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in fair agreement. At the moment there appears to
be no conclusive evidence on the relative sign, although
there are some indications that it may be positive. "

In conclusion, we note that, as in our previous
work, "no singularity such as described by Barton'
appears in the mass splittings as the feedback is turned

off (thus, as y and rl —+0, the functions D and D'
remain finite).
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It has recently been shown that a knowledge of the zeros of a forward elastic scat.tering amplitude could
be used to derive new modified dispersion relations. Using the phase representation, we show that the
forward crossing-even KN amplitude probably has six zeros in the complex &a (kaon lab energy) plane.
Two of these zeros can be very accurately determined from low-energy scattering data. The modified dis-
persion relations derived using the knowledge of these zeros yield information on the high-energy parameters,
and in general provide a consistency test of the presently available data. The infinite-energy total cross
section estimated from a dispersion sum rule is about 15.5 mb, in fair agreement with the experimental
total cross section of about 17.3 mb at 20 BeV.

I. INTRODUCTION

N a recent paper, ' we derived a new class of modified
~ ~ dispersion relations which depended on a knowledge
of the zeros of the forward elastic scattering amplitude.
In particular, we derived an expression for the infinite-
energy cross section for mE scattering. We have now
applied this method to EÃ scattering in order to test
the data of Rim' and to gain some information on the
real part of the scattering amplitude at high energies.

We show in this paper that, according to the phase
representation, ' the forward crossing-even KX ampli-
tude probably has six zeros in the complex ce (kaon
laboratory energy) plane. There seem to be two possible
arrangements for the zeros, with the presently available
data being not precise enough to distinguish between the
two possibilities.

In order to test the data on the real part of the scat-
tering amplitude, we have calculated the infinite-energy
cross section using the two accurately determined zeros
and find fairly good agreement with experiment. We
also have calculated the infinite-energy cross section
using subtractions at the points on the imaginary axis
where the scattering amplitude is a minimum. These
points may or may not turn out to correspond to zeros
when more accurate data become available.

~ Work supported by the U. S. Atomic Energy Commission.' D. J. George, B. Hale, and A. Tubis, Phys. Rev. 168, 1924
{1968),hereafter referred to as I.' J. K. Kim, Phys. Rev. Letters 19, 1074 {1967); 19, 1079
{1967).' M. Sugawara and A. Tubis, Phys. Rev. 130, 2127 {1963).

II. ZEROS OF T(ro)

We normalize the KE forward scattering amplitude
T(&u) by writing the optical theorem in the form

ImT(ce) = z ((v' —mx')' '$o x+, (co)+o rc-, (or)j, (1)

where co is the kaon lab energy, m~ is the kaon mass,
and o.rc+~(&o) is the E+P total cross sections. Natural
units (A= c= 1) are used throughout this work.

From the phase representation' we find that, for
large co,

T(co) ~ („N M 26(oo)/s. — —

T(~) ot-~x—3E—1 (3)

Since T(co) has a Pomeranchon-exchange contribution,
it has the high-energy behavior

and so we deduce
T(M) ~co,

E=M+2.

(4)

Finally, since T(u&) has two sets of poles (A and Z)
on the real axis, it has six zeros.

where X and M are, respectively, the number of zeros
and poles of T(cu), and 8(oo) is the phase of T(cu) at
infinity. Now, from the available data, we find ImT(co))0 for ~ on the real axis above the anomalous (Az-)
threshold and ReT(cu) )0 at the Az threshold. We must
therefore have 0(h(a&)(z-. If we assume that T(co)
becomes pure imaginary in the in6nite-energy limit,
we have 5(~)= ztz. and thus
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Fn. 1. Singularities and zeros of T(co). Poles are marked with
an X and zeros with an Q. The two possible arrangements of
zeros are indicated in (a) and (b).

3y+= —0.29 F,
Ap

—= —1.674 F,
Ag = —0.003 F,

we find ReT(Mrc) = 27.1—Mrc '
Below co = 1.4M' we use Kim's data' for ImT(co) and

above or = 1.4M~ we use experimental cross sections in
the integral. These values are displayed in Fig. 2. We
then calculate ReT(co) for co in the unphysical region
(~co

~
(Mrc and co on the imaginary axis). Above 37Mir

It is easily seen that two of the zeros lie on the real
axis between the poles. The other four may be the sym-
metric partners of a single complex zero or else they
may form two pairs of zeros on the imaginary axis. The
two possibilities are shown in Fig. 1.

We now turn to the explicit calculation of the zeros.
The dispersion relation for ReT(co) is'

or YXY or —M~
ReT(co) =ReT(Mx)+ P

Y=g, y or Y2 or2 or Y2 M~2
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2
+—(cop —Mrc')

co'dco' Im T (co')
(6)

(co' —co ) (co' —M rc )
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cor= (Mrs Msts —Mrcs)/2Miv,

g r—gr2$(Mr M~)s Mirs j/4Miv2 (7)

In these expressions, M&, M&, and Mz are, respectively,
the nucleon, Z, and A masses and or& is given by the
expression for cor with Mr =Mq+M .Explicitly we find

orh ——0.126M~,

or@=0.313M~,
orp ——0.482M~.

The expressions for the XY differ slightly from those
of Kim. 2 The difference has been discussed by Chan
and Meiere. ' We have adjusted the values of the
coupling constants so that our XY have the same values
as 4m- times those of Rim. Thus,

gs'/4rr = 13.5,
gx'/4rr= 0.2,

Xh = —10.23,
Xg= —0.153.

The ReT(Mrc) is given in terms of the 5-wave scatter-
ing lengths Ar+ for E+p scattering in isospin ch'annel

I by

ReT(Mrc) —4z-(I+Mrc/Msi) s (A p
—+A,—+22,+) (10)

' P. T. Matthews and A. Saiam, Phys. Rev. 110, 365 (1968);
110, 569 (1968).' C. H. Chan and F. T. Meiere, Phys. Rev. Letters (to be
published).

FIG. 2. The imaginary part of T(co) as a function of the kaon lab
energy co. Note the logarithmic scale.

we assume o(co) to have a constant value of 19mb. The
contribution to the integral from this energy range is
very small (about 0.2Mrc ' com—pared with ReT(M&)
= —27.1Mrc ', for example).

The calculated values of ReT(co) may be compared
with Kim's values for omah„&or(1.4M~ and are found
to be in agreement except in the interval orh (or
&0.7M+. This disagreement is probably due to the
inRuence of the Z pole which lies close to &oh . In Fig. 3
we plot ReT(co) for co on the real axis as calculated
from dispersion relations for or(1.4M~, and from ex-
periment' above j..4M~. For comparison we have also
plotted Kim's values for E p to which we have added
I+p real parts as calculated from an effective-range
expansion

p cotl = (A i+) i+ z Xi+ps (12)

where p is the c.m. momentum and Ei+ has the value
0.5 F.'

6 S. Goldhaber, W. Chinowsky, G. Goldhaber, W. Lee, T.
O'Halloran, T. F. Stubbo, G. M. Pjerrow, D. H. Stork, and
H. K. Ticho, Phys. Rev. Letters 9, 135 (1962).' J. K. Kim, Phys. Rev. Letters 14, 29 (1965).

R. J. Abrams et a/. , Phys. Rev. Letters 19, 259 (1967); 19,
678 (1967); J. D. Davies et al. , ibid. 18, 62 (1967); R. L. Cool
et a/. , ibid. 16, 1228 (1966); 17, 102 (1966); W. Galbraith et al. ,
Phys. Rev. 138, 8913 (1965); A. Fridman and A. Michalon,
Nuovo Cimento 48, 344 (1967).

9 A compilation of the results from several experiments can bq
foiind in N. Zovko, Z. Physik 196, 16 (1966).
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In Fig. 4 we have plotted the dispersion-relation pre-
diction for co on the imaginary axis. Between co+ and
coq there is the expected zero at about co'=0.0953EK'.
In order to determine this exactly we set ReT(A)=0
(A being the assumed zero position) and rewrite (6)
in the form

R.eTyrx) Qr+ 2
A2 ~K2 Y ~&~ (4) Y2 A2

where

oI'doI' Im T (oI')00

(oI"—A') (oI"—Mxs)

Qr =oIrxr/(oIr' —MgP) .

=0, (13)

Then, with the definition

—ReT(Mx) 2 " oI'dpI' ImT(oI')
J (A') = +—,(14)

~~2 A2 ~ (~&2 A2) (pI&2 ~ 2)

Eq. (13) becomes

TABLE I. Contributions to T(A) andri T(28) in Eq. (6);
A'= 0.09551M~', 8'= 0.35M~'.

ReT (3').
A pole
Z pole
Integral (cps to 1.41ME)
Integral (1.41M~ to 3DI~)
Integral (37M~ to ~)
Total

—27.1
15.0—19.7
39.2—7.2—0.2
0.0

—27.1—4.8—0.2
34.6
99—0.3—7.7

or
ReT(3IIx)) —19 SMx 2—

Ap —At +2Ar+) —1.62 F.

(18)

(19)

If we take A~+= —0.29 F we get

a few values were calculated further from the origin and
ReT(oI) was found to be decreasing monotonically to

If our ImT(oI) values and the values of gA2 and gz'
are correct, we can put a lower limit on the value of
ReT(M&) required to produce zeros on the imaginary
axis:

where

+ +J(A') = 0
GOg —A GOg —A

As= LD—(Ds—j(.)j'&2/g,

Ap +At )—1.04F.
This is quite a lot smaller than Kim's value, r

16
Ap +At = —1.67 F,

(20)

(21)
2D = QA+Qz+~(~A'+ ~z'),
C= QApIz +QzoIA ++oIA oIz

(17) or Sakitt's value, l
A p +A 2

—= —1.82 F. (22)
As a first approximation we substitute J(0.095Mxs) and
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The various contributions in (6) to these values are
shown in Table I.-30-

~ ~ I I ~ ~

It is important to note that the value of ReT(Mx)
indicated in (18) is not very dependent on the ENVY'
coupling constants nor on the uncertainties in the high-
energy scattering. Therefore, it seems that if Kim's
scattering lengths are correct, T(pI) has four complex
zeros which are symmetric partners of one another.
~ Two particular values of ReT(oI) are of interest to us,
the ones at

Fro. 3. The real part of T(&o) as a function of pI. Note the
logarithmic scale. The broken line is Kim's prediction for theE' p contribution plus the X+p contribution calculated from the
effective-range expansion (12).
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the iterate until the input and output values of A'
diBer by less than 0.00001. The final value of A' is then
A'= (0.09551&0.00001)&&2. The accuracy just stated
was obtained in three iterations and is required because
of the closeness of A' to the Z pole position.

On the imaginary axis, there are no zeros in evidence
but there is a minimum at about co'= —0.35MK'. Al-
though we have only plotted T(oI) for oI2& —1.553lzp,

g -IO—

-20

FIG. 4. T(co) on the imaginary co axis.

' M. Sakitt, T. B.Day, R. G. Glasser, N. Seeman, J. Friedman,
W. Humphrey, and R. R. Ross, Phys. Rev. 139, B719 (1965).
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TArxK II. Contributions to r(~) in Eqs. (24) and (26).

Term
Subtraction at

A iB
T(kog )/(Ca2 '—A2)
L&( ..)—~('II) j/( .-'+~')
h pole
Z pole
Integral cog to 3f~
Integral M~ to 5M~
Integral above 5M~
Total

63.6+6.4
~ ~ ~

55.8—85.2
3.3~0.3—16.4+1.6—5.7&0.6

15.4&8.9

~ ~ ~

46.6+4,6—12.1—0.5
1.2~0.1—13.6&1.4—5.7&0.6

15.9&6.8

III. INFINITE-ENERGY CROSS SECTIONS

In I, we derived an expression for the infinite-energy
xS cross section. In EE scattering we proceed in an
analogous fashion, starting from

M

ReT(co) =
tan2'2rkki ~ 1 BeV~

To fix y~. we use

ReT(5M') = —8.0Mrk '

(27)

a,nd assume 0.~ ——0.39 as in I.
We then find

data. ' Changes in gq' and g~' would, of course, lead
to changes in A' and 82. It was found that 15%changes
in the coupling constants, along with the corresponding
changes in A' and B

p
did not significantly change the

final values for 0 (~ ).
For co&5M~ we have assumed that ReT is given

entirely by the P' trajectory, so that

(u[T (kd) —T (ko/, .))e"e
T(~)=

(u)2 —A') (a&2—~/1 ')~

y~ ——3.9M~ ' ——3.0 mb BeV,

(23) which is of the same order as yi. in the 2rX case,

(29)

A similar analysis of the expression

~[T(~)—T (~~-)3e"
((o2+82) (op —(v/1, )e

with P= —,', leads to

(25)

T((ug ) T(28)—
+ 2

r p x (~r2++2) (~2 2 ~y2)1/2(~ 2+g2) 1/2

2 " (oCko Re[T(co)—T(co/1.)]
(~2++2) (~2 ~ 2)1/2

(26)

We have evaluated (24) and (26) using the data dis-

played in Fig. 3. The contributions from the various
terms are shown in Table II.The 10% errors associated
with the nonpole contributions are based on a crude
estimate of the experimental uncertainty in the EE

with //3= 2. In (23), we must use (~2—cu2q )~ instead of
(k02—Mrk2)e because the cut of T(&o) starts at cuq, . The
infinite-energy cross section is then given by

T(~~.) 4)yXy
~(")=- + 2

(~ 2 A2)1/2 r 2 rk (~ 2 A2) (ko
2 ~ 2)1/2

2 " (ada) Re[T(ko) —T(s)g.)j
(24)

(~2 A2) (~2 ~ 2)1/2

~~~&=3.0 p '=8.4 mb BeV.

Our final results are then

(3o)

from (24) and

o. (ok/) =15.4+8.9 mb

0.(Ok )= 15.9+6.8 inb

(31)

(32)
from (26).

The present experimental data' indicate

0.(20 Bev) =17.3 inb,

in fair agreement with the estimates (31) and (32).

IV. SUMMARY AND CONCLUSIONS

We have determined the number and approximate
location of the zeros of the forward crossing-even ElV
amplitude in the complex a& (kaon lab energy) plane.

Using the knowledge of these zeros and the data of
Kim' and of others, '-' we have derived dispersion
sum-rule estimates of the infinite-energy ES cross
section. Reasonable agreement was found between the
calculated infinite-energy cross section and the experi-
mental cross section at 20 BeV.

As a byproduct of our analysis, we have compared
Kim's data' for ReT(a&) in the interval ~q (a&(1.4Mrk
with that given by the ordinary dispersion relation.
Disagreement was found in the interval co~ &~(0.'?M~.
It is probably due to the inhuence of the Z pole which
lies close to coq .


