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In the above calculation we have also not used the
mixing between g' and X'. As has been pointed out in
Ref. 4, its inclusion reduces the rate by a factor of
0.68 or enhances it to double its value depending on the
sign of the mixing angle, and it is also easy to predict
a similar branching ratio for the decays. We find that
E.' 0.20 for the M1 transition case, to be compared to
the rate 0.42 when E1 is predominant (see Ref. 6).

In any case the experimental limit is & 0.9% ol 0.6%
which is quite large. Hence the M1 transition can also
contribute appreciably. In Fig. 1 we have plotted the
photon spectrum in the co-dominance model.
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Calculation of the Sixth-Order Contribution from the Fourth-Order
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We present the details of a calculation of the sixth-order contribution to $ (g„—g,) from the proper fourth-
order vacuum polarization. As a byproduct of this calculation, we have also obtained the finite part of the
fourth-order contribution to the charge-renormalization constant Z3.

I. INTRODUCTION

1
W~NE of the classical successes of quantum electro-

dynamics has been the prediction of radiative
corrections to the Dirac value of the gyromagnetic ratio
of the electron and of the muon. To first order in the
fine structure constant n, these corrections' are pre-
dicted to be the same for the electron and the muon:

This is, however, no longer true at higher orders.
Already at fourth order in the electric charge constant
e (e'/4s =a), the Feynman diagram shown. in Fig. 1(a)
gives a sizable contribution to s-(g„—2), while the
corresponding diagram obtained by interchanging the
muon and electron lines /see Fig. 1(b)j gives a very
small contribution to —,'(g, —2). All other diagrams in-
volve only one kind of lepton, and therefore their
contributions do not depend on the masses.

The total contribution to the electron g factor in
fourth order is given by

n ' 197
—,'(g, —2) &4' = — +—,', ~'+-,'f'(3) —-', ~' ln2

144

+—
(
—)+0 ~

—
) ln—

= —0.3284784( /~) ', (2)

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

t Present address: CERN Theory Division, CERN, Geneva 23,
Switzerland.

' J. Schwinger, Phys. Rev. 75, 1912 (1949).

where f (3) is the Riemann zeta function of a,rgument 3,
defined in the Appendix. The terms independent of the
ratio m, /m„were calculated by Karplus and Kroll, '
Sommer6eld, ' and Petermann' using standard quantum
electrodynamics, and by Terent'ev'" using dispersion
techniques. We have calculated the term (1/45)
X(m,/m„)', which comes from the diagram shown
in Fig. 1(b).'

The corresponding contribution to the muon g factor
in fourth order is

o. ' 97
s (g,—2) &4' = — +—'s-'+-sl (3)—qm' ln2

x 144

mp e We 'Pgp2

+-'ln —+-' '—4(—1n—3
~e ~p mp fjge

+3~1 —
) +&

~

—
)

= (+0 765779m 7X10 ')(o./~)'. (3)

This includes the contribution from the diagram shown
in Fig. 1(a), which was first estimated by Suura and

' R. Karplus and N. M. Kroll, Phys. Rev. 77, 536 (1950).Their
calculation, however, contained an error which was corrected by
Sommerfield (Ref. 3) and Petermann (Ref. 4).' C. M. Sommerlield, Phys. Rev. 107, 328 (1957); Ann. Phys.
(N. Y.) 5, 26 (1958).' A. Petermann, Helv. Phys. Acta 30, 407 (1957).' M. V. Terent'ev, Zh. Eksperim. i Teor. Fiz. 43, 619 (1962)

.LEnglish transl. : Soviet Phys. —JETP 16, 444 (1963)j.' To our knowledge, this term has not been taken into account
before.
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FIG. 1. Feynman diagrams contributing to the diBerence
of the muon and electron g factors in fourth order.

Wichman~ and by Petermann. ' Recently it has been
calculated exactly by Elend. '

The complete calculations of the sixth-order radiative
corrections to the electron and muon g factors have not
been carried out yet. Interest in this type of calculations
has been largely motivated by the increasing experi-
mental accuracy in the measurements of the anomalous
magnetic moments of the electron and the muon. At
present, rs(g, —2) is known to an accuracy of 30 ppm":

—,'(g,—2). vg=(1159557&30)X10 ', (4)

and there are experiments in progress" which are likely
to improve this accuracy to a few ppm. For the negative
muon, the most precise experimental result which has
been reported is"

s(g„—2)expt, = (116645+33)X 10 '. (5)

It is clear from these results that calculations of the 0.'
radiative corrections, as well as other types of correc-
tions (strong-interaction corrections due to the hadronic
contributions to the photon propagator, " and weak
interaction corrections") which might be of the same
order of magnitude as the o,' radiative corrections, are
needed.

A signi6cant step in the estimate of the sixth-order
radiative corrections is the calculation of the diRerence
between the muon and electron g factors. In fact, the
terms containing Dn(m„/m. )j', and most of the terms
containing ln(m„/m. ), contributing to this difference

r H. Suura and E. H. Wichmann, Phys. Rev. 105, 1930 (1957).' A. Petermann, Phys. Rev, 105, 1931 (1957).
s H. H. Elend, Phys. Letters 20, 682 (1966); 21, 720 (1966).' This is the corrected value of A. Rich, Phys. Rev. Letters 20,

967 (1968); 20, 1221(E) (1968). It is based on the data of D. T.
Wilkinson and H. R. Crane, Phys. Rev. 130, 852 (1963),who gave
the value —',(g.—2),»a= (1 159 622&27) X10 '.

'~ See A. Rich (Ref. 10).
'2This is the value reported by F. J. M. Parley at the 1968

American Physical Society meeting in Washington, D. C.
(unpublished). The previous reported value was —,'(g„—2)
=(11666&5)X10 7 by J. Bailey, W. Bartl, R. C. A. Brown,
H. Jostlein, S. van der Meer, E. Picasso, and F. J. M. Parley, in
Proceedings of the 1967 International Symposium on Electron and
Photon Interactions at High Energies (Stanford Linear Accelerator
Center, Stanford, Calif. ), p. 48.' C. Bouchiat and L. Michel, J. Phys. Radium 22, 121 (1961);
see also L. Durand, Phys. Rev. 127, 441 (1962); 129, 2935 (1963);
and more recently T. Kinoshita and R. J. Oakes, Phys. Letters
25B, 143 (1967); J. E. Bovrcock, Z. Physik 211, 400 (1968).' S. J. Brodsky and J.D. Sullivan, Phys. Rev. 156, 1644 (1967).
T. Burnett and M. J. Levine, Phys. Letters 24B, 467 (1967);
R. A. Shalfer, Phys. Rev. 135, 8187 (1964).

FIG. 2. Feynman diagrams representing the proper fourth-order
vacuum polarization contribution to the diHerence of the muon
and electron g factors in sixth order.

II. METHOD OF CALCULATION

We start from the general expression for the renor-
malized photon propagator

with

.g" . P.p )11(p')
D„„(p)= i +i g„„———

p' p' & p'

II(P') 1 "dt Imll(f)

p' 7r s t t p'—
(6)

(7)

FIG. 3. Double bubble contribu-
tion to the difference of the muon
and electron g factors in sixth
order.

"T.Kinoshita, Nuovo Cimento 51B, 140 (1967);T. Kinoshita,
lectures given at the Summer School of Theoretical Physics,
Carghse, 1967 (unpublished); S. D. Drell, in Particle Interactions
at High Energies (Scottish Universities Summer School, 1966),
edited by T. W. Priest and L. L. J. Vick (Oliver and Boyd,
Edinburgh, Scotland, 1966), p. 235."S. D. Drell and J. S. Tre61 (unpublished). Preliminary results
of these authors' calculations were reported in Proceedings of the
Thirteenth Annual International Conference on High-Energy
Physics, Berkeley, 1966 (University of California Press, Berkeley,
Calif. , 1967), p. 93; A. Petermann (to be published).

have already been calculated by several authors, ""
However, most of the remaining terms have not been
calculated as yet.

In this paper we present the details of a calculation of
the sixth-order contribution from the proper fourth-
order vacuum polarization graphs to —,'(g„—g,). The
relevant Feynman diagrams are shown in Fig. 2. The
method of our calculation is discussed in Sec. II, and
the explicit evaluation of the integrals involved is
carried out in Sec. III. We should remark that all our
results are gauge-invariant.

We have also evaluated the contribution to —',(g„—g,)
from the Feynman diagram shown in Fig. 3, and our
result agrees with a previous calculation by Kinoshita. "

The results of these calculations are presented in
Sec. IV.

We have included an Appendix which contains a list
of the special integrals used in the calculation.
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FIG. 4. Diagram representing a set of
vacuum polarization graphs contributing
to the anomalous magnetic moment of
the muon.

The spectral function ImII(P') is given by'

X(OiJ (0) in)(ni J„(0)i0), (8)

where P„also means summation over the phase space
available to particles in each possible state n.

The contribution to the anomalous magnetic moment
of the muon from a given set of vacuum polarization
corrections of the type shown in Fig. 4 can be simply
obtained in the following way: The photon propagator

ig„—„/p' in the second-order graph (the graph corre-
sponding to the Schwinger term) is replaced by

(9)

where

is the contribution to II(p') from the set of graphs G.
From Eq. (7) it can be seen that this expression is a
superposition of propagators, with mass squared t,
weighted by the function

1 Im II&0& (t)

Fzo. 5. The double bubble con-
tribution to the fourth-order
vacuum polarization.

for t&4m„2, with x=
1—(1—4m„s/t) «s

1+(1—4m„s/t)'ts

The Feynman diagrams which contribute to the
fourth-order vacuum polarization have been drawn in

Figs. 5 and 6. Their contribution to (1/4r) ImII "&(t) has
been calculated by %allen and Sabry, "and their result
is the following:

1
—InlII "&(t) =—ImII*("(t)

1—2 ReII &s& (t)—ImII(s& (t) . (14)

Here (1/7r) ImII*&4&(t) is the contribution from the set
of proper graphs shown in Fig. 6, while

—2 RelI("(t)(1/s) ImII "(t)

is the contribution from the double bubble graph shown
in Fig. 5. Explicitly: with tj= (1—4m '/t)'"

E "'(t)=(—)(-'x'(2 —x')+(1+x)'(1+x')

ln(1+x) —x+-', x' 1+x
X — + x lnx i. (13b)

x2 1—x

lt is therefore clear that the resulting contribution to
s(g„—2) has the following structure:

n 8 1 1—5
ReII&'&(t) = — ———5'+(-' —-'5')5 ln

9 3 1+1)

for t&4r&s.s; (15b)

where

1
s(g.—2) '"=-

7r

(~iE &s&(t)=i —
i

ds4),
s'(1—s)

s'+ (t/)rs„') (1—s)
(12)

1 n '
—Imii'i'&(t) =

i

—
i

S[-,' s5'+( ', +—,'P)—--
ii ii 7

X ln(6454/(1 —t)') ')j+ —+—1)'——t)4

16 24 48
is the second-order contribution to -', (g„—2) from the
exchange of a photon with squared mass t.

The explicit form of E "'(t) is the following"'

for 0&t&4&N„', with r=t/4m„'

E„~s&(t)= —i[-', —4r —4r(1—2r) ln(4r)
~j

—2(1—Sr+ Sr')(r/(1 —r))'I' arccosgr); (13a)
'7 S. Kamefuchi and H. Umezawa, Progr. Theoret. Phys.

(Kyoto) 6, 543 (1951); see also G. Kallen, Helv. Phys. Acta 25,
417 (1952); M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300
(1954); H. Lehmann, Nuovo Cimento 11, 342 (1954).

is S. J. Brodsky and E. de Rafael, Phys. Rev. 168, 1620 (1968).

8g2

Xin —(-'+-'V —-'S4)
1—5

1—8 (1—8
X 4C — +24 i

+-'~s 8(t 4nz ') (16)—
1+6 (1+A)

where 4 is the Spence function defined in the Appendix.

19 G. Kallbn and A. Sabry, Kgl. Danske Videnskab, Selskab,
Mat, Fys, Medd, 29, No. 17 (1955),
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in E . 11), let usInor er oevd t evaluate the integral in q.
E (" t andfirst analyze t e e avh b havior of the functions „()

*(') t in the limits:ImII ( )

(a) For t sma, ell th asymptotic expansion o
'

en in E . (13a), is (r +0—)

(

(b) For t large, ix~, e a, ( ~0) the asymptotic expansion
of E„'"(/), given in Eq. (13b), is

K "&(t)= (n/&r) [-',x+O(x' lnx)].

glv

& "&~)=(/)L-'- 4 -414-2+ ( (17) with

(b) (c)

I'io. 6. The contribution to va p
~ ~

acuum olarization
from the proper fourth-order grap s.

——ImII*~'&(&) ——ImIP~4&(t= ~)
~

7r

&& [E„i'&(t)—IC„&'&(t =0)]. (25)

=4 ' ' 8=0 the function ImII *(4) t de-(c) At t=4m, , i.e.,
fined in Eq. (16) takes the value

(1~)(1/~) Imii*i4&(t= 4m, ') = (~/~)'-,'~'.

(d) For t la,rge, the asympto
'

pm totic expansion of

(1/7r) Imli*&4&(t), with

(20)5= (1—)'" and y=4m, '/t)

is given by

(I/~) Imii*"'(&) = (~/~)'[4+-4&+Oh ' ln . (21)

discuss the ca,lculation of the integral inE,11~. The contribution from the dou e u

ra 'g. -'( —2) has already been givenra h shown in Fig. 5 to —,~g„— a
i

' .'"" ds to the Feynman diagra, mb Kinoshita. '"'" It correspon s o
~ ~

i . . h 1 calculated this contribu-i . 3. We have a so ca
h d and we o taintion, using our met-o,

result:

with
Ej+R2 )

4m 2dt 1——ImII"""'(I&—IrnII""'(I=
&)x

(26)

m E s. (17)—(21), it can be seen tha, ten that all these
integrals converge. We s a eva u

git is ne ligible. This is ue o
ior of the two factors in t e inparticular behavior o e

I Ii*i4&(t= ~) is

E "&),t, —K„"&(t= 0) is vanishing w en
'

bl hen t 4m '. In ordera o yb o ppmes a recia e w en
to estima et R we split the interva m, o
parts, obtaining

o! 2 %~ 25 Bs~ z' 317
— ln———ln—

+O~ —ln— . (22)
km„ m.

and
X[K„i'&(&,) —IC„&'&(t=0)] (27)

—
~

—ImrI*&'&(t) ——ImiI*~'&(&', = ) ~

,„„ t 4
X[lt„&»(~)—Z„&'&(~=0)]. (»)

3 0, '4m. '
—Im II"' i'&

(&)
—ImII"'i'& (f = ~ )]=—

. q21. we find tha, t for t&4m„',—2, from the ProPer graPhs Usin~ EqThe contribution to ~~g„— rom
n in Fi . 6 has not been complet yetel eva ua e

rres onding to there. The integral to evaluate, correspon
'

gbefore. e in e
n in Fi~. 2 is the following: ÃFeynma, n diagrams shown in lg. is

——In.11*i'&(~)X„i'&(~)..'t 7r

We separate it into three terms:

(23)
thus,

[IC "&(t)—Ji„"&(0)],4' 4„2t

1I= Imll*'4&, (t= 0)&)—

+It„&»(t=o)
,2 t

Im IP'"& (t) —ImIP "'(t= ~ )]+R, (24)

E &'& t is given in Eq. (13b .. It follows from
to i ll d reasing forEq. (12) that E„"&(t is monotonica

t&0. Hence

~

Rg
~

((n/7r)' —,'(m, /m, „)
we ne lect this contribution."g

To evaluate R&, defined in Eq. , w
een far e and small va ues osepai-ation point between arge
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~ ~

Rg ——Rn+ R»,
with

the geometrical mean oof the twoA natural choice is e
limits o i

' . we havel' f integration. Thus we have

(29)

ider the first term in q 24). ThisNext, let us consider
n the parameterleft which still depen s on eyer '

d ~ d ce ~ l hI order to extract this epen enm, m„. nor
interval 4m, ' to ~ into two parts:

R11=
4tnem~ dt—( ) (30a)

4m~2 dt—E„&-'&(t),
t

(31a)

mp,

(30b)—( ").
4memtt t

4m, '&t&4m, m„, we can useuse the
asymptotic expansion of E'"(r) for r sma gi
Eq. (17). Then

dt—E„&"(t) . (31b)

ends on the mass ratio. We separateOf these, only L~ depends on
out this dependence by writing

Rss=—
mp

Lg 2E n&——(0) In—+
mg

4m„2

t t

mp

where

—
I

E„&2&(t)—E„&'&(t=0)j
p

(33)

32)&&I E &"(t) —E &"(t=0)j+S)

rom thent art of this integral comes rom
~t/ m„
bution from this term

b shown to be of O(m„/m„) ym b using Eq. (17).can e s own
have

where

1
—ImII."' &'& (s)——ImII 'v(4&

7r

ar d / the coefficient ofarl of order m, m„,l' h 'h h d dwhich is given y
' t e rigb the integra in t e rig

h s ntegral con g mconver es in the imi m„
d anal tical y. e av

numerically to be qe ual to 69n m

have

(-) =

—I2=

4m 2

—
I E„&»(t)—E„~»(t= 0)],

o

dt—E„n&(t),
4m~ 2

4m. 2 t

(35)

Rgg —(n/vr) ' 6.9m, /m„,

( &4 ' th
e ne lect.

val 4m.m„& t m„,For t in the &nterva, „(
in = ' t ivenin Eq. . o

'
21 N i hing to small y=4m, /, giv

' . . o
'

y = 4m, '/t = (m,/m„) '/r

Then R~. becomes

——
I
E„"&( )—E„"'( =0)j.

m„4
we know that in the interva m, m &v&1, weg

have E~"&(r)&n/2m. T ere ore, w

IR» I
&(n/~)' ~sm./m„,

a contribution which we a so neglect,

1
X —Imii'" &4& (t) ——ImII' "'(t= ~ )

-7r 7r

(37)

lated in Sec. III.These integrals are calculat

III. EVALUATIONON OF THE INTEGRALS

U
'

e
' "& r given in Eq. (13a),U

'
the expression for „v.sing

we obtain for I~ in Eq.

1

Ig= d7. —4—4 —2v. ln47(1 )

arccos(v't')—2 (1—Sr+ Sr')

rand ~ives a vanishing con-The last term in the integran
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ntroducing the variable=cos Qtnbution o
~ '

t the integral (best seen 3'p« ' g
and the two first terms are trivial. We n x= (1—8)/(1+b),

I]— 2 ~

To integrate I2 we use the variable

(39) we find

1—(1—m 3/~)&~' (1+x)'
mp,

1+(1—4333„3/t)'is

and obtain Lsee Eq. (13b)]
l I —*l (1+ )

(40)

I3—— dx(Ri+Rs lnx+R, ln((1+x) (1—x)')

+R4L—lnx ln((1+x) (1—x)')

+44 (—x)+2C (x)+-,'3rs]}, 4S

where R; are rational functions. p. We ex ress them in
terms of 1/x, and

ln(1+x) —x+—,'*')
x'

I2——4' —ln2. (42)

art of thee inte ral I3 is essentially the finite pTh g
f th-order contribution to t e c ar
constant Z3, which is given y

lar at x= 0. All terms areNote that the last term is regu ar a x=
now trivial and we obtain

y= 1/(1+x),

R,= —,'(y+y' —12y'+ 12y'),

Rs ——-'(6y —Sy' —27y'+45y' —14y') )

R = -'(—1/x+ 2y'+Sy' —Sy'),

R = -'(—1/x+ 2y —4y'+ 12y' —Sy') .
The integral over Rj is trivt. a:'

ial:

(49)

(50)

(51)

(52)

(53)

g (4)—
. 3

h.2 ——Imlr*«~(t), (43)
I31 1dx Rg= —', ln2 —4. (54)

S= (1—4~.3/t) «3, (45)

where A is an ultraviolet cutoff. ~"e find up to terms
vanishing as A —+ ~,

Z "'= (n/7r—)'t ,' in(A. '-/4m, ')+I3], 44

erm has been calculated previouslyThe divergent term as

yJ ng
I has however, never been eva ua e e

Using Eq. (11), we fin, in terms o

1 212~ (55)

lo arithm disappears afterIn the remaining terms the logari
a partial integration, the result being

i0 55
I32 x 2 6 ~d R lnx= —37r'+—ln2 ——. (56)

contains one nontrivial termThe second integral only con
(see the Appendix):

28
I3= db

$2

——,'+ SL-,
' ——;as 1nl one term is nontrivia,In the integral over R3 only on

leading to Spence-function values

+(—-'+ —'5') ln(649/(1 —h')')] inL(1+ x) (1—x)']
dx 4X ~ (57)

1+8 11 11 7
+ln —+—8'——8'

1-5 16 24 48

(1+~)'-
+ (-'+ 'P ,'S4) ln-——

8b

ion the remaining terms areAfter a partial integration, e
trivial:

I33 —— dx R3 inL(1+x)(1—x)']

—(-'+ sb' —s~')

1—8~ )1
X 4C/ — [+2C]

1+&)
(46)

er Helv. Phys. Acta 23, 201 (1949).Jo J g,
CRH dMAS

5 (1968)j i difl t co te t.tPhys Rev. Le.tters 20, 140 i

10 25
= -'3rs ——ln2+ —.

3 27

(59)

The integra over 41 R has nontrivial parts coming from
the tirst two terms in Eq. (53). Using

ln)(1+ x) (1—x) ']—
L4C (—x)+24 (x)+-,'3r']=2

dS
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we find by a partial integration

~{
—»*inL(1+x)(1—*)sj

+ 4C (—*)+2C(x)+-',~'}

3
= —gr'ln2+ dx

i

——
i
lnx ——ln(1+x)

i* 1+*&

XinL(1+x)(1—x)'j. (60)

All these terms lead to expressions
'

ions involving f(3) (see
the Appendix) p

an u&d'
~, d pon collection of terms we find

obtained by Kinoshita":

2 m ' 25 m„ ir' 317 (m. ms)

( m. 27 324 Im„m.i
2.72(n/ir) s.

(c) We have a so ca ch l calculated the contribution to
sr g,—2 &4& from the Feynman diagram shown in
Fig. 1(b). The result is

=5.2X10-r( / )s.—
I

——I+o
I

—
I
»—

4S m„i &m„& m,

dx~ ——+ ~{
—liix lnL(1+x) (1—x) sj

x 1+x)

y4C( —x)+ 2C(x)+-', ~'}=f (3). (61)

in ~53) can be reduced to
Spence-function values and rational expressions. e
find

1

dxt -4y'+ 12y'-8y'j

X{—lnx 1nt (1+x)(1—x)'j}
= ir'/24 ——,

' ln2+ 1/108 (62)

. (37) and (44)j we have obtained the finite part of
the fourth-order contribution o e

~ ~

u to terms vanis ingmalization constant Z3. Thus, up
as A —+~, we have

Z &'&= —( / )'(l »(A/ .)+f(3)-5/24).
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APPENDIX

1

3 0

dxL —4y'+12y4 —8y'j54C (—x)+24 (x)+-', ir'j

= —n'/24+ s ln2 —7/54, (63)

In this Appendix we list the spec' '
gecial inte rais which

have been use in e cad
'

th lculation discussed in t e text.
ThefunctionC x w ic wh'ch we call the Spence function)

is defined for complex s by the integral"

so that finally we get
c()=

ln(1+ t)
dt (A1)

I34——

= f(3) 13/108—

Collecting all terms, we find

5
I,=g Is;——f'(3)+-', ln2 ——.

i~l

dx E4{ lnx inL(1+ x)—(1—x)'j
0

+44 (—x)+24 (x)+-',s'}

(64)

(65)

1 n an ath that does not cross the real axisaxis between

u the real axis it is conventiona yreal axis, an on e r
defined by

C(x) =limReC(x+ie)=
e-+0

1

e ave onl used the SpenceIn the preceding sections we ave o y
alues between —1 and 1. For a detai e

integrals can e re uceb d d to special values of the Spence
function:

IV. CONCLUSIONS

terms Ii, Is, and Is in Eq. (34) are now

'
n from the Feynman diagrams in ig. ocontribution from e

d I is the following:g~ )
~~('& which we have calle, is e o (A3)

(A4)

C (0)= ——,',s',

I= rr/s-) 'L:,' ln(m„/m, )+ ', t (3) 5/1-2+O—(m,/m„) 5

1.52(n/s. )'. )losel related to the dilogarithm /Spence s

p t 'o (Do Pnbl cations,(b) Our result for the con r b ~othe~~@,g'p„„,»»ution from the Feynman stegun, ~ang$oo& of ~athematicaI, plnc sons
diagram shown in Fig. 3 to s(g„—g, "' a rees wit t a Inc. , ew
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used in the text:l' the integrals useBelow we lst

ln(1+x)
dx

x
(A5)

t.erm»& «s can eb exp ressep host « integ
d d» the text. :Ke list below thee ones nee e

lnx ln(1+x)
dx (A12)

lnx
Cx =C(0),

o 1+x

( 1) ~(0)

=C(—1)—C(0).dx
1—x

Fol x&1 Riemann s 1 function

(A6)

(A7)

(A8)

lnxln(1 —x)
dx

lnx ln(1+x)
dx 1x0

lnx ln(1 —x)

1+x
Lln(1+x)]

dx

(A13)

= —l«3), (A14)

(A16)

= —-'"ln2+ —f(3), (n — A15)
8

00

~(*)= Z—

22e resentationhas the integral rep

L
—ln(1 —t)]*-&

dt

Especially, we have

(A9)

(A10)

ln(1+x) ln(1 —x)
dx = ——.'l(3) (A17)

(A18)

C(—x)—4(0)
dx

x

e sim lified

0

f E . (61 can ebe somewhat simp
'

Th derivation of q.
e

'
nte rais are use dif the following ln eg

C(x)—e(0)
dx

= 1.202056903 . (A11)«3)=— ch

ramowitz and Stegunm Eq. (23.2.7) in Abramow&tz an"This follows from Eq.
(Ref. 21).

Cx = —-', «3),
o 1+x

(—)
Cx =s03 —"

(A20)

(A21)


