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It is shown that, within the framework of the model chosen, one can calculate in a completely self-con-
sistent manner the medium-strong (MS) mass splittings within the vector- and pseudoscalar-meson octets.
In particular, expressions for the mass splittings may be written down in terms of experimentally observable
parameters, one of which, the p-x coupling constant g, ', is found to be equal to 0.526, in good agreement
with the physically observed value 0.60.

I. INTRODUCTION
' "N a previous paper, ' we have shown that the medium-
s ~ strong (M.S.) mass splittings within the spin--,
baryon octet could be understood as arising, as a low-

energy eRect, from the M.S. mass splittings within the
pseudoscalar-meson octet. Utilizing the lowest-lying
two-particle intermediate state (baryon-meson) approxi-
mation for the baryon self-energy as the dynamical
model, the observed M.S. mass splittings of the mesons
were treated as the driving force' ' which generates, in
a self-consistent manner, the M.S. mass splittings of
the intermediate baryons, the latter effect being referred
to as the feedback. "Within this model, we were able
to show that the observed mass splittings could be
obtained for reasonable values of the parameters (the
s.S coupling constant, the f/d ratio, and a cutoff
parameter h.).

An attempt to apply the model to the meson mass
spectra by utilizing baryon-antibaryon intermediate
states for the meson self-energies failed, ' a not very
surprising result due to the fact that there exist lower-
lying states which presumably are more important.
In particular, a set of lower-lying two-particle inter-
mediate states can be generated through the interaction
of the octets of pseudoscala, r rnesons (P) and vector
mesons (V). Since the self-energies of the vector and
pseudoscalar mesons both include the VP intermediate
state, it will be convenient to compute the mass split-
tings of both octets together in a completely self-con-
sistent manner. Thus we assume that the M.S. mass
splittings of the vector mesons serve as the driving
force for the pseudoscalar mesons and the meson mass
splittings serve as the driving force for the vector
mesons. In addition, it will be found that baryon-anti-
baryon states can be neglected.

II. MODEL

Our approach is similar to that used in a paper by
Pietschmann4 in that we use the Zachariasen model'

approximation in describing the SUB-symmetric part of
the interaction. Thus the SU3-symmetric interaction
Lagrangian for the octet of vector mesons, denoted by
the 3&(3 matrix V& with the octet of pseudoscalar
mesons denoted by the 3&3 matrix P', is given by

2;„,=e&"&'(hp/M) TrPBuV c)PV Pj
+i gp Trt V&$8„P,P)), (1)

where charge-conjugation invariance requires the VPP
coupling to be F-type and VVP coupling to be D-type. '
We note that the I=O, 7=0 component of the vector-
meson octet is the au' which is related to the physical
&a and p particle by the &e-p mixing theory'7:

~a&s)=sine(co)+cos8~ y).

We have chosen not to include the unitary singlet co',

justifying this omission by the results of the calculation.
We would tend to expect its contribution to be rela-
tively less important as it is more massive than the
other sixteen particles and does not interact with the
pseudoscalar mesons through VPP coupling. Thus, the
calculated mass splittings for the vector mesons will
be M~V —M„s and M,'—M s'. In this respect our
approach diRers from Pietschmann's in that he assumes
that the synn~etry breaking may be described by an
co-P mixing term in the interaction Lagrangian, while
we take the point of view that the mass splitting and
mixing eRects are independent and may be computed
separately. Thus we are assuming that the mass split-
tings can be computed first and the mixing of the cv' and
co' afterwards, the feedback effect of the latter on the
former being assumed negligible.

Proceeding as in Ref. 1, we assume that the pseudo-
scalar meson masses may be written, to lowest order
in the vector meson mass splittings, in the form

(Mps —M'), (3a)
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with tt, (i = 1 3) denoting the mass of the n, IC, and

g, M (n=1 3) denoting the mass of the p, K*, and
~', respectively, and where p, and M are the SU& central
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masses for the pseudoscalar and vector mesons, re- spectively. Similarly, one has for the vector mesons,

83II '
M.'=37'+ g [()ij2—)ti'-) .

~@j
(3b)

Expressions for the derivative coeKcients may be obtained from the Lehmann mass sum rules which read

~2—~2
(p, .+M~) 2

p) (m2 ji .2 M 2) w

m —p' ~ p (m+mp)~

p2(m', M ',Mp')
dm

m' —p
(4a)

M '=MD' —Q
i, p

rg(m', Mp', pP)
dm'

m' —3l '
(y i+a~') '

ra(m )jiP)jii )
dm

m' —III ' (4b)

where the leading contributions are VP to p), VV to pq, VP to rq, and PP to rq. Taking 8/BM7 on Eq. (4a)
and 8/8)442 on Eq. (4b) gives the result

I
&+2

(Vi+44+) '

py
dm' +P

(m' j4,'—)' .p (44.+~,)

(Ij~'+ll/I ~) 2

P2 ~Pi
dm'-

(s'—y')')BM '

()p)/(ljii ~jii —2P
m' —p2 8M 2 a (~+~ )

Bp4/Mf „'
dm (~a)

m —p'

(4rp+w').
2

71
+P dm'

(m' —M ')' 'j(„,~, „j)4

)BM '

(m' —M ')'Ij Bj44'

(~pp+a)'

()&)/()P )
dm'

m cd ~ &4 p (~p+p, s) 2

Br)/BMp' BMp'
dm'

m dYI~ FIJI I(; & (pgjp+II, s) &

~&2/(bi(
dm' . (Sb)

m' —iV '

The term in brackets on the left multiplying ()jiP/&M~'
and BM '/8)442 is the inverse of the wave-function re-
normalization constant for the pseudoscalar and vector
meson, respectively. Thus, when multiplied through to
the right-hand side, it changes the bare spectral func-
tions pi, p2, v-~, and 7-2 to the renormalized spectral
functions p~, p2, rj, and ~2' which are given to lowest
order by'

for VI'I' and VVI' coupling, ' and a triplet of indices

(x,y, s) on a coupling constant denotes a particle x dis-

associating virtually into particles y and s (a,„, is the
appropriate isospin factor).

Inserting Eqs. (6) into Eqs. (5), performing the re-
quired differentiations, and evaluating at the SU3
central masses M and p, yields

)ay„'/m, 'j~,„=—Z, P a;;,g;;,' 2E)' g a;.,h;.—,'
~syngsga. . 2

ps= — m 'fm4+M, 4+p, j4
le-23P

—2 (m'M '+m')4 '+M 'ji ')$'(' (6a)

l9P j
It 2 g ai jag ija

(VII~2 ~ „,
(7a)

T2=

~iap p~i ap
o 1~e 2

m 'fm4+M 4+ALII p4
16+23P

—2(m'M '+m2M '+M M ')$')' (6b)

~apihapi .2
m- Lm'+ Mp'+ p,'

16m'3P

—2(mM 'ym'Jti'+Mp'ji')y' (6c)

, .2+aij gaij
m 'Lm' —2(ji 'y)ti ')y".

96Vr2

I BM '/8 j4(,
'j44„= Lg Q, a pkh p),

'——2Lg' Q a~;gg~, ),
2

p

83EIp'
L2 Z anpihapi

~PI(: 3f,p p

2
(7b)

with the integrals E~ ~ ~ L2 given by

(
3 oo dm2 m2~ ~2~~2

+)2 m2

X L(m'+M' —ji')' —4m'M'j')' (Sa)

Here, g and h are the renormalized coupling constants
8 We are including the factor 1/M' as part of the coupling con-

stants which are assumed to be given by their SU3 values.
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+1 (m4 —4ttssMs)'"
16lrs3IIs 4stk (m' —tt')

(Sb)
form

A;l, = —E1St,—2E1'T;~—Es Q U;;A;„, (9a)

(Ll 1

ELs 16''M' (kt+ )' tlat' tn' M'—

dm' m'W p'&3P

XL(m'+M —tt')' —4m'M'jlt (Sc)

~ dttts (butts
—4tts)lis

16+2 4„~ m m2 —M2
(Sd)

It is to be noted that all the integrals diverge so that at
least one cutoff parameter will be required.

For convenience, we make the substitutions

B k= —LlV, k
—2L1'W k

—Ls Q X pBpk. (9b)
P

The matrices S, T, U, V, 8; and X may be computed
using the SU3 expressions for the coupling constants
given in Ref. 1 with f=1 for VPP coupling and f=0
for VVI' coupling. It is to be pointed out that contribu-
tions from an intermediate state with two isospin--,
particles must be counted twice because although there
are only three different masses in the octets considered
here, there are four different states. In this way, the
contributions of both the I=—,', I'=&1 states are
included. ' The result is

A;„= (Btk;s/BM~s) kr,„, B k (BM,s/——Bttks)kr

. . 2'v=~ ~'ivgijv ~

~ iy ~ @iayppiay p
~ ij ~ ~ijagija p

8g2

S= U= 8'= 3g'
.0

-'h'
3

T'= V=X= 3h'

.4h'

4g2 0
6g' 3g'
12g2 0

4h' —'h'
10/3h' —',h'

(10a)

(10b)

Vak=g ttapkhapk

lVak=Z ttaikgaik p
and +ap=Z tapihapi ~

so that one may write Eqs. (7) in the compact

Using Eqs. (10), one may invert Eqs. (9) and solve for
A and B. The results, when combined with the nu-
merical values" M, =0.770 BeV, 3f~*——0.892 BeV,
p, =0.135 Bev, @~=0.498 BeV, and p= p, a=p, „=0.549
BeV (we postpone choosing the value of M= M„s) yield
the following expressions for the masses:

ttls= p'+ (Z/D)$(4+86+36hy —288hys)nl+ (4+-,'6+ (32/3)y —4'—128ys)us],

tt ss =p'+ (Z/D) L (6+36—288'') al+ (10/3+36+ (32/3)y+ Shy —32ys —96Ay')ns]

tt ss =p'+ (Z/D) L (12+96'—36hy) u, + (s4+4A —(64/3)y+ 205' —128'' —96hy')n, 1
Mls =Ms+ (Z'/D') t (11.06—55.33lt —94.22lt') pl+ (46.40+11.29lt+ 70.40lt') psj,
M ss =Ms+ (Z'/D') L(19.23+10.57lt —17.77lt') pl+ (21.90—84.80lt —158.9lts)ps),
M ss= Ms+ (Z'/D') L (22.53+35.24')pl+ (12—158.8lt —212.2'') psj

(11a)

(11b)

(11c)

(11d)

(11e)

(11f)

where the physically observed value (ttls —tt')/(tts' —tt )
= 5.3 has been used. In addition, the convenient substi-
tutions 'y = g Es, 'g = h Lsy al g It ly as 2h It 1 y Pl h Lly

p, =2g'L ' Z=ttss tk' Z'=Mss M—' and 4= (—Mls
—Ms)/(Mss —M') have been made, and the functions
D and D' are given by

Mls —Mss = (0.053/D') L11.47+90.57lt+ 94.22lts 1
X(Pl—3ps), (»c)

M ss —M ss = (0.053/D') L3.30+24.67lt+17.77lt'j

X (pl —3ps), (13d)

D= 1+14y—288'',

D' = 1+ 6' —(64/9) its —(160/9) lt'.

The four mass splittings are then given by

(12a) and we require that Eqs. (13) be self-consistently
satisfied for the physically observed mass splittings.

(12b)

III. CALCULATION

ttls —tt '= (Z/D) $8(6—1)+ 24 (3d —4)y —288hys j
X (al—sas), (13a)

tt '—tt '= (Z/D)L3(h —2)+12(3A—8)y —288''j
X (nl ——s'ns), (13b)

Taking the ratios of Eq. (12a)/Eq. (12b) and. Eq.
(12c)/Eq. (12d) yields expressions for y and lt in

' This prob1em did not arise in Refs. 1 and 2 because the I= ~
baryons (,Ã) have diR'erent masses.

"A. H. Rosenfeld et al., Rev. Mod. Phys. 39, 1 (1967).
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terms of 6:
412.8—118.86& t (412.8—118.8d)' —1152(h—5.3) (7.9A—23.8)]'/

576 (6—5.3)

90.57—24.676&L(90.57—24.676)2—4(17.7744' —94.22) (3.306—11.47)J/2

2 (17.776—94.22)

(14a)

(14b)

The Gell-Mann —Okubo formula predicts 6=4 which
corresponds to" %=0.928 BCV, Z=0.066 BeV, and
an cv-y mixing angle 0=40'. Thus, insertion of 6=4
into Eqs. (14) together with the physical requirement
that y and 2/ must be non-negative (for K2 and L2)0
and one must have g2 and h2)0) leads to the unique
result y=4 and g=-,'. Care must be taken, however,
before using the triplet of values 6=4, y=~) and
2/=-2' in Eqs. (13) to obtain the values of (n& —-'3n2) and
(Pi—3P2) because the functions D and D' vanish there.
In the case of Eqs. (13a) and (13b), one sees that the
numerators also vanish so that use of L'Hospital's rule
gives 24+ 192'—1152y2

(15)= 9.6.lim
& '/4 1+14'—288y3

Thus one arrives at 0,~
—-,'a~=0.446. In the case of Eqs.

(13c) and (13d), the numerator does not vanish, hence
one is led to the requirement that Pi —3P2 ——0. This can,
in fact, be explicitly demonstrated by allowing 6 —+ 4
through a sequence of values, calculating p for each
value 0 in the sequence from Eq. (14b) and then
seeing that the resultant value of Pi —3P2 ~ 0 as 6 —+ 4
(g~-2'). Using the definitions of 422, n2, Pi, and P2 to-
gether with the results y=4) Q 2) o,] 3n2=0.446,
Pi —3P2 ——0, we find two consistency conditions which
the integrals E& I-&' must satisfy:

0.167K,L,L2+0.298K,LiL2 —0.223K2Ki'Li ——0, (16a)

L,'= K,L,/Ki'+1. 784K2Li/Ki'. (16b)

IV. DISCUSSION

Restating the results, we had, for the accepted ~-q
mixing angle 0= 40', the values i12= 4.65, g2/42r= 0.526,

Using the expressions for the integrals, Eqs. (8), one
finds that Eq. (16a) is satisfied for a cutoff parameter
A'=4.65 BeV' which then gives 16+ L&' ——2.771) corre-
sponding to a cutoff A."=17.5 BeV'. It is our assertion
that this rather considerable difference in the values of
A' and A" is due to the fact that I & is logarithmically
divergent while the other five integrals diverge quad-
ratically. This assertion is supported by the fact that
L&' is approximately equal to L& and L2 (162r L,i = 1.750
and 162r'L2= 2.430) as would be expected.

Having computed the cutoff A', one can then com-
pute the COupling COnStantS, uSing 162r2K2(32=4.65)
=5.969 and 162r'L2(32=4.65)=1.750. The results are
g2/42r=0. 526 and h2/42r=3. 59 which will be compared
with experiment in the next section.

and h2/42r= 3.59. We first note that in our model, the
value of A.' lies below the two-baryon threshold of 5
BeV' so that we are completely justified in neglecting
the baryon-antibaryon intermediate state (it is to be
noted that the baryon-antibaryon intermediate state
would also be quadratically divergent in our model).
An experimental value for g' may be obtained from the
decay of the p meson. The decay width of p into two
~'s is given by"

2g 2 (1~ 2 p 2)3/2

F,
3 4m. Mp'

(17)

which, upon using F, & =0.128 BeV" and the SU3
value g, ' = 4g', gives g2/42r = 0.60 so that our computed
value is in good agreement with experiment (the ex-
perimental errors in the values of F and Mp are un-
known but appear to be at least as large as 10%%uo at
this time).

The physical value of h' may be obtained from the
values of h„p and hyp ) using the co-p mixing formula, '

h 3, = —(h, sine+h„„cos8), (18)

Using the value computed above for g, 2 and the ex-
perimental width F=0.011 BeV, one arrives at h„, '
=9.27. A value for 72„, 2/42r may also be calculated
from Eq. (19), although it would not be entirely correct
as the decay q ~ p+2r is energetically allowed. Since
it is thought that h„p «h p

' anyway, " we will use
this as an order-of-magnitude estimate. Using j. „
=0.0036 BeV," one arrives at h„„2/42r —0.1 which is
in rough agreement with other estimates. Thus h, /42r
=&3.05 and h„, /42r=&0. 32 so that using 0=40',
we arrive at //32/42r=3. 6, 2.2, depending on the relative
sign of the couplings. Thus, if the relative sign is posi-
tive, we are in excellent agreement, and if negative

"M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953
(1961).

"M. Gell-Mann, D. Sharp, and W. G. Wagner, Phys. Rev.
Letters 8, 261 (1962).

» R. I.Dashen and D. H. Sharp, Phys, Rev. 133, 81585 (1964).

together with h„8p 3h' from SU'3. One may compute
h„, ' from the decay of ~ —+3&, provided that it
proceeds through an intermediate p~ state, " the result
for the width being

3.56 gp. ' h p
' (M —3/4 )'

I o) ~3)r ~(u P)r
33/2 4 4~ (1~ 2

/4 2)2



M F SON MASS SP L I TTI NGS i87i

in fair agreement. At the moment there appears to
be no conclusive evidence on the relative sign, although
there are some indications that it may be positive. "

In conclusion, we note that, as in our previous
work, "no singularity such as described by Barton'
appears in the mass splittings as the feedback is turned

off (thus, as y and rl —+0, the functions D and D'
remain finite).
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It has recently been shown that a knowledge of the zeros of a forward elastic scat.tering amplitude could
be used to derive new modified dispersion relations. Using the phase representation, we show that the
forward crossing-even KN amplitude probably has six zeros in the complex &a (kaon lab energy) plane.
Two of these zeros can be very accurately determined from low-energy scattering data. The modified dis-
persion relations derived using the knowledge of these zeros yield information on the high-energy parameters,
and in general provide a consistency test of the presently available data. The infinite-energy total cross
section estimated from a dispersion sum rule is about 15.5 mb, in fair agreement with the experimental
total cross section of about 17.3 mb at 20 BeV.

I. INTRODUCTION

N a recent paper, ' we derived a new class of modified
~ ~ dispersion relations which depended on a knowledge
of the zeros of the forward elastic scattering amplitude.
In particular, we derived an expression for the infinite-
energy cross section for mE scattering. We have now
applied this method to EÃ scattering in order to test
the data of Rim' and to gain some information on the
real part of the scattering amplitude at high energies.

We show in this paper that, according to the phase
representation, ' the forward crossing-even KX ampli-
tude probably has six zeros in the complex ce (kaon
laboratory energy) plane. There seem to be two possible
arrangements for the zeros, with the presently available
data being not precise enough to distinguish between the
two possibilities.

In order to test the data on the real part of the scat-
tering amplitude, we have calculated the infinite-energy
cross section using the two accurately determined zeros
and find fairly good agreement with experiment. We
also have calculated the infinite-energy cross section
using subtractions at the points on the imaginary axis
where the scattering amplitude is a minimum. These
points may or may not turn out to correspond to zeros
when more accurate data become available.

~ Work supported by the U. S. Atomic Energy Commission.' D. J. George, B. Hale, and A. Tubis, Phys. Rev. 168, 1924
{1968),hereafter referred to as I.' J. K. Kim, Phys. Rev. Letters 19, 1074 {1967); 19, 1079
{1967).' M. Sugawara and A. Tubis, Phys. Rev. 130, 2127 {1963).

II. ZEROS OF T(ro)

We normalize the KE forward scattering amplitude
T(&u) by writing the optical theorem in the form

ImT(ce) = z ((v' —mx')' '$o x+, (co)+o rc-, (or)j, (1)

where co is the kaon lab energy, m~ is the kaon mass,
and o.rc+~(&o) is the E+P total cross sections. Natural
units (A= c= 1) are used throughout this work.

From the phase representation' we find that, for
large co,

T(co) ~ („N M 26(oo)/s. — —

T(~) ot-~x—3E—1 (3)

Since T(co) has a Pomeranchon-exchange contribution,
it has the high-energy behavior

and so we deduce
T(M) ~co,

E=M+2.

(4)

Finally, since T(u&) has two sets of poles (A and Z)
on the real axis, it has six zeros.

where X and M are, respectively, the number of zeros
and poles of T(cu), and 8(oo) is the phase of T(cu) at
infinity. Now, from the available data, we find ImT(co))0 for ~ on the real axis above the anomalous (Az-)
threshold and ReT(cu) )0 at the Az threshold. We must
therefore have 0(h(a&)(z-. If we assume that T(co)
becomes pure imaginary in the in6nite-energy limit,
we have 5(~)= ztz. and thus


