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The E*-pole model and the baryon-pole model are considered as alternatives to the current-algebra
calculation of s-wave hyperon decay amplitudes. The conditions under which all three of them yield identical
results are clari6ed. A simple dynamical model, based on the E1' spurion at zero four-momentum, leads to
a combination of E -pole and baryon-pole terms which satisfy these conditions.

I. INTRODUCTION

HE success of the Sugawara-Suzuki theory' in
accounting for the empirical properties of s-wave

hyperon decay has tended to obscure the fact that other
dynamical models have been equally successful. Indeed,
when octet dominance is assumed to hold, the predic-
tions obtained from the current-current theory by
means of the hypothesis of partially conserved axial-
vector current (PCAC) and current algebra coincide
with those of the E*-dominance model, ' and also with a
particular form of the baryon-pole model. ' As far as the
E*-dominance model is concerned, the result may not
be too surprising because the model can be regarded as
an "e8ective representation" of the current-algebra
calculation. However, the reason why the requisite
conditions (viz. , the equality of strong and weak D/F
ratios, and their numerical value being K3) are realized
in the baryon-pole model is not entirely clear. (ln our
opinion, the dynamical reasons for octet dominance
are also not fully understood. ')

The purpose of this paper is threefold. First, we

clarify the conditions under which the E~-dominance
model is equivalent to the current-current (employing
current algebra) model and show that they are rtot, in

general, equivalent. ' Second, we give a simple algebraic
reason for the particular baryon-pole model behaving
as it does and inquire if this behavior can be extended
under weaker conditions. Finally, we study a simple
dynamical model for s-wave hyperon decay amplitudes
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and show how it leads to the expectation that a sly of
the E*-pole and the baryon-pole terms should give a
good description of the s-wave hyperon decays. Of
course, this leaves the question of relative strength
open. ' We discuss briefly the possibility of extending the
model to P-wave amplitudes.

There are three appendices. ' Appendix A contains
some properties of F and D matrices which are used in
the text and which are interesting in their own right.
Appendices B and C contain the complete amplitudes
for s-wave decays in the E*-pole and the baryon-pole
models, respectively.

II. X*-POLE MODEL

The main assumption in the E*-pole model is that a
E*—+ x transition dominates the weak amplitude.

The weak Hamiltonian describing the E*—+ ~
transition is given by

H„=gee„,*'r)„7rs'+gs7 (E„t*'8„7rs'

+E„s*'c)„art').+H.c. (2.1)

We have not assumed octet dominance in writing this
H„. The coupling of E* to the baryons is described by

II =~(»'V.&s' &s'V.»') V'"—
+D(»'&.Ji~'+~s'&.&s') V.'" (2 2)

A similar expression involving o-„„-type coupling of the
baryons can be written down, but the o-„„term vanishes
for the E*-pole diagram. Although one expects the
coupling of vector mesons to be pure F-type, we have
included a D-type coupling because, at finite momentum
transfer, the coupling may not be pure F-type and also
because of some amusing properties of D-type coupling
as we shall see later.

Now the decay proceeds through the diagram of
Fig. I. Before we study the detailed form of the ampli-
tudes resulting from Eqs. (2.1), (2.2) and Fig. 1, let

6 This seems to be a controversial point. It has been argued that
the E*-pole model gives too small an amplitude, e.g., D. Loebakka
and J. C. Pati, Phys. Rev. 147, 1047 (1966); and K. Watanabe,
ibid. 159, 1369 (1967). On the other hand, K. Nishijima and L.
Swank t Phys. Rev. 146, 1161 (1966)g argue that the baryon-pole
model gives too large an amplitude.
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(Q-,s)Z:—A '—2:=0,
(Q-', )Zp++Ap' —2 p' ——0

(2.4)

(2.5)

%36(Z)+A(A)+26(:-)=0, (2.6)

a,nd of course 2++=0.' Here h(Z), D(A.), and 6( ) are
violations of the AT= —,' rule and are defined by

~(Z) =Z,+—(1/K2) Z:+ (1/&2)Z,+,

~(~)=~ 'gV2~ '
a (=.) ==.:—~2=.p'.

(2.7)

' S. P. Rosen, S. Pakvasa, and E. C. G. Sudarshan, Phys. Rev.
146, 1118 (1966).' S. P. Rosen, Phys. Rev. 143, 138 (1966).This was the way in
which Schwinger (see Ref. 2) used the E*-pole model.

' Clearly (2.6) is not independent of the other two sum rules;
however, it is convenient to express it in this form.

FIG. 1. The E*-pole diagram.

us comment on the relationship of the E*-m. pole model
to the current-current model. It is evident from Eq.
(2.1) that whether H„ transforms as 8 or 27, the decay
Z+ —+ e+m+ cannot take place. This is because it would
have to go through Z+ ~ e+E*+which is a superweak
(AS=2) transition. In the current-current interaction
(used in conjunction with PCAC and current algebra)
on the other hand, Z+ ~ n+~+ vanishes only if the 27
term is absent. This shows that the two approaches are
not equivalent in general. They yield similar results
only in the limit of octet dominance.

Another way of stating this argument is to observe
that, because the E* is assumed to be pure octet, the
E*-x model contains no terms in which the baryons are
coupled to form a 27. Thus it might appear as if the
introduction of a 27-piet partner for E*would make the
two models equivalent. This, however, is not true: In
such a modified E*-~ model, couplings of the type
L(BB)sm]s7 and t (BB)s7m js are allowed, whereas in the
current-current model they are not allowed. ' The first
of these couplings vanishes only when octet dominance
for II„ is assumed, and the second when E* is taken to
be pure octet. It is only under these conditions that
E~ dominance and current algebra are equivalent
models.

In the effective coupling due to the E*-pole diagram,
the baryon part has the following form:

B,y„q„(FF,+DD;),i.Bi„ (2.3)

where q„ is the momentum transfer and P; and D; are
the usual 8)&8 ma, trices. Since in this form, the baryons
are always coupled to an octet, the derivative coupling
amplitudes defined by Eq. (2.3) satisfy the three sum

rules of Rosen'; i.e.,

When the expression in Eq. (2.3) is reduced to non-
derivative coupling, we note that y„q„acts as a mass-
difference operator between the baryons, and this can
be expressed by writing the baryon part as

B;[M,FF,+DD;],i,Bi„ (2.8)

where M is the mass operator. Using the most general
form of the mass operator,

M = XFs+pDs+ v T«,

Eq. (2.8) becomes

(2.9)

B,PFs+IJDs+ vT«, FF;+DD;L&B&. (2.10)

From Eq. (2.10) it is easy to see that the amplitudes for
nonderivative coupling will satisfy the sum rules of
Eqs. (2.4)—(2.6) in the following cases:

(i) D=O and v=0, i.e., the BBV coupling is pure
F-type and the Gell-Mann —Okubo mass formula is
satisfied. "

(ii) p= v=0, i.e., the mass splitting is pure F-type
and the Z —A mass difference is neglected. "

(iii) F=O, i.e., the BBV coupling is pure D-type and

X, p, and v are such that the global-symmetry (GS)
mass formula" is satisfied. "LThis is not obvious from
Eq. (2.10) but is shown in Appendix B.j

Both cases (i) and (ii) are close to the accepted values
for masses and F/D ratios. Case (iii) is amusing in that
it connects pure D-type coupling to the global-sym-
metry mass formula. In the limit of octet dominance the
sum rules (2.4)—(2.6) reduce to the Lee-Sugawara sum
rule" and the AT= ~ rules.

In the above discussion and in the literature, the
discussion has been in terms of the J"=1, i.e., the
vector E*.Now that we know of other low-lying E*'s
(e.g. , those with J"= 2+), there does not seem to be any
reason to single out the vector K*.The tensor (2+) E*
can also contribute to the s-wave amplitude and the
results are very similar to the above. Again the effective
amplitude has derivative coupling, and moreover the
BBT coupling which contributes (i.e., the non-spin-Qip

one) is also expected to be predominantly F-type. "So
our remarks apply to a E*-pole model where the E*can
refer to either vector or tensor.

There are other models based on a quark-model
Hamiltonian" or on the (nonvanishing) divergence of

"This was observed by Nishijima and Swank (see Ref. 6) and
also by Sakurai (see Ref. 5).

"This corresponds to the approximation used by Lee and
Swift (see Ref. 2) in their use of the X*-pole model.

"M. Gell-Mann, Phys. Rev. 106, 1296 (1957)."S. P. Rosen and S. Pakvasa, Ref. 5.
"H. Sugawara, Progr. Theoret. Phys. (Kyoto) 31, 213 (1964) „

B. W. Lee, Phys. Rev. Letters 12, 83 (1964). With our phase
convention this sum rule reads

vS&o+—A-' —2-":=0.
"V.Barger and M. Olsson, Phys. Rev. Letters 15, 930 (1965);

R. Dashen and S. Frautschi, Phys. Rev. 152, 1450 (1966).
"Riazuddin and K. T. Mahanthappa, Phys. Rev. 147, 972

(1966); M. K. Gaillard, Phys. Letters 20, 533 (1966).
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the strangeness-changing vector current" which are
essentially identical to the E*-pole model.

III. BARYON-POLE MODEL

/ w

s

The baryon-pole model has been used quite often in
the past"" to 6t the s-wave amplitudes. It has been
often argued that, since a current-current interaction
leads to an effective Tl.(1)-invariant interaction while
the effective two-body interaction has to be TJ-(2)-
invariant in order to contribute to the s-wave pole
terms, the pole terms are forbidden in the limit of
SU(3).2P However by the same token Ei —+ 2vr is also
forbidden~ but its coupling constant is roughly com-
parable to that for s-wave hyperon decay. Hence, even
assuming a current-current interaction, it is by no
means clear that the baryon poles are forbidden. As
long as the transition E~~ vacuum is not negligible,
the baryon poles will contribute to the s-wave ampli-
tudes.

The pole diagrams that contribute are shown in
I'ig. 2. The structure of the strong and weak vertices is
given by

H, =d(B y,B„v+B„vp,B,')P;v'

+f(B ppBI,' Bv,'ppB, ')P;", —(3.1)'
II-=D (B''vpBp'+%'vpB )+F (B,'vpB2' %'v5B,')—

+rv(Bv'v, B,'+B,'v,B,'+B,'v, Bg'

+82'ypBia)+H. c. (3.2)

The detailed amplitudes that follow from Fig. 2 and
Eqs. (2.2) and (2.3) are given in Appendix C.

Let us first consider the approximation in which we
take all the baryon masses to be equal. This is not such
a bad approximation since the mass differences are
certainly small compared to the sums of the masses
which appear in the denominators. Then the SU(3)
structure of the amplitudes is

B'(fFv+dDv, F Fv+D Dv+vvvt 27jvv)*vBvPa (3 3)

Let us also neglect the contribution from 27 for the
moment. Then the baryon part of (3.3) is simply

B;(fFp+dDi, F„Fv+D„Dv);,B, . (3.4)

Now the anticommutator in (3.4) is

fF„(F„,F,)+dD (Dk,Dv)+ fD„(Fk,Dv)

+dF„(Dk,Fv) . (3.5)

The first two terms contain only SD and 27 by being
symmetric, but the last two terms, in general, contain
10 and 10* also. However if D„/F = d/f, then the last

"K. Nishijima and L. Swank, Ref. 6; G. S. Guralnik, V. S.
Mathur, and L. K. Pandit, Phys. Rev. 168, 1866 (1968); Riazud-
din et al. , Ref. 3.

' H. Sugawara, Nuovo Cimento 31, 635 (1964)„Riazuddin
et a/. , Ref. 3; J. C. Pati and S. Oneda, Phys. Rev. 140, 81351
(&965)."R. H. Graham and S. Pakvasa, Phys. Rev. 140, 31144 (1965).

-" See, e.g. , B. %V. Lee and A. R. Swift, Ref. 2.

(o)

Zvr

s

(b)

Fxo. 2. Baryon-pole diagrams.

two terms can be combined to

fD„P(Fv,Dv)+ (Da,Fv) g.

This by virtue of Eq. (Ag) is just

2fD„dl v~F „,.

(3.6)

(3.7)

Thus when D„/F„=d/f, the baryon-antibaryon cou-
pling has only 8 and 27, and then it follows from the
theorem proved by Rosen" that the Lee-Sugawara sum
rule must be satisfied. Furthermore from Eq. (A11) it
is easy to see that when D„/F„=d/f =43, the first two
terms in (3.5) couple the baryon-antibaryon to a
singlet and hence do not contribute to the (strangeness
changing) decay amplitudes. Then the only contribu-
tion comes from (3.7) which couples the baryon-anti-
baryon to 8&. But this is precisely the coupling obtained
from the E*-pole model when BBV coupling is pure
F-type and the masses obey the Gell-Mann —Okubo
(GMO) formula.

We have now established the conditions under which
the E*pole and the baryon pole give rise to pure P-type
octet coupling of the baryons and thus give the same
sum rules as the current-algebra calculation does in the
limit of octet dominance. We now consider the effects of
(a) including the 27-piet term in the weak Hamiltonian
and (b) removing the mass degeneracy of the baryons.
First, we make n/0, but keep the Tnasses equal; then
if d/f= D,„/F„=&3,

A(Z) =A(A)=D(:-).

And for d/f and D„/F„arbitrary, we still have

(3.8)

(3.9)

(3.10)

Next, we ignore the 27-piet term but include the Inass
splittings. We approximate the masses by the mass
formula

M= Mp(1 —8F') (3.11)

(i.e., Z, A. degenerate), where 8 0.08, and work to fir/t
order in b Then we find th. at the new solution for d/f
and D„/F„which satisfies the Lee-Sugawara sum rule

"S. P. Rosen, Phys. Rev. 135, 8326 (1965).
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and 2++=0 is very close to the one before so that
d/f D /F„v3 to a good approximation. Finally, if
we include both the 27-piet and the mass splittings, we
find that the sum rule (3.10) still holds. Of course, if one
thinks of the weak vertex as emission of a E~' which
then undergoes E~~ vacuum transition, "then one can
not only justify d/f being equal to D„/F„but also
argue that the 27-piet shouM be absent. We have
included the 27-piet since it is not clear that some
contribution would not come from current-current
interaction. The value v3 for d/f seems to be a "magic"
number in that it turns up in many different contexts, "
besides being close to the "observed" value.

IV. DISCUSSION

In Secs. II and III we have derived the conditions
under which the E'*-pole Inodel and the baryon-pole
model both give rise to almost pure F-type coupling
of baryons in the s-wave decay amplitudes and hence
to agreement with experimental values. As these condi-
tions (predominantly F-type coupling of vector and
tensor mesons, Gell-Mann —Okubo mass formula, D/F
=V3 for baryon —pseudoscalar-meson coupling) are
nearly satisfied in reality, both models are able to 6.t the
data reasonably well.

If we consider a dynamical modeP4 in which the
s-wave decay amplitude is approximated by the oG-

mass-shell scattering amplitude Eio+u —+P+m with
E~o~vacuum transition taking place through H„,
then the nearest singularities in the amplitude are just
the E* poles (in the i channel) and the baryon poles
(in the s and I channel). It seems reasonable to assume

that they dominate the amplitude and then the ampli-
tude is given by a sum of E* poles and baryon poles.
Since, as we have seen above, E*poles and baryon poles

by themselves give rise to the right sum rules (I.ee-

Sugawara) and selection rules (2++=0), a sum of the
two will continue to do so.

The analog for p waves is, of course, the usual pole
model, with baryon poles and E pole. However, the
analogy does not extend to the dynamical model above
since there does not appear to be a scalar meson
analogous to E~'.

Finally, we would like to stress that, in order to test
whether the current-current interaction or E*-pole
model or the baryon-pole model gives a dominant
contribution to the s-wave decay amplitudes, one has
to test the sum rules which go beyond" the QT= ~ rule
and the octet rule. This can only be done when the

"A. Salam and J. C. Ward, Phys. Rev. Letters 5, 380 (1960).
"W. A. Simmons, Phys. Rev. 164, 1956 (1967); P. Babu,

A. Rangwala, and U. Singh, ibid. 157, 1322 (1967);D. W. Joseph
and L. L, Smalley, ibid. 150, 1209 (1966). For the experimental
value see, e.g. , W. Willis et at. , Phys. Rev. Letters 13, 291 (1964).

'4 Such a model has been used in a different way by M. C. Li,
Nuovo Cimento 53A, 327 (1968).

'For example, the sum rules (2.6) and (3.9,3.10) distinguish
between the E*-pole model and the baryon-pole model when the
octet rule is relaxed. These are diferent from the current. -current
ones (see Ref. 7).

experimental determination of the amplitudes has
greatly improved over the present one.

APPENDIX A: SOME PROPERTIES OF
E AND D MATRICES

The Ii and D matrices are defined to be

(F') '= —if",
(D,),~= A, ~, (A1)

where f;;~ are the structure constants of SU(3), and

d;jI, are determined by anticommutators of the 3)&3
matrices X„(i= 1, 8):

P.;,X,j= 2if;;gag,

{X;,X,) = 438;,I+2d;, ihg (A2)

The X; are traceless and their scale is set by the require-
ment that

Tr(X~X;)= 28,;.
The symbol I is used to denote the unit matrix.

From various Jacobi-type identities for products of
three X matrices, it is possible to derive coilonutation
and anticommutation rules for the Ii; and D;. They are

P'', F;$= if„,iF~,

p'', D,j=if', IDI,

$D;,D;j=if;,i,F(, 32T;;, ——

(A4)

(F,,F,)+(D;,D,)=46;,I+2d;,„DI, 3R;, , (A5)—
where T;, is an antisymmetric matrix and R'j ls a
symmetric one:

(T'~)-~=~ J'~s ~'Ii~~-

(R'i) ~ =~f' ~~~+&'A-.
(A6)

Because f,,l, is antisyrnmetric and d;;z is symmetric
under the exchange of neighboring indices, the second
rule of Eq. (A4) can be rearranged to give

FiDi+FiDg DI,Fi+DiFI, dpt ——F„. ——

In turn this leads to the relation

&F~,A)+P'i, D~)=2At F .

(A7)

(A8)

With suitable modifications of the numerical co-
eKcients, the above relations are valid for the F and D
matrices of any SU(e) algebra. There is, however, one
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(Dr)D, }1=s8&jI d&j&DI,+ sR&j.

From the above and Eq. (A5) it follows that

(A10)

3(D;,D, )f+ (F;,F,) = 25;,I. (A11)

It is now possible to evaluate the traces of products of
F and D matrices. From Eq. (A4) it follows that

Tr (F;)=Tr (D,)=0. (A12)

Because Ii; is antisymmetric and D; is symmetric, the
trace of F;D; must vanish:

more relation which is valid only for SU'(3). It arises
from a particular property of traceless 3&3 matrices,
namely,

Tr(XA;) Tr(Ash~)+Tr(kks) Tr(XA~)

+Tr(7;X~) Tr(X,As) =TrP„(QX,Ash) j, (A9)

where P denotes the sum over all permutations of

j, k, 1, and it takes the form

(&-,')&o++Ao' —2=. o'

= (1/&6)(gs —g27)(DA(GS)+3FA(GMO)7) (89)

%36(Z)+8,(A)+25( )
= —(2/+6)gs7[DA(GS)+3FB(GMO) ), (810)

where 6(GMO) = 2MN+2M-. —3M' —Mq and vanishes
if the Gell-Mann —Okubo mass formula is satis6ed, and
6(GS)=3Mr+Ms —2Msr —2M-. and vanishes if the
global-symmetry mass formula is satisfied. This verifies
the statements made in Sec. II.

APPENDIX C: BARYON POLE AMPLITUDES

Here we write the detailed form of the amplitudes in
the baryon-pole model without any approximations,
i.e., including a 27-pIet term in the Hamiltonian and
with exact masses:

1 2d(Drf+—Fs+n)

v3 Mg+M~
Tr(F;D,) =0.

Equations (AS) and (A10) then imply that

(A13) (f+d) (3F —D +n)

Ms+Mar
(C1)

and

Tr(F;F;)=36;, ,

Tr(D;D;) = (S/3)8;;

Tr(F;F,D ) =-',d.. .
Tr (D;D;Fs) = -so if;,g.

(A14)

(A15)

App ———
1 2d(D +F— n)—

Q6 Mg+Msr

(f+d) (3F„D„+n)—
Ms+MN

(C2)

Further results can be found in the work of Kaplan and
Resnikoff. '6

APPENDIX B: X*-POLE AMPLITUDES

In this A,ppendix we write down the explicit form of
the amplitudes for the nonderivative coupling in the
E~-pole model:

p~p

1 (d—f) (3F„+D„—n)

&3 M-. +Ms

M-. +My

1 (d—f)(3F +D„—n)

2d(D„F„+n)—
(C3)

M-. +Ms
2d(D„—F„—n)

M-. +M g
(C4)

f( F D„+n) d—(3F„——D +n)-
Z:=v2 (CS)

3 (Ms+M~)

(d+3f) (F„+D„+u)
gp+—

Mr,+M~
(C6)(87)Z++= 0.

A '= (1/+6) (Ms —M~) (go+ gs7) (3F+D), (81)
&o'——(1/g6) (Ms —Mar) (gs —gsr) (3F+D), (82)
:=(1/g6) (M~™x)(gs+gs7) (D—3F), (83)
"o'= (1/V'6) (MI Ms) (gs g») (D—3F) —(84)—

Z:= (Mr, Msr) (gs+ gsr) (D—F), — . (85)
&o+= (1/v2) (Mz —Mar) (gs g27) (D—F) ) (86)

From the above expressions it is easy to verify that the
following is true:

(Q—')Z:—A '—2":
——(1/Q6) (go+ gs7) ADA (GS)+3F6(GMO) 7,

"L. M. Kaplan and M. Resnikoff, J. Math. Phys. 8, 2194
(1967); some of the results were also derived independently by
V. I. Ogievetskii and I. V. Polybarinov, Yadern. Fiz. 4, 853 (1966)
LEnglish transl. : Soviet J. Nucl. Phys. 4, 605 (1967)g.

(d+2f) (D„+F„)+dn
X++=%2

Mg+MN

d(3F„—D„+u)

3 (Ms+ Mar)
(C7)

The statements made in Sec. III can be checked
explicitly using these amplitudes.


