Regge Parameters in Crossing-Even KN Scattering^{*}

DAVID J. GEORGE AND ARNOLD TUBIS Department of Physics, Purdue University, Lafayette, Indiana 47907 (Received 25 March 1968)

The method of Olsson is used to estimate the Pomeranchuk P and P' parameters in KN scattering. Assuming that the forward crossing-even KN amplitude has the asymptotic form, $-\sum_{s=P, P'} \gamma_s[e^{-i\frac{1}{2}\pi\alpha_s}/\gamma_s]$ $\sin \frac{1}{2}\pi \alpha_s \vec{a}$ (ω/ω_0)^{α_s}, where ω is the kaon lab energy and $\omega_0 = 1$ BeV, we find that a good fit to the dispersion sum rules is given by $\gamma_P = 17.3 \pm 0.1$ mb BeV, $\alpha_P = 1$, $\gamma_{P'} = 7.1 \pm 0.7$ mb BeV, $\alpha_{P'} = 0.89 \pm 0.10$. These parameters give a reasonable fit to the high-energy scattering.

'N ^a recent paper, Olsson' described ^a method for determining the ρ , ρ' Regge parameters in πN scattering by using modified dispersion relations. In this paper, we apply his method to the forward $K^{\pm}p$ crossing-even amplitude to obtain information on the Pomeranchuk P and P' parameters for KN scattering. We find a set of parameter values which gives an excellent fit to the dispersion sum rules and a reasonable fit to the high-energy scattering (which is presently subject to large uncertainties).

In deriving the Olsson sum rules, we work with the forward amplitude $T(\omega)$ normalized according to the optical theorem,

Im
$$
T(\omega) = (\omega^2 - m_K^2)^{1/2} \frac{1}{2} [\sigma_K + p(\omega) + \sigma_K - p(\omega)],
$$
 (1)

where ω is the kaon laboratory energy, m_K the kaon mass, and $\sigma_{K^{\pm}p}(\omega)$ the total $K^{\pm}p$ cross sections. Natural units, $\hbar = c = 1$, are used throughout this note.

We then define

$$
F(\omega) = \omega T(\omega) e^{\pi i \epsilon} / (\omega^2 - \omega_{\Lambda \pi}^2)^{\epsilon}, \tag{2}
$$

where $\omega_{\Lambda\pi}$ is the $\Lambda\pi$ threshold energy and ϵ is a continuous parameter which will be shown to be less than unity.

The asymptotic amplitude is assumed to have the Regge form with Pomeranchuk (P) and Pomeranchuk prime (P') contributions²:

$$
T_{\text{asym}}(\omega) = -\sum_{i=P,\,P'} \gamma_i \frac{e^{-i\frac{1}{2}\pi\alpha_i}}{\sin\frac{1}{2}\pi\alpha_i} \left(\frac{\omega}{\omega_0}\right)^{\alpha_i},\tag{3}
$$

where γ is the residue, α the $t=0$ intercept, and ω_0 is taken to be 1 BeV.

Then the function

$$
F'(\omega) = \frac{\omega \left[T(\omega) - T_{\text{asym}}(\omega)\right] e^{\pi i \epsilon/2}}{(\omega^2 - \omega_{\Lambda \pi}^2)^{\epsilon/2}} \tag{4}
$$

is superconvergent³ for $\alpha \leq \epsilon - 2$. However, Dolen, Horn, and Schmid⁴ have shown that ϵ can be taken arbitrarily small.

The energy range involved in the sum rules is divided
into a "low-energy" part,
$$
\omega_{\Lambda\pi}\leq\omega\leq\bar{\omega}
$$
, and a high-energy
part, $\omega>\bar{\omega}$, where $\bar{\omega}$ must be large enough so that
 $T(\omega>\bar{\omega})\approx T_{\text{asym}}(\omega)$. $\bar{\omega}$ is taken here to be $5m_K$, the
highest energy for which $\text{Re}T(\omega)$ data are available.
At $5m_K$ there is already a good indication of asymptotic
behavior. For example, the $K^+\rho$ cross section has al-
ready reached 17.6 mb compared with the value of
17.3 mb at 20 BeV.⁵

Using the usual methods, we derive the following sum rule:

$$
I(\epsilon) = \sum_{i=P, P'} \frac{2\gamma_i}{\pi \sin{\frac{1}{2}}\pi\omega_0} \left(\frac{\tilde{\omega}}{\omega_0}\right)^{\alpha_i} \frac{\sin{\frac{1}{2}}\pi(\alpha_i - \epsilon)}{2 + \alpha_i - \epsilon}
$$

$$
= \sum_{Y=A, \Sigma} \frac{\omega_Y X_Y}{(\omega_{\Lambda\pi}^2 - \omega_Y^2)^{\epsilon/2} \tilde{\omega}^{2-\epsilon}}
$$

$$
+ \frac{2}{\pi} \int_{\omega\Lambda\pi}^{\tilde{\omega}} \frac{\omega d\omega \operatorname{Re} T(\omega) \sin{\frac{1}{2}}\pi\epsilon + \operatorname{Im} T(\omega) \cos{\frac{1}{2}}\pi\epsilon}{(\omega^2 - \omega_{\Lambda\pi}^2)^{\epsilon/2}}, \quad (5)
$$

where

$$
\omega_Y = (m_Y^2 - m_N^2 - m_K^2)/2m_N, \qquad (6)
$$

$$
X_Y = g_Y^2 \left[(M_Y - m_N)^2 - m_K^2 \right] / 4m_N^2. \tag{7}
$$

In these expressions m_N , m_Λ , and m_Σ are, respectively, the nucleon, Σ , and Λ masses and $\omega_{\Lambda\pi}$ is given by the expression for ω_Y with $m_Y = m_\Lambda + m_\pi$. We take the following values for g_{Λ} , g_{Σ} :

$$
g_{\Lambda}^2/4\pi = 13.5
$$
, $g_{\Sigma}^2/4\pi = 0.2$. (8)

They are taken from the work of Kim^6 with the modification due to Chan and Meiere. ⁷

In order to evaluate these sum rules, we need both the real and imaginary parts of $T(\omega)$. Kim has calculated the $K^-\rho$ real and imaginary parts for $\omega_{\Lambda\pi} < \omega$ $< 1.4m_K$ which we use in a slightly modified form. The modification only applies to $\omega_{\Lambda\pi} < \omega < 0.7m_K$ and has been described elsewhere.⁸ We note that this modification is not sensitive to the assumed high-energy behavior

⁵ W. Galbraith *et al.*, Phys. Rev. 138, B913 (1965).
⁶ J. K. Kim, Phys. Rev. Letters 19, 1074 (1967); 19, 1079 (1967).
⁷ C. H. Chan and F. T. Meiere, Phys. Rev. Letters **20**, 568 (1968).

^{*} Work supported by the U. S. Atomic Energy Commission¹ M. G. Olsson, Phys. Letters 26, B310 (1968). ² K. Igi, Phys. Rev. 130, 820 (1963). ³ V. de Alfaro *et al.*, Phys. Letters 21, 576 (1966).

⁴R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1768 (1968).

⁸ D. J. George and A. Tubis, preceding paper, Phys. Rev. 175, 1871 (1968).

FIG. 1. Plot of $I(\epsilon)$, as calculated from (5), compared with experiment. The broken line is the prediction of $I(\epsilon)$ given by the Pomeranchon contribution alone.

of $T(\omega)$, and in fact comes almost entirely from the pole terms.

For the $K^+\rho$ contribution we use the effective range of Goldhaber *et al.* for the S-wave scattering,⁹

$$
p \cot \delta = (A_1{}^+)^{-1} + \frac{1}{2}R_1{}^+ p^2, \tag{9}
$$

where p is the c.m. momentum and

$$
A_1^+ = 0.29, \quad R_1^+ = 0.5 \text{ F}. \tag{10}
$$

For energies greater than $1.4m_K$ (500 MeV/c laboratory momentum), we use experimental values of $\text{Re}T(\omega)$ and ${\rm Im}T(\omega)$.^{5,10}

Using the data described above, we have calculated $I(\epsilon)$ for $2 > \epsilon > -2$ and the results are shown in Fig. 1. $P(\epsilon)$ for $2 > \epsilon > -2$ and the results are shown in Fig. 1.
As Olsson has pointed out,¹ the sum rules, as $\epsilon \rightarrow -2$, approach trivial identities and consequently are of little practical use in determining high-energy parameters.

⁹ S. Goldhaber et al., Phys. Rev. Letters 9, 135 (1967).

FIG. 2. The predicted high-energy Kp total cross section, compared with experiment.

Our best fit gives the following Regge parameters:

$$
\gamma_P = 17.3 \pm 0.1 \text{ mb BeV}, \quad \alpha_P = 1, \tag{11}
$$

$$
\gamma_P^i = 7.1 \pm 0.7 \text{ mb BeV}, \quad \alpha_{P'} = 0.89 \pm 0.10.
$$
 (12)

Our value of $\alpha_{P'}$ is somewhat larger than that indi-Our value of $\alpha_{P'}$ is somewhat larger than that indicated from the analysis of πN scattering.¹¹ This migh be due to the inaccuracy of the data used, to the smallness of $\bar{\omega}$, to the limited validity of the concept of a P' trajectory, and perhaps to other factors such as the presence of Regge cuts.

The fit to the high-energy cross sections using these parameters is shown in Fig. 2. The data is taken from parameters is shown in Fig. 2. The data is taken from
Baker *et al*.1º and from Galbraith *et al*.5 The prediction is consistently higher but the experimental points lie within the range of $\gamma_{P'}$ expressed in Eq. (12).

In conclusion, we believe we have found a consistent set of P and P' parameters for KN scattering which agree reasonably well with both dispersion theory and high-energy cross sections.

¹⁰ The ImT(ω) were taken from: W. F. Baker *et al.*, Phys. Rev. **129**, 2285 (1963); R. J. Abrams *et al.*, Phys. Rev. Letters **19**, 259 (1967), **19**, 678 (1967); J. D. Davies *et al.*, $ibibd$, 18, 62 (1967); I. Abrams

¹¹ Y.-C. Liu and S. Okubo, Phys. Rev. 168 , 1712 (1968); earlier efferences may also be found in this paper.