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In the above calculation we have also not used the
mixing between n° and X°. As has been pointed out in
Ref. 4, its inclusion reduces the rate by a factor of
0.68 or enhances it to double its value depending on the
sign of the mixing angle, and it is also easy to predict
a similar branching ratio for the decays. We find that
R’'~0.20 for the M1 transition case, to be compared to
the rate ~0.42 when E1 is predominant (see Ref. 6).

PHYSICAL REVIEW

1835

In any case the experimental limit is < 0.99, or 0.6%,
which is quite large. Hence the M1 transition can also
contribute appreciably. In Fig. 1 we have plotted the
photon spectrum in the w-dominance model.
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We present the details of a calculation of the sixth-order contribution to § (g,—g.) from the proper fourth-
order vacuum polarization. As a byproduct of this calculation, we have also obtained the finite part of the

fourth-order contribution to the charge-renormalization constant Z;.

I. INTRODUCTION

NE of the classical successes of quantum electro-
dynamics has been the prediction of radiative
corrections to the Dirac value of the gyromagnetic ratio
of the electron and of the muon. To first order in the
fine structure constant a, these corrections! are pre-
dicted to be the same for the electron and the muon:

3(ge—2)P=3(,—2) P =a/2r. (1)

This is, however, no longer true at higher orders.
Already at fourth order in the electric charge constant
e (¢*/4r=a), the Feynman diagram shown in Fig. 1(a)
gives a sizable contribution to 3(g,—2), while the
corresponding diagram obtained by interchanging the
muon and electron lines [see Fig. 1(b)] gives a very
small contribution to 3(g,—2). All other diagrams in-
volve only one kind of lepton, and therefore their
contributions do not depend on the masses.

The total contribution to the electron g factor in
fourth order is given by
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Energy Commission.

 Present address: CERN Theory Division, CERN, Geneva 23,
Switzerland.

! J. Schwinger, Phys. Rev. 75, 1912 (1949).

where {(3) is the Riemann zeta function of argument 3,
defined in the Appendix. The terms independent of the
ratio m./m, were calculated by Karplus and Kroll,?
Sommerfield,® and Petermann* using standard quantum
electrodynamics, and by Terent’ev® using dispersion
techniques. We have calculated the term (1/45)
X(me/m,)?, which comes from the diagram shown
in Fig. 1(b).%

The corresponding contribution to the muon g factor
in fourth order is

a\?(97
3(g—2)W= (‘) {14—44‘%#2'{"%?(3)—%72 In2
/|
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= (+0.76577947X10-5) (o/m)2. (3

This includes the contribution from the diagram shown
in Fig. 1(a), which was first estimated by Suura and

2 R. Karplus and N. M. Kroll, Phys. Rev. 77, 536 (1950). Their
calculation, however, contained an error which was corrected by
Sommerfield (Ref. 3) and Petermann (Ref. 4).

3 C. M. Sommerfield, Phys. Rev. 107, 328 (1957); Ann. Phys.
(N.Y.)5,26 (1958).

* A. Petermann, Helv. Phys. Acta 30, 407 (1957).

®M. V. Terent’ev, Zh. Eksperim. i Teor. Fiz. 43, 619 (1962)
[English transl.: Soviet Phys.—JETP 16, 444 (1963)].

;'l‘o our knowledge, this term has not been taken into account
before.
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F16. 1. Feynman diagrams contributing to the difference
of the muon and electron g factors in fourth order.

Wichman? and by Petermann.® Recently it has been
calculated exactly by Elend.?

The complete calculations of the sixth-order radiative
corrections to the electron and muon g factors have not
been carried out yet. Interest in this type of calculations
has been largely motivated by the increasing experi-
mental accuracy in the measurements of the anomalous
magnetic moments of the electron and the muon. At
present, 3(g.—2) is known to an accuracy of 30 ppm!°:

2(ge—2)exps= (1159 5574£30) X 10~°, (4)

and there are experiments in progress!* which are likely
to improve this accuracy to a few ppm. For the negative
muon, the most precise experimental result which has
been reported is!?

1(8u— 2)exps= (116 64533) X 10-8. (5)

It is clear from these results that calculations of the o®
radiative corrections, as well as other types of correc-
tions (strong-interaction corrections due to the hadronic
contributions to the photon propagator,’* and weak
interaction corrections!?) which might be of the same
order of magnitude as the o?® radiative corrections, are
needed.

A significant step in the estimate of the sixth-order
radiative corrections is the calculation of the difference
between the muon and electron g factors. In fact, the
terms containing [In(m,/m.)]?, and most of the terms
containing In(m,/m.), contributing to this difference

7H. Suura and E. H. Wichmann, Phys. Rev. 105, 1930 (1957).

8 A, Petermann, Phys. Rev. 105, 1931 (1957).

9 H. H. Elend, Phys. Letters 20, 682 (1966); 21, 720 (1966).

10 This is the corrected value of A. Rich, Phys. Rev. Letters 20,
967 (1968); 20, 1221(E) (1968). It is based on the data of D. T.
Wilkinson and H. R. Crane, Phys. Rev. 130, 852 (1963), who gave
the value 1 (ge—2)expt= (1 159 6224-27) X 1070,

11 See A. Rich (Ref. 10).

12 This is the value reported by F. J. M. Farley at the 1968
American Physical Society meeting in Washington, D. C.
(unpublished). The previous reported value was 3%(g.—2)
= (11 666=£5)X1077 by J. Bailey, W. Bartl, R. C. A. Brown,
H. Jostlein, S. van der Meer, E. Picasso, and F. J. M. Farley, in
Proceedings of the 1967 International Symposium on Electron and
Photon Interactions at High Energies (Stanford Linear Accelerator
Center, Stanford, Calif.), p. 48.

13 C. Bouchiat and L. Michel, J. Phys. Radium 22, 121 (1961);
see also L. Durand, Phys. Rev. 127, 441 (1962); 129, 2935 (1963);
and more recently T. Kinoshita and R. J. Oakes, Phys. Letters
25B, 143 (1967); J. E. Bowcock, Z. Physik 211, 400 (1968).

4G, 7. Brodsky and J. D. Sullivan, Phys. Rev. 156, 1644 (1967).
T. Burnett and M. J. Levine, Phys. Letters 24B, 467 (1967);
R. A. Shaffer, Phys. Rev. 135, B187 (1964).

Fi1G. 2. Feynman diagrams representing the proper fourth-order
vacuum polarization contribution to the difference of the muon
and electron g factors in sixth order.

have already been calculated by several authors.!5:16
However, most of the remaining terms have not been
calculated as yet.

In this paper we present the details of a calculation of
the sixth-order contribution from the proper fourth-
order vacuum polarization graphs to 3(g.—g.). The
relevant Feynman diagrams are shown in Fig. 2. The
method of our calculation is discussed in Sec. II, and
the explicit evaluation of the integrals involved is
carried out in Sec. ITI. We should remark that all our
results are gauge-invariant.

We have also evaluated the contribution to 3(g,—g.)
from the Feynman diagram shown in Fig. 3, and our
result agrees with a previous calculation by Kinoshita.!®

The results of these calculations are presented in
Sec. IV.

We have included an Appendix which contains a list
of the special integrals used in the calculation.

II. METHOD OF CALCULATION

We start from the general expression for the renor-
malized photon propagator

Bw pup\IL(p?)
DMV(P)= _'L;"l_i(gw—' 2 )'—pz— ’ (6)
with .
(p?) 1 /= dt ImII()) )
== [ = . G
PP 7r/0 t t—p?

F16. 3. Double bubble contribu-
tion to the difference of the muon
and electron g factors in sixth
order.

7 e P b

16 T, Kinoshita, Nuovo Cimento 51B, 140 (1967); T. Kinoshita,
lectures given at the Summer School of Theoretical Physics,
Cargese, 1967 (unpublished); S. D. Drell, in Particle Interactions
at High Energies (Scottish Universities Summer School, 1966),
edited by T. W. Priest and L. L. J. Vick (Oliver and Boyd,
Edinburgh, Scotland, 1966), p. 235.

16 S, D. Drell and J. S. Trefil (unpublished). Preliminary results
of these authors’ calculations were reported in Proceedings of the
Thirteenth Annual International Conference on High-Energy
Physics, Berkeley, 1966 (University of California Press, Berkeley,
Calif., 1967), p. 93; A. Petermann (to be published).
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Fic. 4. Diagram representing a set of
vacuum polarization graphs contributing
to the anomalous magnetic moment of
the muon.

2 6 n

The spectral function ImII(p?) is given by’

1 )
0(p) ImII(p*) = _6_1;2 2.(2m)*8@ (p—pa)

X(0[74(0) [n)(n|7,(0)|0), (8)

where Y, also means summation over the phase space
available to particles in each possible state #.

The contribution to the anomalous magnetic moment
of the muon from a given set of vacuum polarization
corrections of the type shown in Fig. 4 can be simply
obtained in the following way: The photon propagator
—ig./p? in the second-order graph (the graph corre-
sponding to the Schwinger term) is replaced by

1@ (?2)) ,

P2

(—igw)(— ©)

where

I (4"
is the contribution to II(p?) from the set of graphs G.
From Eq. (7) it can be seen that this expression is a

superposition of propagators, with mass squared ¢,
weighted by the function

1 Im[[@ (1)

T ¢

(10)

It is therefore clear that the resulting contribution to
$(gu.—2) has the following structure:

1 red
2@ [ ZmII© OKe0, o
o ¢

™

o\ ! 22(1—3)
@ (=(— L (1 1N
K, ®@) <7r> /0 dzzz+(¢/m“2)(1—2) 12

is the second-order contribution to 3(g,—2) from the
exchange of a photon with squared mass ¢.
The explicit form of K,®() is the following!s:

where

for 0<t<4m,?, with r=1t/4m,?
a

K=

—2(1—87+87%)(r/(1—1))"? arccosv/7]; (13a)

175, Kamefuchi and H. Umezawa, Progr. Theoret. Phys.
(Kyoto) 6, 543 (1951); see also G. Kdllen, Helv. Phys. Acta 25,
417 (1952); M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300
(1954); H. Lehmann, Nuovo Cimento 11, 342 (1954).

18 S, J. Brodsky and E. de Rafael, Phys. Rev. 168, 1620 (1968).

) 1—47—4r(1—27) In(47)
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Fic. 5. The double bubble con-
tribution to the fourth-order
vacuum polarization.

1— (1—dm,2/t)112

for t>4m,2,
1+ (1—4m,2 /512

with x=

K,,(”(t):(E>(%x2(2—x2)+(1+x)2(1+x2)

g
In(14x)—x+32* 1+=x
X f

x? 1—x

22 lnx) . (13b)

The Feynman diagrams which contribute to the
fourth-order vacuum polarization have been drawn in
Figs. 5 and 6. Their contribution to (1/7) ImII‘)(£) has
been calculated by Killén and Sabry,'® and their result
is the following:

1 1
~ ImII® ()=~ ImIT*®()
™ ™

1
—2 Rell®(f)— ImII® (). (14)
™

Here (1/7) ImIT*®(?) is the contribution from the set
of proper graphs shown in Fig. 6, while

—2 Rell®(#)(1/m) ImII®(?)

is the contribution from the double bubble graph shown
in Fig. 5. Explicitly: with §=(1—4m,?/t)!/?,

1 o
—ImII® ()= <~)(%—%62)60(t~—4m82) , (15a)
™ vy

a\[8 1 1—46

Rell®(f) = (—)[-—~a2+(%~%52)5 ln——] ,
/L9 3 1+06
for t>4mz2; (15b)

and

1 o\
- tmrro =) {sbi— 4 (4409
v

™
11 11 7
Xln(6464/(1—62)3)]-}-':_._4__52___54
16 24 48

(1+6)3:|

8%

+G+HiE—§o) In

1+4
Xin——— (- 48"
—0

x[4@(—£~§)+z¢(i—:r—z>+%ﬂ]}oa— 2), (16)

where ® is the Spence function defined in the Appendix.

19 G. Killén and A. Sabry, Kgl. Danske Videnskab, Selskab,
Mat, Fys, Medd, 29, No. 17 (1955),
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In order to evaluate the integral in Eq. (11), let us
first analyze the behavior of the functions K,®(f) and
ImIT*®(¢) in the limits:

(a) For ¢ small, the asymptotic expansion of K, (1),
given in Eq. (13a), is (+—0)

K, 2= (a/7)[3—m\/7— 47 Indr—274+0(+*/%)]. (17)

(b) For ¢ large, (x— 0), the asymptotic expansion
of K,®(f), given in Eq. (13b), is

K,2(0)=(o/m)[32+0(s* Inx) ].

(c) Att=4m.2 i.e., §=0, the function ImIT*®(¢) de-
fined in Eq. (16) takes the value

(1/m) T (t= dm ) = (o/m) .

(18)

(19)

(d) For ¢ large,
(1/7) ImIT**®(7), with

o= (1—y)'"

the asymptotic expansion of

and y=4m.*/t, (20)

is given by
(1/7) ImIF*®(8) = (a/m)*[+{y+0(y* Iny) J.

Let us now discuss the calculation of the integral in
Eq. (11). The contribution from the double bubble
graph shown in Fig. 5 to 3(g,— 2) has already been given
by Kinoshita.!s It corresponds to the Feynman diagram
shown in Fig. 3. We have also calculated this contribu-
tion, using our method, and we obtain the following
result:

a\r2/ m,\* 25 m, =* 317
Gl SR
x/ L9\ m, 27 m., 27 324

*I—O(ﬁf lnﬁ‘):l . (22

My Me

(21)

The contribution to $(g.—2) from the proper graphs
shown in Fig. 6 has not been completely evaluated
before. The integral to evaluate, corresponding to the
Feynman diagrams shown in Fig. 2 is the following:

 di1
1= / oK, ). 23)
4

ma LT

We separate it into three terms:
1 © dt

= ImIF* (1= o) / Tk,
™ dm ¢ 4

©® di1
+1<M<2>(z=0)/ —
4m ¢ t

X[ImIF® () —ImII* @ (t= ) ]+R, (24)
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¥16. 6. The contribution to vacuum polarization
from the proper fourth-order graphs.

with

* difl 1
R:/ —(~ ImIT*@ (f) — — ImII*® (¢= o0 ))
dm

2 b\ ™
XLK2(O)—K,»(=0)].

From Egs. (17)—-(21), it can be seen that all these
integrals converge. We shall evaluate them neglecting
terms of order (a/w)3m,/m, and smaller.

Let us first estimate the integral R defined in Eq. (25).
We shall show that it is negligible. This is due to the
particular behavior of the two factors in the integrand.
The factor (1/z) ImIT*®(f)— (1/7) ImIT*® (=) is
only appreciable for {~4m,? but very small when ¢
becomes of the order of 4m,2. On the other hand, the
factor K,®({)—K,®(1=0) is vanishing when t~4m,?
and only becomes appreciable when {~4m,2. In order
to estimate R, we split the interval 4m.? to « into two
parts, obtaining

(25)

R=Ri+R,, (26)
with
ame® i 71 1
R1=/ ——(— ImIT*® (f) —— ImIT* @ (t= 00)>
Am¢* I\ iy
X[K,®O)—K,»(=0)] (27)
and
*© difl 1
R2=/ ——(—— ImIT*® () —— ImIT*® (1= w))
amy? ENT T
X[K®PO)—-K,2(=0)]. (28)

Using Eq. (21), we find that for (> 4m,?,

1 3/ a\4m,*
—[ImIT*® () = ImI*® (= )]§~<-> _—
™ 4

T t

thus,

3/7a\? r* di dm.2
R_() / R0 - K 0],
4

4\7 my? 2

where K, (t) is given in Eq. (13b). It follows from
Eq. (12) that K,™®(#) is monotonically decreasing for
{>0. Hence

| Re| <(a/m)* §(me/m,)?

and therefore we neglect this contribution.
To evaluate R;, defined in Eq. (27), we need a
separation point between large and small values of 7.
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A natural choice is the geometrical mean of the two
limits of integration. Thus we have

Ri=Ryu1+Rs, (29)
with

dmemy dt

R11=/ (), (30a)
4me® t
e gy

R12=/ 7( =) (30b)
dmemy

For ¢ in the interval 4m2<t<4m.m,, we can use the
asymptotic expansion of K®(r) for = small given in
Eq. (17). Then

o dmemy dt
-
™ dm¢® t
t\2 14 14 ¢
o) ]
m,? mu: om: omy?

1 1
><(~ ImIT*® (f) —— ImIT*@ (1= oo )> .

™ ™
The dominant part of this integral comes from the

(¢/m,2)12 term. With z=1¢/4m.? we have for the contri-
bution from this term

a Me myu/me dz
(T
T m, 1 \/Z

1 1
X7r(— ImIT*® () —— ImIT*@ (z= )) .

u ™

This term is clearly of order m./m,, the coefficient of
which is given by the integral in the right-hand side.
This integral converges in the limit #,/m,— « and
could be evaluated analytically. We have evaluated it
numerically to be equal to 6.9(a/7)2 Thus we finally
have

Ry~— (0(/7!')3 6.9me/m,‘ ’

a term which we neglect.

For ¢ in the interval 4mm, <i<4m,?, we can use the
asymptotic expansion of (1/7) ImIT**(¢), correspond-
ing to small y=4m,%/t, given in Eq. (21). Notice that

y=4m2/t=(m./m,)*/T.

Then R;» becomes

a\2/m\23 . dr1l
Rlzg(‘—> (-—) ~/ — -[K.@(r)—K,®(r=0)].
w/ \my/ & Jmemu, T T
Again, we know that in the interval m,/m,<7<1, we
have K,®(7) <a/2w. Therefore, we have at least
lRm[ <(a/7r)3 gme/m,, y

a contribution which we also neglect.
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Next, let us consider the first term in Eq. (24). This
is the only term left which still depends on the parameter
me/m,. In order to extract this dependence, we split the
interval 4m,? to « into two parts:

4my? dt
n=[ =k, (31a)
4me2 t
* dt
L= / ZK,®(0). (31b)
4m‘,2 t

Of these, only L; depends on the mass ratio. We separate
out this dependence by writing

m, it di
Li=2K,®(0) ln——--f—/ —
Me 0 t

X[K®0)—-K,P2@=0)]+S, (32)

where

o _/ me _[Ku(g)(t)_K“Q)(t_—_O)] (33)
0 t

can be shown to be of O(m./m,) by using Eq. (17).
In conclusion, we therefore have

a\? My Me
1= () [t 1t mrarao( 2], o

g Me My

where
a im® '

(—>zl= / k@@ —K,@=0)], (35)
m 0 t
a ® dt

(—)12= / —K, (1), (36)
. 4‘,,,“2 t

a\? * dt
(L
m 4me? t

1 1
X [~ ImIT*® () —— ImIT* W (f= )] YD)

v ™

These integrals are calculated in Sec. III.

III. EVALUATION OF THE INTEGRALS
I, I, AND I,

Using the expression for K,®(7) given in Eq. (13a),
we obtain for 7; in Eq. (35)

]1=/ dr{-—4—4(1—-—2‘r} Ind~
’ 21— 8rh-81) arccos(71/2) 38)
Tl

The last term in the integrand gives a vanishing con-
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tribution to the integral (best seen by putting 7= cos?p)
and the two first terms are trivial. We find

I=-2. (39)
To integrate I, we use the variable
1—(1—4m2/f)12 (1+x)?
= =m,* y (40)

—_— m
1+ (1— 4,2 /)12 %
and obtain [see Eq. (13b)]

1 1
12=f dx(1-——~—+x Inx—x In(14x)
0 1+x
In(14x) —x+1x2

+————) . 4

x3
Note that the last term is regular at x=0. All terms are

now trivial and we obtain

12=%—ln2. (42)

The integral I; is essentially the finite part of the
fourth-order contribution to the charge renormalization
constant Zs, which is given by

A2 1
Zy®=— / — — ImIT*® (), (43)
4m¢z

tw

where A is an ultraviolet cutoff. We ﬁnd up to terms
vanishing as A — o,

Zy®=—(a/m)"[} n(AY/4mAH+1:]. (44)

The divergent term has been calculated previously
by Jost and Luttinger.? To our knowledge the finite
part I3 has, however, never been evaluated before.?»

Using Eq. (11), we find, in terms of the variable

b= (1—4m2 /i), (45)
= [ a2 ‘ 14 o[s
3—/0 11—t *

+(—3+39") In(646*/(1—8%)7) ]

14411 11 7
—Hn—[— g
1—6L16 24 48
(1+ay
1 I
862

—G+Hi— 39

N [ P P

20 R, Jost and J. M. Luttinger, Helv. Phys. Acta 23, 201 (1949).

0a Footnote added in proof. The finite part of Zs® has recently
been independently evaluated by C. R. Hagen and M. A. Samuel
[Phys. Rev. Letters 20, 1405 (1968)] in a different context.
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Introducing the variable

x=(1-29)/(1439), (47)
we find
Is=/ dz{R1+ Rs Inx+ R; In((14x) (1—x)?)
+ Ry —Inx In((1+x) (1—%)?%)
+4®(—x)+20(x)+372]}, (48)

where R; are rational functions. We express them in
terms of 1/x, and

y=1/(1+x), (49)
and we find
Ri=3(y+y*—12y°+12y), (50)
Ro=1%(6y—8y*—27y*+45y*—14y%), (51)
Rs=3(—1/x+2y"+8y*—8y%), (52)
Ry=%(—1/x+2y—4y’+12y*—8y5). (53)
The integral over R, is trivial:
1
131=/ dx Ri=%1n2—1%. (54)
0

The second integral only contains one nontrivial term
(see the Appendix):

1
/ dx = —qgm. (35)
0 l—I—x

In the remaining terms the logarithm disappears after
a partial integration, the result being

55

1 10
[32=/ dx Ry Inx= —{n?+—1In2——. (56)
0 3 72

In the integral over R; only one term is nontrivial,
leading to Spence-function values

f‘d In[(1+x)(1—2)*]
0 X

After a partial integration, the remaining terms are
trivial:

=—1n. 57

I33= / dx Ry In[(14-x)(1—x)?]

10 25
ir2—— In2+4—.
3 27

The integral over R, has nontrivial parts coming from
the first two terms in Eq. (53). Using

) In[ (14-2)(1—x)%]

X

Il

(58)

d
—[4®(—x)+2®(x)+ 372 ]= , (89)
dx
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we find by a partial integration

1 1 2
/ dx(——g—c—f-l—_l_:‘){—lnx In[ (14x)(1—x)%]
' 40— )+ 28(x) + %)

1 3 2 4
= —7? ln2+[ dx[(——-————) lnx-—~ln(1—|—x)]
0 x 14=x x

XIn[(1+x)(1—x)%].

All these terms lead to expressions involving ¢(3) (see
the Appendix), and upon collection of terms we find

(60)

2 rt 1 2
~/ dx(——+—————){—lnx In[ (14x)(1—x)%]
3Jo x 14w

+48(—)+22(x)+37°} ={(3).

The remaining terms in (53) can be reduced to
Spence-function values and rational expressions. We
find

2 sl
g/ dx[—4y3+12y1—8y]
0

X{—Inx In[(14x)(1—x)%]}
—1?/24—21n241/108 (62)

(61)

and

2 1
: / da — 4y 12— 8y T AD(— )+ 20(2)+ 3]
0

=—72/244-2In2—7/54, (63)
so that finally we get
Iy= /1 dx R{—Inx In[(14x)(1—x)%]
’ F4D(—2)+20(x)+37%)
={(3)—13/108. (64)
Collecting all terms, we find
4 5
I3=3% I3;=¢(3)+3 In2——. (65)
i=1 24

IV. CONCLUSIONS

(a) The terms I, I, and I; in Eq. (34) are now
known [see Egs. (39), (42), and (65)]. Therefore, the
contribution from the Feynman diagrams in Fig. 2 to
$(g.—g.)®, which we have called I, is the following:

I=(a/m)*[{ In(m,/m)+55(3)—5/124-0(me/m,) ]
~1.52(a/7)3.

(b) Our result for the contribution from the Feynman
diagram shown in Fig. 3 to 3(g,— g.)® agrees with that
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obtained by Kinoshita!s:

a\’r2ys my,\* 25 m, =* 317 Me My

() ()]

x/ LO\ m./ 27 m, 27 324 My e
~2.72(a/m)3.

(c) We have also calculated the contribution to
3(ge—2)® from the Feynman diagram shown in
Fig. 1(b). The result is

(T A e (2) ]} s

(d) As a byproduct of our calculation of I3 [see
Egs. (37) and (44)] we have obtained the finite part of
the fourth-order contribution to the charge renor-
malization constant Zz. Thus, up to terms vanishing
as A —oo, we have

Z3® = —(a/m)%% In(A/m,)+¢(3)—5/24).
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APPENDIX

In this Appendix we list the special integrals which
have been used in the calculation discussed in the text.

The function ®(x) (which we call the Spence function)
is defined for complex z by the integral*

= In(14-4)
B(z) = ]1 a—

(A1)

along any path that does not cross the real axis between
— o and —1. It has a cut from —« to —1 along the
real axis, and on the real axis it is conventionally
defined by

In| 14|
t .
t

() =lim Red(x-ic)= / d (A2)
e 1

In the preceding sections we have only used the Spence
function for values between —1 and 1. For a detailed
discussion, we refer to Killén and Sabry.!® Various
integrals can be reduced to special values of the Spence
function:

®(0)=—157?,
B(—1)=—1n2.

(A3)
(A4)

21 This function is closely related to the dilogarithm [Spence’s
integral for =2 as defined, e.g., in M. Abramowitz and I. A.
Stegun, Handbook of M athematical Functions (Dover Publications,
Inc., New York, 1965), Eq. (27.7.1)].
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Below we list the integrals used in the text:

1 1 1 "
/ dx n( +i)—= —&(0),

x

1 Inx
f dx——=3(0),
0 1

+x

U In(l—x)
/ du =®(—1)—d(0),

X

/de % B 1)—(0).

1—x

For x> 1, Riemann’s { function

w 1
Slo)=2 —

n=1p%

has the integral representation??

1 L [—=In(1—¢) ]!
()= / dt[ n(1—4)] .
I‘(x) 0 t

Especially, we have

1t [On(1—9)J :
§‘(3)=5/ dt-[i(—*—);]—= 1.202056903- - - .
0

¢

(AS)

(A6)

(A7)

(A3)

(A9)

(A10)

(A11)

22 This follows from Eq. (23.2.7) in Abramowitz and Stegun

(Ref. 21).

Inx In(1—x)
—
Inx In(14-x)
dy———
Inx In(1—x)
do——— 2 In24+—¢(3),

U [In(1+x) ]2
dy————

In(14-x) In(1—x)
da—— e

d(—x)—2(0)
e

= §¢(3)— a2 In2.
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A host of integrals can be expressed in terms of {(3).
We list below the ones needed in the text:

1 Inx In(14-x)
/ do Y
0

(A12)

(A13)

(A14)

(A15)

(A16)

(A17)

The derivation of Eq. (61) can be somewhat simplified
if the following integrals are used:

& (x)—P(0)
» —

(A18)

(A19)

(A20)

(A21)



