give an expression involving
only the combination UI (y)s&]Ig,ti). However, there
remains the contribution from the pole at l k=O,
namely,

dk ~.,(k)
elp2~b(l k)e'" p J"(k)

~ (2m) ' k'
(8.6)

Here we have omitted the imaginary part from the de-
nominator k', because, when l k=0, k is necessarily
spacelike. It follows from the reality of J(x) that
J*(k)=J(—k), and hence that (8.6) is purely imaginary.

Now, if we transcribe the limiting definition (6.15) of
the one-particle states into a form appropriate to the

e,.l, l"

J"(»)~" (k)= —i 2 ——
~=1 l,"k—ie

Xexp( —ik y,)+Ip, ...„(k). (8.5)

present case, we obtain

dl'
(1; (i; out11'; p&. , in)zLu(1'))p(1')]

(2m) '2i'a

dl'
= lim N ' —o(l') expLi(l' —(a( )t]LZ"(l')]—'j'

(2m)'

lim S—'
g~—00

a (l') expLi(l" —(o(.)t]
(2n.)'

X LN(1))p(1')](n; out
I p(, in)z dy e '('—') 'p

dk v,.(k)
Xeep~ e e)"2 )() k)e' '" P(k)) ()).9)

o (2m.)4 k'

Now, because of the factor b(l k) in its integrand, the
exponent is independent. of the component of y in the
direction of l, so that the integral over this component
yields a b function bLl (l—l')]. But in view of the fact
l—l is small in the region of interest, this 8 function is
equivalent to a mass-shell b function b(m'+l"). We may
define a function 6'(1; l'I J) with both variables l and
l' on their mass shells by

6'(l; l'
I J)2n-b(m'+l")

dk
dy e '&' E') '~ exp i elp2~b(l k)

o (2pr)'

v..(k)Xe"" J"(k) 1. (8.10)

X dy e"'"(1;n; out I&(y) Ip(. „,in)q)p(1'). (8.7)

where
lp.,)=UL—(y) ]lp ) (8.8)

As in our discussion of (6.16), we may argue that
l—l' is necessarily small. Thus, when we substitute the
asymptotic form of (6.20) into (8.7), the soft-photon
unitary operators UI (y) s(] and UL —(y) s& ] cancel.
Moreover, the renormalization functions LZ"(l)]'j' and

I
Z"(1')] '" also cancel. However, it is not true any

longer that the y integral then yields a 8 function, be-
cause of the extra term (8.5). The remaining factors of
(6.20), independent of y, may be recognized as being
just those in the expression (4.13) for (f,l(; out

I g,ti,
' in) J.

Hence the right-hand side of (8.7) reduces to

dl'
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Here we may close the contour in the lower half-plane
and exclude the double pole. Thus we obtain only the
contribution of the pole at k'=

l kl, which is si*si. The
sum of all three terms is therefore zero.

9. TWO-PARTICLE STATES

We now proceed to examine the nature of the asymp-
otic states containing two particles and some soft phto-
tons. As in the case of one-particle states, our aim is to
give a definition of these states as weak limits. To do
this we begin by examining the singularity of the func-
tion (6.11) at P22= —2)222, as we did to obtain matrix
elements between one-particle states, but now for the
case P2 )0 rather than for P2'(0.

The corresponding discontinuity function should be
related to the intermediate states that can contribute
to the matrix element with $2(x2) taken outside the
time-ordering symbol, to the left. Near the mass shell
we may expect that the states that can contribute will

be out states containing two particles, with momenta
close to, but not necessarily equal to, li and p2, respec-
tively, and some soft photons. Thus the structure that
we expect to obtain for the discontinuity function is

dli' dl2n

dx2. - dx„exp(—2 P PJ.x,)
(22r) 2ii' (22r)22l2

xp (11,f,x; out
l p2(x2) l

11'1„p;out)

X(11'12', p; outlT[I))»(xo) @„(x„))lg,)(4) in)s. (9.1)

Hence we seek to isolate the dependence on the vari-
ables ly and x2 that appear only in the first matrix ele-
ment, and on the soft-photon state (f,)1 l.

As in the preceding discussion of the case P2 (0, it is
convenient to begin by applying the same transforma-
tion as before to the variables associated with p2. We

Now, since the first term here vanishes for k'=0, be-
cause then l~ k is never zero, it does not contribute to
the terms involving the soft-photon states. Thus we

may write the exponent in (8.16) as

Z[f I(ll')2 ~ a+I(11')2 "n g]
dk v„,(k)

+ 22 I (11')2 "n(k) I"(11')2 "e(k) . (8.18)
() (22r)4 k' —zo

At first sight, it might seem that we would have to
introduce a new interpretation of the prime on this in-

tegral, since the exponent in (8.16) contains no quadratic
term in the part of the current associated with particle
1. Actually, however, this is just what our rule pre-
scribes. The quadratic terms arising separately from the
11 and 1'1' terms are each taken to be ——,'s~*s~. But the
cross term 11' is

dk eili" y„.(k) eiii"

~ (22r)' l, k+2o k' —2o li k+2o

introduce new variables x2 and t2, and eliminate o2, as
we did in obtaining (8.3).

The only difference from the previous analysis is in
the treatment of the term (8.1). We are now interested
in the behavior of this function for large positive values
of x2', So we must complete the k' contour in the upper
half k' plane. As before, the pole at l2 k=O is excluded,
since now t2') 0. However, the pole at l~ k=0 now lies
inside the contour. Thus we obtain two terms. The first
from the pole at k'= —

l kl is (x2)s..*(yi)si. It combines
with the term f*(yi)si in the exponent of (6.12) to give .

[f+(x,)s,)*(yi)si.

Once again, therefore, we find that (f,X appears in the
combination (f,&

l U[—(x2)s2]. However, this is no
longer the only dependence on x2, for we have also the
second term, from the pole at t~. k =0, which is

dk y„„(k)e,l,"
2~6(t, k)——

() (22r)4 k' l2 k —ze

Xexp[ik (yi —x2)) . (9.2)

This term may be recognized as one contribution to the
term X21("(o2,~) of [II, (4.8)].(The other contribution
is the corresponding term involving y2 rather than x2.)
It is easy to see, by making the transformation k —+ —k,
that (9.2) is purely imaginary. Indeed, it is just the
function (8.6) with J" replaced with the nonconserved
current —I&(~), where

I&(2)(k)= —i[e2l2"/(l2 k —io)] exp( —ik x2). (9.3)

Thus the exponential of (9.2) may be expressed as the
Fourier transform with respect to li —li' of 6'(li', li'l
—I(2))24rl)(2241'+li"), that is, as

dli'
exp[i(11—ii') yi]&'(li'; ii

l
I(2))*, (9.4)

(22r) 2211'o

in which we have used the symmetry relation (8.12).
We now take the function defined by the right-hand

side of (6.11), perform the indicated transformations,
and go over to the discontinuity function by keeping
only the 5-function part of the denominator (2)222+l22

ie) ' T—he str. ucture that we obtain in this way is
similar to (6.9), except for the appearance of the extra
factor (9.4). Explicitly, it is

dl2
dx2 exp( Zp2' x2) [Z '2(l2)) A2(l2)

(22r) 22l2o

dli'
Xexp(ilo x2) dyi exp( —ili'yl)

(22r) 22l, o

Xexp[i(li li') yi)h—'(li', li
l I(2))*

X(fZl U[—(x )s ] ' (95)
in which the remaining factors indicated by dots are
independent of the variables x2 and tI. Hence, compar-
ing with (9.1), we see that the natural generalization of
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(5.12) is

(li,' n; out~ &2(x2)
~

li', 12, 0; out)

LZ 2(12)] El LQ(ll)Q(11 )]Q(12)
Xexp(il2 x2)(n~ U(—(x2)s2]~P)

X~'(4; 4~ I(2))*. (9.6)

Clearly, the factor 6'(ii', ti~ I(»)* represents the effect
on particle 1 of the current (9.3), just as the factor
U[—(xi)s2] represents its eRect on the soft-photon
state.

Identifying the remaining factors of (9.5) with the
second matrix element in (9.1), we obtain

n

dx3 dx exp( i—Q p,"x)(i)1~, fX; out
~
TL&3(x3) @,„(x„)]~g)((, in)q

j=3

dgn

X (2 )'S(g,+ +g„)iV"((t, g„), (9.7)

dna
=~(Ii)~(12)II {PZ")(p))]'"A (p)1 ~')i, -(iii2 pa p- vi v-I J)

(2ir)4 (2ir)4

where once again the function 6' is given precisely by (8.4) together with (8.5), but is now to be evaluated for
i)0)0 and l2O) 0. The fact that (9.7) is obtained from (8.3) simply by applying the crossing transformation to 12

suggests that the arbitrary phase factor that could be present in (9.6) has been correctly chosen. Indeed, since we
have proved the Lorentz covariance of our definition of one-particle states, (8.3) must be Lorentz-covariant, and
thus the covariance of (9.7) follows.

We can now proceed to construct a proper limiting definition of the states containing two particles, analogous to
(6.15) for the one-particle states. There we made a modification of the asymptotic soft-photon state depending
on l and x in such a way as to yield a function that has a pole on the mass shell. In the present case, we adopt a simi-
lar procedure, but now it is necessary to modify also the state of the single particle already present. We adopt the
de6nition

dl —N(I)~(I)](I)I; «, oiit
I
&(4 i(») 4.(x-)]IP; in) ~

(2~) '2P

=lim g
dt

)P(I) (l) exp) —i(P — )t]LZ",(l)] ')' dx e "*
(2m.)4

dli'

, ~'(ii; ii
I I(2))

(2ir) '21i"
X(li", n(, , out~ ,T'L&2(x)&3(x3) g„(x„)]~P; in) j (9.8)

where (n&,
~

is again defined by (6.14).
The proof that this limit exists goes through very

much as before. Substituting the expression that we
have already obtained for the matrix element on the
right, we obtain a structure similar to (6.16) with an
integral over 4 and a denominator function (m/+122
—ie) '. As before, / —12 is necessarily small, and there-
fore the soft-photon unitary operators Uf(x)s)] and
UL —(x)s2] cancel, as do the renormalization functions
[Z"2(l)] '~' and LZ"2(1~)]'('. The part of this expression
containing the function 6' is

dll'
&'(li, ii

~
I(2))

(27r)

'hali'0

dig"

(2ir) '2li"'

Xh'(li"', li'~I(g))*

and in view of (8.13) this simply has the effect of setting
li"——li Thus the lim. iting formula (9.8) reproduces
(9.7).

It is easy to construct a similar definition for two-
particle in states. The formulas are obtained simply by
crossing, so that we shall not write them down explicitly.
Ke note one special case, however. The matrix element
of (t(x2) between a two-particle in state and a one-

particle in state is obtained from (9.6) by the substitu-
tions l2 —+ —t2 and e2 ~ —e&, which by (9.3) implies

I(2) (0) + I(2') (k) i/824 /(12'0+$6)] eXp( ik'x2) ~

Thus we find

y9,'n,'in 2 x2 y),'in
—fZ"2(t,)]1'2Ei '(u(li)N(li')]N(1, )

Xexp( —i&2'x2)((i
~
UL(x2)~2]

~ P)
x& (Ii' IilI(2))* (99)

Pairs of Straight-Through Lines

As before, we may proceed to calculate the matrix
elements between two-particle states. These are given
by obvious generalization of the corresponding formulas
for one-particle matrix elements, and we shall not write
down a general formula for them at this stage. There
is, however, one case in which we do encounter some-
thing new, namely, that in which there is a pair of
straight-through lines connecting the particles on their
mass shells.

Suppose, for example, that we wish to calculate the
scattering matrix element

(lily,' f,X; out
~

li'l2', g,p; in)~ (9.10)
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in a region of momenta in which only core diagrams with

two straight-through lines contribute.
Ke may begin with the function

dyidy2 exp(igi yi+ ig2 y2)

)&(lkl&, f,X; out
~
T[(l)&(yk)y2(y2)] ~g, 14, in) J,

and apply the reduction formula successively to the two
in-state particles.

This function has a structure similar to (6.19),namely,

N(Ik)~(12) [Z"i(Vk)~"2(V2)]'"~'f., p. (1412 ViV2I J)
where 6' is given by (8.4). Now, when we apply the
reduction formula in the form (8.7) to qq, we obtain an
expression similar to (8.11), namely,

dk y„„(k)
I(2)"(k)+ I"(2) (k)

l 0 (22r)' k' —44

dk v„(k)
e,lk&22r()(lk k) exp(ik yi) I"(2)(k) ~, (9.12)

o (22r)4

dy&dy& exp[ i(l—i li'—) yi i(l—, g,)—y&](f,h~g, )(4) exp~ i(f*I(»+I(»*g)+-',i

+i
with

dye exp(i(I2 y2)(lkl&, f X; out|&2(y&)
~

Ii'; g fk, in)z ——S& '[44(l&)N(lk')]44(12)[Z"2((I2)]'"6'f)e, ,„(l&l2,li', q2
~

L) (9 11)

where

fk g)e(lkl21 l) 2(l2
~
I)22r()(nzk'+ li")

Ip(2)(k) =J"(k)—i[e212p/(12 k—ie)] exp( —ik y2). (9.13)

This form may be compared with (8.4) and (8.16).We recall that the last term in the exponent of (9.12), which is
essentially the term (8.6), came from the pole at li k= 0.

Next, we must again apply the reduction formula to the variable q2. To do this, we must examine the asymptotic
behavior of the integrand of (9.12) for large negative y2 . As before, we shall find a term analogous to (8.6) from the
pole at 12 k=0 in the cross term between the two terms of (9.13), The new feature that arises in the present case,
however, is the term involving y2 in the last term of the exponent of (9.12), namely,

dk y„„(k) e2l2"
eklk&22rb(lk k)— exp[zk (yk —y2)].

~ (22r) 4 k' l2 k —ie
(9.14)

Once again the small imaginary part in the denominator here has the "wrong" sign. We cannot, of course, any
longer apply an argument based on the completion of the ko contour, because of the factor ()(lz k). However, it is
easy to see that what we are interested in is the behavior of the integrand as the component of y2 in the direction
of l2 becomes infinite. Now, if we were to take the limit —l2 y2 —k +~, we should find that (9.14) would not con-
tribute. However, the limit with which we are concerned is —t2. y2 —+ —~, and in this limit we do obtain a con-
tribution, which may be regarded as coming from the pole at l2. k=0, namely,

dk ~„„(k)
e&l&&22r(1(l& k) e21&"22r8(12.k) exp[ik (yi —y,)].

o ~ (22r) 4 k2
(9.15)

The result is to give a cross term between particles 1 and 2 in the expression for the matrix element (9.10). We
obtain, finally,

{1&122f &; out~I&'I&, gefke in)&=IV& '[44(I&)44(lq )]A,''[4"4(—l,)44(1& )]6 'f) g (el pl ilpi el2't I),
where

6'f)„p„(lil2, li'l2' ( J)27r8(mk'+ ik")27rh(4rzp'+ l~")

(9.16)

2

dyidy2 exp( i 2 (l l'')'y')(f l(lgf4) expl i(f*J+J*g)+,'i-
j=l

dk y„„(k)I"(k) ~ Je(k)
~ (22r) ' k' i4—

dk y, „(k)
+i P efif"22rb(k l, ) P(k) exp(ik y, )

() (22r)' k'

dk v"(k)
e 4"2 k(l 2) e l '2 k(l k) exp(ik (2,—2 )j) . (P.ii)

(2~)4 k'

As in the single-particle case, the charged particles and soft photons scatter independently.
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Note that the exponent may again be written in a form similar to (8.18) with the current

I&&».» )(k) =J&(k)+ P e,l,&2~8(l,"k) exp( —ik y;) (9.18)

10. MULTIPARTICLE STATES; CONCLUSION

The generalization of the preceding discussion to multiparticle states is now almost obvious, and we shall merely
write down the results.

The general formula corresponding to (5.12) and (9.6) is

(1,. 1„;n; out ~y„„,(x) ~4' l.'1; p; out)

= [Z"„+&(l)]')'u(l)(n~U[—(x)sQ~ p)e"*p {X; '[N(1 )u(1,')]&'(1,', l,
~
I& +g))*}. (101)

j=l

The general reduction formula, corresponding to (6.15) and (9.8), that defines the multiparticle states recursively, is

A+i'
dl

[)p(1)N(1))(ig 1 1; n(, out), T(y„+,(x„+,) . . y„(x„)]
~ p; in)g

(2s)'2P

=lim S +g
'

]-+Oo

dl
)t(1)0(l) exp[ —i(P—&u))l][Z" +)(l)] '" dx e "*

(2~)4

dig' dl '
~ ~ ~

(27r) 32l)'0 (2') 321 '0

Xg & (l, ; l ~I&„))(1~' 1„';a)., out~ T[g„~(x)$„+2(x„+) P„(x„)]~P;in) . (10.2)
j=1

Using these formulas, we may derive an expression for the matrix element of any time-ordered product between
arbitrary Diultiparticle states. It is not hard to see what kind of structure is obtained thereby, but instead of writing
down a general formula, we shall find it more useful to give the rules for constructing it.

We start with the expression for the corresponding Green s function, which, in general, is a sum of terms of the
form (1.2), each corresponding to core diagrams of one particular connectivity structure. Then for each line on its
mass shell we replace p, with l, , drop the factor [Z', (p,))'~', and replace h.;(p,) with N(1,) or u'( —1;).[In the case of
a straight-through line with both ends on the mass shell, this introduces a factor cV, , since there is in (1.2) only
one factor A;(p, ) for each straight-through line, and not two. ]

The most general function 6' that we encounter in doing this is one with e lines of which r have both ends on the
mass she11 and m —r have one end on the mass shell. It is given by

~ f)„gp(il' ' 'lmyPm+1 'Pe j 4 ' ' 'lr ygr+1' ' 'gn) II 2'&(~)rj +lj )

r m

«-+~ "«- exp( —i 2 (l~—li') y~
—i 2 (l,—V~) y,

0 j=~+&

i P (p;—g,) y, i—P a—,(m, 2+p,'))(f) )g,p) exp~ i(f*I+I*g)+-',i I (k) I"(k) ~, (10.3)
j=m+1 j=m+1 Qr (2%) k

where I"(k) stands for the function that we have denoted by I)"&» ...„„„+&... )„~&... (k), namely,

r
I~(k) =J~(k)+ P e, l,~2~8(i;.k) exp( —ik y, )

j=1
ejljl'i-

j=+ilj k —i&

n

exp( ik y, ) —i P — [exp( 2ik p, o,—) 1) exp( ——ik y ). (10.4)
j=m+1 p~

As usual, the prime on the k integral signifies the special
treatment to be accorded the diagonal terms i = j.

We have now defined the most general multiparticle
state, by (10.2), and obtained a set of rules that allow
us to write down the matrix element of a time-ordered
product between any two such states. To do this, we

have had to develop reduction formulas that can be
used to extract such matrix elements from the Green's
functions with which we began. In the case of a con-
ventional field theory without massless particles, the
reduction formulas essentially isolate the residues at
mass-shell poles. In the present case, the Green's func-
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tions themselves have branch points rather than poles,
but we have been able to modify the soft-photon states,
for example, as in (6.15), in such a way as to obtain func-
tions that do have poles and thus yield analogous
formulas.

The scattering matrix elements of the theory are
special cases of the matrix elements that we have dis-
cussed. Thus our formulas yield, in particular, expres-
sions for these matrix elements, which will be investi-
gated in more detail in the following paper. That the
asymptotic states that we have deined form a complete
set must be proved by establishing the unitarity of the
scattering operator so defined. We must also prove that

it possesses the other properties demanded of it, such as
gauge invariance, Lorentz invariance, and crossing sym-
metry. All this will be demonstrated in the next paper of
this series.
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It is suggested that the dipole parametrization of the isovector-nucleon form factor is a consequence
of the behavior of the mm phase shift above the p meson. It is conjectured that the phase shift rises through
m, and as a result the pion form factor exhibits a zero in the vicinity of 900 MeV. This yields the dipole
parametrization without introducing additional parameters.

~SOVKCTOR nucleon structure for squared mo-
~ ~ mentum transfer ~t~ up to 10 (GeV/c)' can be
parametrized' by a dipole expression of the form

(1—t&m'} ' The parameter m' has the value 0.71
(GeV/c)' so that m=840 MeV. The purpose of this

paper is to offer some physical explanation for the
dipole nature of the fit.

We suggest that the origin of the effect can be
attributed to the behavior of the xw T= i=1 phase
shift 8 above the p-meson mass. We assume that 8, as
shown in Fig. 1, remains substantially real and rises
through sr below the 1VN threshold. Given this be-
havior, general arguments would suggest the validity
of the dipole formula without the need for extensive
detailed calculation.

The form-factor problem is a coupled-channel prob-
lem; it is this fact which, when implemented by our
assumption on 5, leads to the effect in question. We
consider a coupled model of the form factors of the pion
and of the nucleon, and write'

F=gD '.

channel. The elements of the row matrix g are entire
functions which secure the correct normalization of F
and F~ at t=0. It follows that

FN/~r (g2D» giD12) (glD22 g2Dsl)

both F~ and F have the denominator detD. The same
D occurs in the scattering matrix. In particular the
elastic m~ amplitude is

M» ——(VD-')» ——(tVy)Dss —tVt sDsy)/detD.

Below the NX threshold the numerator of M1~ is real
as is the factor (g~Dss —gsDst), the numerator of Ii .
We are assuming that b behaves as in Fig. 1 and that
this behavior can be obtained from this two-channel
model. Given this, there exists a point to between m, '
and 4M' where X11D2~—N1.D21= 0. It is expected that
gjDgg —g2Dgg ——0, and thus that F =0, at a nearby
point to. Quite apart from our hypothesis about the
behavior of b, there is good reason to expect the numer-
ator of F to have a real zero between the mx and NX

F is a row matrix whose elements are the form factors
F and F~. D is the D matrix for the coupled scattering
problem with channels mm and N¹ To expedite the
illustration we ignore the multiplicity of the NX

' R. E. Taylor, Stanford Linear Accelerator Center Report No.
SLAC-PUB-372, j.967 (unpublished).' R. Blankenbecler, Phys. Rev. 122, 983 (1961).

Pro. 1. The T=J=1
phase shift versus (m-x mass)';
p is the pion mass, m, is the
p-meson mass, M is the nucleon
mass,

4p~ m ~ to
P


