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Jf;,...;,' to the basis II&1&2&g each component of which is tion corresponding to t=0. decomposes as follows, if we
an eigenstate of the operators restrict ourselves to SO(4)Qso(5):

I,= (+5)H„F'=(+5)H„E=(2+5)Hs ——2t+3,

with eigenvalues P &, X2, X3, respectively. Figure 5 shows
the weight diagram of this representation. As we restrict
ourselves to So(5) transformations, the representation
splits into a sum of representations whose dimension,
given by Eq. (2.11), is

—,'(t+ 1)(t+2)(2t+3)= Q (t'+ 1)',
t'=0

and each of which occurs once. An So(5), representa-

so(5).= p Q+so(4), .
t'-0

(C6)

As in the previous case, a physical system described
by this representation will be labeled by three quantum
numbers, the eigenvalues of the operators I3, I, and S,
which as far as an elementary particle system is con-
cerned may be taken to be the third component of iso-
spin, the hypercharge, and a new quantum number.
The isospin and hypercharge content of the represen-
tation is clearly shown in Fig. 5.
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In devising the most efBcient way to determine a scattering amplitude from experimental data, it is
important to make full use of the analyticity properties of the amplitude. The amplitude f(x) considered
here is given by data on a connected part of the real x axis, and f(x) is assumed to be analytic in a simply
connected part of the x plane; there are branch cuts on part of the remainder of the real axis. For convenience
in practical calculations it is simplest to expand in polynomials, but for greater Qexibility one may consider
polynomials of some function z(x). The polynomial expansion wH1 converge as rapidly as possible if z(x)
maps the domain of analyticity in the x plane onto the interior of a certain ellipse in the s plane. More
precisely, the expansion will then have the@eatest possible geometric rates of convergence, both to f(x) in
the physical region, and also at any arbitrary point away from the physical region to which one may wish
to extrapolate. Formulas are given that enable the mapping from a cut plane to an ellipse to be calculated
quickly and easily. Some properties of the transformation that are relevant to partial-wave analysis are
examined in detail. A method is suggested whereby the requirements of unitarity may be explicitly
incorporated.

I. INTRODUCTION

A METHOD of exploiting the analyticity properties
of scattering amp1itudes has been employed by

the present authors in analysis of scattering data. ' Our
method used a conformal transformation to increase
the rate of convergence of a polynomial expansion. ' In
this paper, we shall discuss some of the mathematical
properties of this transformation. %e sha11 6rst review
the convergence properties of polynomial expansions, '

*Work supported in part by the U. S. Atomic Energy
Commission.

)On leave from Indian Institute of Technology, Kanpur,
India.' R. E. Cutkosky and B. B. Deo, Phys. Rev. Letters 20, 1272
(1968).' J. S.Levinger and R. F. Peierls, Phys. Rev. 134, B1341 (1964);
W. R. Frazer, ibid 123, 2180 (196.1); D. M. Greenberger and
B.Margolis, Phys. Rev. Letters 6, 310 (1961).These authors have
used conformal mapping to analyze data on form factors and on
the di6'erential scattering cross section, and to parametrize the
left-hand cut.

S. Ciulli, in a recent CERN Report (unpub1ished) obtained
after this paper was submitted for publication, has independently

as they have been described by Kalsh. ' In Sec. II, we
shall show that an optimum expansion is obtained by
mapping as much as possible of the domain of analy-
ticity onto the interior of an ellipse. ' In the case of a
cut plane of analyticity, this mapping turns out to
involve elliptic functions, but in a form that is es-
pecially convenient for nurnerica1 computation, as we
show in Sec. III. In Secs. IV and V, we examine the
limiting form of the transformation at high and low
energies and point out some properties of the transfor-
mation that are important in applications. The con-
struction of unitary approximations is discussed in
Sec. VI. Section VII is devoted to a brief description of
several practical circumstances in which we expect that

proved the optimality of a mapping which is equivalent to ours
and has, in an appendix, sketched the proof of the main conver-
gence theorem.' J. L. Walsh, Interpolation and Approximation by Rational
Functions in the Com plex Domain (American Mathematical
Society, Providence, R. I., 1956), 2nd ed. , Vol. 20, Chaps. III-VI.
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the optimized-expansion theory will be helpful in the
analysis of experimental data.

Consider a sequence p„(s) of polynomial approxima-
tions to a function f(s). For each I the polynomial is
chosen to minimize some rather general measure of the
error of approximation in a domain D of the s plane.
The convergence properties are associated with the
electrostatics problem in which D forms a conductor at
a potential V=O in free space with a unit negative
charge. a We obtain a potential function V(s) and thus a
family of equipotential curves V(s) =const. Let V be
any finite potential smaller than each of the potentials
V(s,) at the singular points s, of f. Then p„(s) con-

verges uniformly to f(s) inside the closed region that is
bounded by the equipotential curve V(s) = V. Further-
more, the error in the eth approximation (on D) is

bounded by e " for some LV. These results are essen-

tially independent of the measure of approximation that
is used on D. If, however, we use a weighted least-
squares approximation, that is, expand in some ortho-
normal polynomials, then we have the additional result
that the coeKcient a„of the eth term satisfies the
asymptotic relation lim sup(a„)""=1/R, where
lnR= minV(z, ). The special case in which D is the real
interval (—1, +1), leads to a region of convergence
that is the interior of a unifocal ellipse (foci at s =+1).
This elliptical convergence region is a well-known

property of the partial-wave expansion; it is usually de-

rived from explicit formulas for the Jacobi polynomials.
Now, let us suppose that f(x) (x is the cosine of the

scattering angle) is a scattering amplitude that is

analytic in the region enclosed by some curve C, but is

singular at some point or points on C. In practice, we

shall be concerned with analyticity in a cut plane, and
then consider the limiting case in which C denotes
branch cuts along (—~, —x ) and (x~, + ~). If we

construct the conformal map s(x) in which the physical
region D= (—1, +1) is mapped onto itself and C is

mapped onto a unifocal ellipse, then an expansion in

polynomials in s(x) will converge to f(x) uniformly

throughout any region that is bounded away from C.
Now consider in the x plane the potential function V(s)
introduced in the previous paragraph. On C as well as
on D, the potential v(x) = VLs(x)) must be a constant.
In fact, if we have unit charges on C and D, the complex
potential P(x)=v(x)+iw(x), where w is the stream
function, is directly related to the mapping function.
Noting that v=0 on D and v= Vc (a constant) on C,
and also that m increased by 2x in a circuit of D, we see

that the function

s(x) = sinhQ(x) =i cosw sinhv —sinu coshv (1)

maps the equipotential C onto a unifocal ellipse and j9
onto itself.

II. OPTIMIZED MAPPING

Since the rate of convergence is determined by the
parameter R=e+~~, we wish to choose C so that V~

will be as large as possible. We shall use in our discus-
sion a basic theorem on electrostatics; for the sake of
completeness we include a sketch of its proof. It is con-
venient here to redefine the potential so that v=0 on
C and a=Vs on D.

Consider a second curve C', such that C lies entirely
within the closed region bounded by C' and f(x) is also
analytic in the interior. Let v'(x) =v(x)+8v(x), where
s'=0 on C', e'= Vq on D, and we again consider unit
charges. On C we have be=a'&0. At any point inside
of C we can write

BG(x,x')
bv (x') = — 8v (x)

c anidxi
(2)

where G(x,x') is the Green's function for the boundary
conditions 6=0 on C and 6= const on D, with no net
charge on D. The charge density induced on C by a unit
positive charge at x' is BG(x,x')/Be. Since this charge
density is everywhere nonpositive, we see that at every
point inside of C we have lv(x) &0. Therefore Vc & Vc
and we have proved that the best asymptotic rate of
convergence on the physical region is obtained by
choosing C to enclose as large an area as possible.

There is a second criterion for an optimum mapping
that is especially important for applications such as
that in Ref. 1. Suppose that, in addition to the singu-
larities on and outside of C, f(x) has a simple pole of
residue r„at the point x„ that lies inside of C. Then an
expansion in polynomials in s will not converge through-
out the interior of C, but only in a smaller region that
is limited by the equipotential curve v(x)= Vv that
passes through x~. We write

f(x) = f(x)+r,/(x x,)—

so that we wish to make V„as large as possible. Ac-
cording to Eq. (2), we have V„')V~, where V„' is the
potential at x„when the boundary is C'. Therefore our
second criterion also leads to the requirement that C
should enclose as large an area as possible.

A third criterion arises when we try to extrapolate
from experimental data in the physical region to some
distant point x„at which the scattering amplitude is
analytic. For example, it is known that the discon-
tinuities across branch cuts can be expressed in terms

and expand the remainder f in polynomials that do
converge throughout the interior of C. Our second
criterion is that the mapping should make the pole
term as visible as possible, that is, that the coefhcients
of the expansion should depend as sensitively as pos-
sible on the pole term being included with exactly the
right residue. For large e the ratio of the eth coefficient
in the expansion for f to the nth coefficient in the ex-
pansion for f is determined, roughly speaking, by the
ratio

n(VcV&)—/& nv-c &nV—&
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of the amplitudes for physical processes. 4 However, the
values of the variables usually do not lie in the physical
regions for these processes, so that an extrapolation
must be resorted to. If the point x„ lies inside C, then
our polynomial expansion will converge there, and the
rate of convergence is, roughly speaking, given by
e "~~.' By the same arguments as above, we see that,
to get the most rapid convergence, V„should be as
large as possible, and therefore C should enclose as large
an area as possible. Note that for this third criterion
(that the extrapolating expansion should converge as
rapidly as possible) it does not matter at all where the
point x„ lies, as long as it is a point where the function
is analytic. The same expansion is an optimum for all
points.

Another approach to the problem of extrapolation
shows the unity of the second and third criteria. If the
scattering amplitude f(x) is approximated by poly-
nomials P„Lz(x)j that satisfy the constraint P„Lz(x„)j
=y„, then on D the convergence parameter of the
polynomials is eve if and only if y„=f(x„), but it is
evo vo if y„4f(xo).s The relative convergence parame-
ter, which determines the sensitivity to y„, is e &.

Instead of the mapping z(x), for a given boundary
curve C, we could consider other mappings z'(x) in
which the image of D is not a straight line but the
images of C and D are still equipotentials. For example,
C and D could be mapped into concentric circles. How-
ever, at corresponding points we must have v(x) = V(z)
= V'(z'); this is the principle underlying the use of con-
formal mapping to solve electrostatics problems.
Therefore the convergence parameters R=e~~ and
R„=e~~ would be the same, whether one expanded in
polynomials in 2: or in s'. For a given C it is evident that
there are many conformal maps that would lead to
convergence properties that are essentially equivalent.
We choose the elliptic mapping on the basis of
convenience.

Note that further improvement would be possible in
principle if the contribution of parts of the branch cuts
were included explicitly, by analogy with Eq. (3), or if
C were to enclose parts of other Riemann sheets.

III. ELLIPTICAL TRANSFORMATION

We first map the x plane onto an auxiliary m plane in
which the cuts run along (—po, —W) and (W, po):

w= (x—x,)/(1 —xxo) .

With the abbreviation X+——(x+'—1)"', we have

xp ——(x —x~)/(x~x +X~X —1),
W=(x„X +x X~)/(X~+X ).

The mapping from the symmetrized plane to a unifocal

e R. E. Cutkosky, Phys. Rev. Letters 4, 624 (1960); J. Math.
Phys. 1, 429 (1960).' J. I . Walsh (Ref. 3), p. 315.

AMPLITUDES
I

ellipse is given by

z= sinC (w, kp),

C(w, k) =irF(sin 'w k)/2E(k),
(6)

where
C (v„~i, k„+i)=C (tt„,k„),

k pi= (1—k ')/(1+k„') =k„'(1+k„') ',
tt„(1+k„')

1+(1—k„'v„')'"

—(1 k s)1/s

(7b)

In particular, let kp ——1/W and vp ——w; then in the calcu-
lation of z from Eq. (6) we may use any of the sequence
of values (tt„,k„) generated by Eq. (8). Now note that

Since F(&,0)=P, we find that

z=lim sinC (v„,k„)=lim p„.

The Gauss transformation is thus especially con-
venient for construction of our mapping function. Not
only is the convergence extremely rapid, since
k~~=4k ', but we even avoid calculation of the arcsine
and sine. ~

Note, in particular, that the transformation
K'= 'vp ~ 'vy maps the cut plane into a circle of radius
k~ ".The mapping v~ —+s, which Battens this circle
into the ellipse, is the transformation derived in most
textbooks. '

The rate of convergence of an expansion on —1&s& 1
is determined by

g—,vo —a+ (its 1)iy

where a is the semimajor axis of the ellipse. This is given
by the formulas

rrE (ki')
a= cosh

s.lt."(ko')=cosh
2K(ko)

e H. E. Fettis and J. C. Caslin, Tables of ElliPtic Integrals of the
First, Second and Third Eied (OfBce of Aerospace Research,
U. S. Air Force, 1964).

~ We shall be glad to supply interested readers with a FORTRAN
program that generates this elliptic transformation.

e Z. Nehari, Conformal MaPPe'ng (McGraw-Hill Book Co. , New
York, 1952); H. Kober, Dictionary of Conformal Mapping (Dover
Publications, Inc., New York, 1952).

where F(g,k) and E(k) =F(-,'rr, k) are, respectively, the
incomplete and complete elliptic integrals of the first
kind. Their modulus is kp ——1/W. It is easy to check
that x=~1 maps into a=&1.

A standard method of computing elliptic integrals is

by a repeated use of the Gauss transformation'

(1+k„+i)F(sin 'z„+i, k„+i)=F(sin 'v„,k„); (7a)

therefore
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and can also be calculated numerically from the
sequence of Gauss transformations.

For later reference, we evalute the derivative

ds(1)/dx as obtained from (14) with its approximation

ds (1)/dx =4A/2r26.

ds d2/„(1+k„2/ ')'—=rr =rt
de 1 di/„1 1 (1+k„)(1—k„2/ ')

(12)

It is found that the approximation (17) is the leading
term in an expansion in inverse powers of 1nb.

IV. THRESHOLD PROPERTIES
At s=o this becomes

d24/(0) =g (1+k„)=—E(kp), (13)

dw(1) ~ 1—k—=n -=rr k. .=rt
(1+k )'

where we have used a standard formula for E(kp) th«
follows directly from the Gauss sequence, Kqs. (6) and

(7). At s= 1 we have

In the elastic scattering of two particles of mass M~
and M2, let s, t, and I denote the Mandelstam variables
and p' the barycentric momentum. Consider a sca,tter-
ing amplitude f(s,x) that is free of kinematical singu-
larities, and for which the coefficients in the usual
partial-wave expansion

f(s,x) =Q /11(s)P/(x),
0

where the pi(x) are normalized Jacobi polynomials, can
be expanded as follows in powers of p' for some neigh-
borhood of the elastic threshold s= s0.'

dw(1)/ds = $2kp'E (kp)/2r j'. (14)

Comparing the last two products above with each other
and with Kq. (13), we find

/2 (~) —p21 P 44 P2n
D

(19)

(We assume that there is no bound state at the thresh-
old. ) Denote by T and U the nearest t and I thresholds.
In the x plane the singularities are given by

x+—1=T/2p',

x —1= U/2p' —(iaaf 12—~ 2)2/2zp2

=A/2P'+o(1),
(20)

U (~1 M2)'. When P' ~ 0, the conver-
gence domain of the partial-wave expansion approaches
a circle of radius r,/2p', where rp ——min(T, A). Therefore
the scattering lengths must contain a factor rp ' (in
addition, perhaps, to other factors that depend on t
more slowly, for large l, than exp& pl for p) 0).

From (5) we find that

xp ——p'(A —T)/(A+ T)+0 (p4),
8'—1=C/2p'+0(1),

(15) where C=2TA/(A+T). Furthermore, we have

kp= W-1=2P2/C+O(P4), k„=O(P "").
(g+ 1)1/2+ gl/2-2

=—ln
2 ((+1)1/2 (1/2

The two degenerate forms of the ellipse are the circle
and the parabola. In the context of our conformal map-
ping the circle is obtained in the limit in which the
branch cuts are very far from the physical region. In
the opposite limit, in which a branch point approaches
very near to the end x,= &1 of the physical region, the
ellipse shrinks into the line segment —1&s&+1.How-
ever, if we examine the neighborhood of x, in an ex-
panded scale, we see that the ellipse must approach a
parabola whose focus is at x,. Ke can obtain the asymp-
totic form of the transformation in this neighborhood by
mapping the plane directly onto the interior of a
parabola.

On the real & axis let the physical region consist of
the portion $)0 and let us choose the scale so
$& —1 is the branch cut. The transformation'

$8=1&x, $6=1&s. (16)

maps the physical region into itself, and the branch cut
is mapped onto the parabola whose vertex is at f'= —1
and whose focus is at f=0 To go back. to our original
variables x and s, we suppose that in the x plane the
branch point is at x= & (1+5).In the neighborhood of
x=~1, the mapping x —+ m just amounts to a linear
change of scale, and can be omitted. Let d =a—1,
where /2 is given by Kq. (11).We then have

Therefore in the expansion

s=x Q P„x"+sp
0

(21)

we have p„=o(p'") and also sp ——0(p'). For p'-+ 0 the
ellipse in the s plane approaches a circle of radius C/p'.
The terms that we have represented by 0(p' ) can
actually be expanded in powers of p'.

Our modi6ed expansion is

For a simple way to estimate the accuracy of the
parabolic approximation, Kqs. (15) and (16), to the
elliptical mapping, let us compare the exact value of

f(~,x) =E b-(~)p-(s),
0

(22)
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where these p„(s) are any orthonormal polynomials over

(—1, 1). From (21) and (19) we see that at threshold
as obtained from (10),

X=1+go/p=e»" (24)
t,„(s)p—2"~ b„o,

and, in fact, we may write

kno Q ~el&lp pl

L=o
(23)

V. HIGH-ENERGY PROPERTIES

We consider the leading terms when p2-+op. For
comparison, we first describe some familiar properties
of the conventional expansion. Let tips=min(U, T).
From (20) we find that min(x+ —1)=tip2/2p2. The con-
vergence parameter for the partial-wave expansion is,

2 S. Mandelstam, Phys. Rev. 112, 1544 (1958);115, 1752 (1959).

where the d„g are some kinematic coeKcients depending
on M;, T, and U. The exponential factor in the b„o is
r ", where r=2C and

2&r/rp&4.

To summarize, we may say that the coefFicients in
our expansion (22) have near threshold essentially the
same behavior as the usual partial-wave amplitudes.
The improved convergence properties of our expansion
are reQected in the fact that the sequence of sums of
scattering lengths (23) consists of terms that are asymp-
totically smaller than the scattering lengths themselves.
It would be extremely hard to measure directly enough
of these sca,ttering lengths with suQicient accuracy to
test this feature of our theory. However, it may in some
cases be possible to use this information eGectively in
the forward dispersion relations for the derivatives
a"f(s,t)/Bt".

The imaginary part of f(s,x) has as closest singulari-
ties T~ (s) and U; (s), which are larger than T and U—
much larger for s near to the elastic threshold so, if this
is the lowest s threshold. These properties arise from the
unitarity condition, ' which is considered in more detail
in Sec. VI. Therefore in the usual expansion the con-
vergence for the imaginary part is more rapid than the
convergence for the real part. We suggest that, in ap-
plications to partial-wave analysis of scattering data,
the best procedure is to use separate transforrnations
and expansions for Re[f(s,x)g and Im[f(s, x)j. If sp is
not the lowest threshold, we may study the properties
of the coeKcients for Imfby repeating the previous cal-
culations with T and U replaced with T; (sp) and
U; (sp). If sp is the lowest threshold, we may use the
asymptotic expressions T; =]/p2 and U; =27/p'; the
calculations following Eq. (17) can then be repeated
with minor changes. In either case, one again finds more
rapid convergence for the imaginary part than for the
real part and a more rapid convergence than in the
usual expansion.

where

W—1=le '/2p'

t '=(TU)'"

(26)

and hence

ko= 1—tie/2P2, ko'=ti. /P (27)

Using Eq. (10) for the semimajor axis of the ellipse, we
have

—1=—'. 'D (4p/. )3 ', (28)

and therefore, writing for our elliptic expansion E.= e't'+,

we have
t,= (4/m-2) ln(4p/p, ) . (29)

At first sight, the number of terms needed in our ex-
pansion increases only logarithmically with p, instead
of linearly. However, this involves some tacit assump-
tions that we shall return to later.

One way to understand how the greatly enhanced
rate of convergence of our modified expansion arises is
to note that our transformation greatly magnifies the
physical region in the neighborhood of x= &1, which is
where we expect the amplitudes to vary most rapidly
with x. This plausible behavior of the amplitudes is, in
fact, another reQection of the analyticity properties that
we exploit in our expansion. We can calculate explicitly
the magnification in the neighborhood of x=+1 by
using the asymptotic limit obtained from Eq. (15):

(T ')iI2+( t)»
1—s=s'2~

I
ln—

~ (
ln . (30)

ti ~ E (T t)12 ( t)12

This is valid for a fixed value of t in the limit p —+~.
For

~

t
~
&&T we have

s 1=g'n'(t/T) in(4—p/ti, ) . (31)

In the neighborhood of x=1, therefore, I—2: is essen-
tially t/T, apart from—a factor depending only loga-
rithmically on the energy. Similar formulas hold for
1+s, with t/T replaced with I/U.

The mapping shrinks the interior of the physical
region. In particular, let us look at the point xo that is

where tp ——p/tip. Thus for large t the coefTicients decrease
roughly as e 't'". This is in accord with the fact that
po ' is the range of the forces. Note that at high energies
T; ~ T and U; —+ U. The real and imaginary parts
of the amplitude have, therefore, the same ra, tes of con-
vergence when the energy is very high.

In discussing the elliptical transformation, we use the
following asymptotic formula, which holds for k ~ 1,
for the complete elliptic integral:

E(k) = ln(4/k') .
From (5) we have
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mapped into s=0; this is, asymptotically, the point
—(O' T)/(U'1/2+ Tl/2)2

At this point, we find by use of (13) that

(Tl/2+ Ul/2)2 4pq
—l

ln—
f

dx ., (TU)'/2 /2. &

(32)

Let us now return to the discussion of the rate of
convergence. The precise meaning to be ascribed to the
convergence parameter E. is explained in the Introduc-
tion. That is, what we know is that the eth coe%cient
can be bounded by the expression M(e)/(R —e)" for
any positive ~. This estimate is not suBRciently precise,
for two reasons. First, we would like to have an estimate
of the nonexponential factors in the coefficients, so that
we could dispense with ~. Second, we would like to know
how M depends on energy. For both these questions we
need to know the nature of the singularities on C. It is
evident that the behavior of f(s,x) as x —+~ is critical;
in our transformed variable s, x= ~ corresponds to two
finite points s on the edge of the domain of conver-
gence. The nature of the singularities at s=s„ is es-
pecially important at high energies, since these points
then lie very close to the part of the physical region that
corresponds to large-angle scattering.

Experiments suggest that at high energies the cross
sections depend exponentially on some power of the
momentum transfer. ' It is plausible, therefore, that
f(s,x) might also have an exponential behavior at
x —+~—perhaps at all energies, or perhaps just in the
limit s —+~. This is also suggested by the idea of in-
definitely rising Regge trajectories. If this is indeed the
case, it would be very desirable to remove from f(s,x)
a factor fs that had the right behavior at x ~~, and
was analytic and free from zeros in the cut plane. Then
f(s,x) could be represented at a product of fs(s, x) and
a modulating factor f (s,x) that was expanded in
powers of s. We might then expect that the convergence
of the expansion for f would be suKciently rapid that
we could really use l, as an estimate of the number of
terms required. Likewise, we suggest that in removing a
pole term from f(s,x), as in Eq. (3), the pole term
should be multiplied by vertex functions that supply
the right asymptotic behavior for large )1~ or

~ si ~.

f (x) 2 b' P Ls'(x)j+E b' P Es'(x)j+fB'(x) (33)

where sl(x) and s2(x) are the transformed variables for
the real and imaginary parts of f, and where fB;(x) is
the "Born approximation" Le.g. , given by the pole
terms in f(x)$. The b;„' are coefficients of small correc-
tion terms and are considered to be zero as a first ap-
proximation. The partial-wave amplitudes are
gl = /ill+ si221, Wllel'e

f, (x)Pi(x)dx, (34)

and where Ei(x) is the Legendre polynomial. Now
define

C,l.———,
' p.ps, (x)jul(x)dx (35)

and denote the approximation of dropping the b;„' with
a caret; this gives

N

/ail g Cslnbin+ &Bil q

n=o
(36)

where the a~;~ are the contribution of the Born approxi-
mation. Solving (36) for the b;„gives the result

f2(x) by separate expansions, the asymptotic con-
vergence rates of the two expansions are compatible
with unitarity. This at least suggests that only small
corrections need to be made for unitarity, if the expan-
sions are truncated.

In practice, one wishes to approximate a scattering
amplitude by a truncated expansion containing a finite
number of parameters. These parameters are then to be
determined by fitting to experimental data. We shall
show here how small corrections can be made to a
truncated expansion in such a way that the result will
be explicitly unitary. For brevity, we consider only the
scattering of spinless particles.

First, consider scattering below the inelastic thresh-
old. Let X+1 be the number of parameters to be de-
termined from the data. These may be considered as the
phase shifts 8~ for the partial waves with t=0, ~, N.
We write for the real and imaginary part

VI. UNITARITY
N

bin Q DiNnl(/lal irBil) p

L=O
(37)

Unlike the partial-wave expansion, our expansion for
f(x) cannot satisfy elastic unitarity term by term. in-
stead, unitarity must be built into the sum as a whole.
However, the positions of the singularities T, U, T;,
and U; are consistent with unitarity; T; and U; can
even be generated from the unitarity relation. ' As a
result, if we express ReLf(x))= fl(x) and Imff(x)g

where

g D;N„lC;l„——8„, 22, 222(1V.
L=O

The 6;~ for /&N are expressed in terms of the 6;~ for
l&cV by substituting (37) back into (36); with the
notation

is J. Orear, Phys. Letters 13, 190 (1964); A. D. Krisch, Phys.
Rev. Letters 19, 1149 (1967); T. T. Chou and C. N. Yang, ibid.
20, 1213 (1968).

N

&,Nis= g C;/.D,N.s,
n=o

(38)
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the result can be written as follows:

N

~ii Q IiNlk(47c aBik)+aBii ~

k=o
(39)

For l&E we may define

~it= ~sl ) (40)

where the complex amplitudes ai i——(1 e—"'&) are uni-

tary by construction. However, the amplitudes 4& de-
termined from (39) for l)N are not, in general, unitary.
Let

itP= 1/ +'(a2i 1)
and let us write

ai=ai+ai .

We shall choose the a~' to have the smallest possible
magnitudes that will make the a& unitary. This condi-
tion is easy to see geometrically if we represent 8& in
the complex plane. The unitary amplitudes lie on a
circle of unit radius centered at (O,i). The point on the
circle closest to d~ is given by

all a1i/'0l

a2i-1= (dpi-1)/gi.

The b;„' in Eq. (33) are another representation of the
a&', but they are not needed directly. If any p& differ
from unity by more than a few percent, this is a sign
that a larger E should be used.

Above the inelastic region, unitarity gives only an
inequality; we can use the same method as in the elastic
region, but the corrections are, in general, smaller.
Since the expansion for f2 converges faster than the
expansion for f&, we may use different upper limits Ej
and cV2 in the sums (33); for a similar degree of accu-
racy in the two sums, we may take

Eg lnE2=Eg 1nEg, (44)

where E~ and E2 are the two convergence parameters.
There are then S~+E2+2 parameters that are to be
fitted to the given data. In the elastic case, there is no
point in using a smaller number of terms in the second
expansion, because it does not involve any new parame-
ters. For /&Em we write ai=i(1 pie""),—and for
E2(l(1Vq, a2i is given by (39) while a&i is a parameter.
The correction procedure for l&Xj is as follows: If
qi as given by (41) is less than unity, it is considered to
represent a real inelasticity, and no correction is ap-
plied. Otherwise, formula (43) is applied.

In meson-baryon scattering, the nearest singularities
T; and U; correspond to inelastic processes, provided
that the energy is raised above the inelastic threshold
by a rather small amount. In this case, one expects that
the g~ as calculated above for large / will all be slightly
less than 1, so that no unitarity correction would have
to be applied to the high partial waves, but, rather, that
these would all turn out automatically to be slightly in-

elastic. In nucleon-nucleon scattering, on the other
hand, the nearest singularities always correspond to
elastic scattering. As a result, the contribution of the
nearest part of the branch cut can be expressed ex-
plicitly in terms of the meson-nucleon coupling constant
and included as a term fo2(x) in Eq. (33).

To some extent, the rapidly convergent property of
our expansion is lost when we reexpress the sum in
terms of the ordinary partial-wave expansion; the
amplitude f(x) is a sum of many partial waves, and the
ones with large / may be quite small but add up to a
non-negligible total contribution. The advantages of
working with the ordinary partial waves and keeping
the elliptical expansion in the background are quite
numerous. The constraint on the 0;„ for n&E that is
imposed by the condition that the partial waves for
t&E be unitary is a very complicated nonlinear one,
and would be hard to satisy directly. Secondly, the
complicated mathematical calculations that are re-
quired in order to effect the transformation and to
impose unitarity are summed up in the coefficients
I';~iq, which can be calculated once (for a given energy)
and used repeatedly. Furthermore, the energy depen-
dence of the scattering amplitude is not easy to study in
terms of the transformed expansion; the coefficients b;„
have very complicated analytic properties as functions
of the energy, since each of them brings in singularities
that lie on the second sheet of the scattering amplitude.
In studying the energy dependence, therefore, one
would certainly wish to go back to the partial-wave
amplitudes u~ or to the scattering amplitude at a fixed
value of the momentum transfer.

Nevertheless, the elliptical transformation has a very
important effect on the partial-wave expansion. In the
first place, the waves with l&X, which are generated
by the first few terms, may contribute very significantly
to the amplitude. In addition, the tests for the validity
of the truncation of the series with E; terms should be
made by reconstructing the b;„by means of the co-
eScients D;~„~.

VII. SUMMARY

In an earlier paper, ' we used the elliptic transforma-
tion for the extraction of coupling constants from fixed-
energy differential cross-section data and demonstrated
its utility for this purpose. We also showed how error
estimates could be based on the convergence theory.
Another application along the same lines would be the
determination of the real part of the forward scattering
amplitude

Ref�(0')

from the Coulomb interference term
in the differential cross section. In this case, one is
interested in the residue of the pole at x=1 (from
Coulomb scattering there is also a known double pole
at x=1 that can be explicitly subtracted). In experi-
ments on the Coulomb interference term, one typically
obtains very precise data in a limited range —1&&@2&x
&x~(1. In such a case, the interval (xm, xq) should be
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interpreted as the "physical region" and mapped into

(—1, 1), in order that the greatest sensitivity to
Ref(0') may be obtained.

We expect that the application of the theory de-
scribed in this paper to the partial-wave analysis of
scattering data will be especially important in practice.
In this case, what the transformation achieves is the
imposition of certain relations among the higher partial
waves that occur when they are generated by forces of
the Yukawa type, which extend over a finite distance.
Similar relations are obtained when the scattering
amplitudes are constructed by solving the Schrodinger
equation with a phenomenological potential that con-
tains adjustable parameters, but the transformation
method is both simpler and less model-dependent. With
the transformation method it is not quite automatic
that the scattering amplitude satisfies the unitarity
condition, but it is easy to make the necessary small
adjustments. In doing this, the eRective potential is, in
eRect, parametrized by the amplitudes for the first few
partial waves, and the superior convergence of the trans-
formed series is taken into account through the exis-
tence of a set of coefficients I'~~ that relate partial waves
for /&Ã to those with l'&E.

If the scattering amplitude happens to be dominated

by a single resonance of high spin, the amplitude that
is well represented by a single term of the partial-wave
expansion would require many terms of our expansion.
In such a case, we propose that the resonance be intro-
duced explicitly, and our expansion used for the non-
resonant background.

The fact that the parabolic transformation (15) can
be interpreted as the limiting form of the elliptic trans-
formation suggests that it can also be used directly as
the basis for rapidly convergent expansions. For
example, an expansion in Laguerre polynomials con-
verges inside a parabolic domain of analyticity. If
there is a physical region and a branch cut, extending,
respectively, to +~ and to —~, we suggest the map-

ping of the cut plane into a parabolic region through
use of Eq. (15). Unfortunately, a general theory of the
expansion coefficients is not available. However, for a

1 disc (F(s') jds'
f(s) =F(s)——

2'j S —S
(physics, l regions)

(ignoring subtractions), where F(s) is the forward scat-
tering amplitude. If we take

S—$0 Sy—$2

S—Sg $0—Sy

the unphysical region is mapped onto the parabola by
(15), and f(s) has the right analyticity properties to
allow an expansion in polynomials in t (s).

The convergence rate of a polynomial fit to data can
always be increased further if the nearest branch cuts
are treated explicitly and only the Inost distant parts
of the cuts are mapped onto the ellipse (or parabola).
However, it is usually necessary to tolerate a certain
amount of model dependence in doing this, because the
eRect of a branch cut cannot be represented exactly by
only a few parameters. A small number of parameters
referring to the cuts can be determined directly from the
data by employing the "subtraction principle" summed
up in Eq. (3). In addition, we may in some cases use
experimental data for other processes to determine the
discontinuities across the branch cuts.

given sequence of polynomials P„(f) that are ortho-
normal over (0,~), we may base convergence estimates
on the sequence of values p„(—1).That is, since f= —1
is just at the edge of the doinain of convergence, the
coeKcients a„may be expected to decrease roughly as
1/p„(—1) for large e.

The parabolic transformation would apply to the
electromagnetic form factors, since these have a cut
plane of analyticity and a physical region extending to
infinity. A second example is given by the forward dis-
persion relations for processes such as p-p and E+p-
scattering, in which there is an "unphysical region. "
Let so denote the threshold for the direct channel, s2
the physical threshold for the crossed channel, and s&

the unphysical threshold (so) s&) s2). Let


