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The decay rate for g ~ m+m m'p has been calculated when the photon is emitted in the M1 state. Since for
such a transition the three pions are in a 3 =1 and I=O state, the co-meson-dominant calculation is ex-
pected to give a reasonable estimate of the rate of the p —+ 71-+~ ~'& decay mode. Further, comparison of the
vector-meson-dominant result with that obtained by applying current commutation relations predicts
that these two results are equivalent, provided the Kawarabayashi-Suzuki relation g„3 ——3IJt,'Il 'g„~ be
valid when g„3 and g „~ are the coupling constants in co ~ 3x and co ~ m.y decays. The 00-meson-dominant
calculation together with the Kawarabayashi-Susuki relation predicts I'(rt -+ n+7r m'y)/I'(rt —v vre2y) =0.2%,
in reasonable agreement with experiment.

1. INTRODUCTION
' 'T is well known that there has been a renewed in-
~- terest in estimating correctly the various p-meson
decays. This essentially stems from the fact that q —+ 3m.

branching ratios have of late been of interest following
a number of calculations based on current algebra.
Further, because of the probable C-violation effects in

p decays, various rare modes of C-conserving g decays—
namely, the p —+pe+e, pp+p, , e+e, p,+p, , etc., modes—
have been theoretically calculated, and experimental
searches for these decay modes are also in progress. In
a similar fashion there has recently been some experi-
mental indication of the probable existence' of the rare
decay mode p —+ sr+a x'p.

The present experimental result' states that the
branching ratio R= I'(rt —+ n+sr nsy)/F(n+sr sro)&0.9%
and R'= P(rt —+ n+sr srsy)/I'(st —+ sr'yy) &0.6%. Nor-
mally, one expects, purely froIn the phase-space factor
and the magnitude of the fine-structure constant, that
the branching ratio 8~1. However, one then notices
that the two pions in the 3m' mode must be in a state of
relative angular momentum 1=1, leading to a centri-

fugal barrier effect which then suppresses the decay rate.
An upper limit of R'—0.23% was predicted by Singer, '
using a p-dominant model for the decay mechanism. If
C conservation holds and the photon in 3xp decay is
emitted through an Mi transition, then the 3~ state
has T=O and J~=1, whereas for the Ei transition
J = 1+; hence x' will be in an s state relative to m+x,
and thus the decay then essentially follows from the
p-dominant model. An interesting calculation based on

current algebra, has been performed by Sarker. 4 He has
considered the case when A"1 is dominant. This is essen-

tially equivalent to the p-dominant calculation. The
recent calculation of Intemann and Lapidus' based on

2. MATRIX ELEMENT IN THE
~-DOMINANCE MODEL

In the or-dominance model, we use the following direct
coupling interaction Lagrangians

+I (to3rr) (grvsrr/tt ) erj Irepv polyp gv riv tov r

~"(~nV) = (g.„/t )e~„."t»~,p, tel~. t»,

&r'(~~V) =(g-v/t )e~. .e~"'~ g "&.'"

(2.1)

(2.2)

(2.3)

where g„3,g„», and g„~are the dimensionless coupling
constants for the respective interaction constants. The
value of g„3 is related to the observed decay width of
co —+ 3m mode and g„~ to the observed decay width of

current algebra also confirms' this contention. The pur-
pose of the present paper is to estimate the Mi tran-
sition amplitude for g —+ ~++ x'p decay using both the
to-dominance mechanism (which ha.s the right quantum
number as the pions are in the J = 1 and I=0 state)
and the algebra-of-currents' approach coupled with the
hypothesis of partially conserved axial-vector current
(PCAC). '

In Sec. 2 we calculate the matrix elements for g ~
3xy and g~ m'2y in the or-dominance model. In the
subsequent section we employ the techniques of the
algebra of currents and show further the relationship of
this calculation to the vector-dominance calculation for
the g~3xp decay process. It is interesting to note
that this can be established through the Kawarabayashi-
Suzuki' relation Lsee Eq. (3.4) below] between g„s and

g„v couplings de6ned in Eqs. (2.1) and (2.2). Using the
Kawarabayashi-Suzuki relation Lsee Eq. (3.4) below)
and vector-dominance matrix elements, we 6nd R'

0.20%. Further, to distinguish the various vector-
dominance calculations, we calculate the energy spec-
trum of the photon in g —+3xy.

' S. M. Flatte, Phys. Rev. Letters 18, 976 (1967).
'L. R. Price and F. S. Crawford, Phys. Rev. Letters 18, 1207

(1967).' P. Singer, Phys. Rev. 154, 1592 (1967).' A. Q. Sarker, Phys. Rev. Letters 19, 1261 (1967).
~ G. %. Intemann and I. R. Lapidus, Phys. Rev. 165, 1650

(1968).

'The current-algebra calculation of Sarker leads to a value ofE'~0 42%, whereas Intemann and Lap. idus give a value of 0.23'%
only.

M. Gell-Mann, Physica 1, 63 (1964),
8 Y. Nambu, Phys. Rev. Letters 4, 380 (1960).
~K. R. Kawarabayashi and M. Suzuki, Phys. Rev. Letters

16, 255 (1966).
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~ —+ xy. %e need not evaluate g„» as it does not occur
in E'.

The matrix element for y —+ 3xy can be written down
quite simply, using (2.1) and (2.2)

tremely involved. Following Chang, " we can write
down the reduction of the three pions, and the matrix
element (3s y ~

T
~ g) for the decay process (s's ss'A &

~
)))

contains the following set of matrix elements:

g(oqyg(sam

~(y 3m y) 7

p4 (p„—k)' —m„'

A = [q~ 'k~qs 'p"q»' e~—q» 'k~p"'q» e~'gs

gs k~q'g 'p"q» 'e"+gs 'k~p" q» e~'qg

—
q» 'k"q~ 'p"gs 'e"+q» 'k~p"'qs q»,

—er],

and similarly, using (2.2) and (2.3), we have

geo»gco~y~ (q ~ n.2y)
s(' (p —k)' —m '

B'= t'k'& k&q p&e'& e k'~ k~e—'~ p»e. q».

q. k&k'&—p»e'& e&+q k'e" p&e~ k'7

+e'& k&k'& p»q ee'& k&p&
' —q»k'& e'&j

(2.4)

d4xd'yd's e'«*e'e'"e'«'P( iq—,)') ( iq
—s")( iq—,")

X(As~ T(A. (*)As"(y)A, "(s)) ~g)1, (3.1a)

d'xd'y e' +"e'"&(—iq, &)(—iqs") e.se

X(A ~T(Eg (x) A "(y)) ~)t), (3.1b)

d4x e&(«+Is+»&) &e&es»( —iq P) e

X( IA. (x) lg), (3.1c)

d'xe'( + + )*bs,(e ~rt) .(x) ~g). (3.1e)

d xd y efes»e((eh+«)»( —iq g)

X(e'I T(A."(x)ps (y)) I ~), (3 1d)

where

& (»~»»» y)/I (»~» yy) I (2.6)

d3$y d8g m d3~ a de

2M„(2')s (2~)s (2n.)s (2s)s

X (2n-)454(k~+q, +gs +g, —p»)
16ko~goo got goc

X~~(, 3 ~)~

d'g d'k& d'k'& 1
~(n~~ vv)

2M„(2m)' (2m)' (2s)' Sq, k()&ke'v

X (2s)'b'(k'r+k'~+q- —p») tM(, .s„)
i

. (2.g)

3. CURRENT-ALGEBRA CALCULATION AND
RELATIONSHIP TO VECTOR

DOMINANCE

+ (k& ~ k'&). (2.5)

In writing the above expressions (2.4) and (2.5), we
have suppressed the normalization factor for simplicity.

From (2.4) and (2.5), the branching ratio is then
given in our co-dominance model by

In evaluating terms in (3.1d) and (3.1e) we have
utilized the current commutation relations (CCR) with
the 0. model as in Weinberg. "It may be noted that the
terms in (3.1e) above represent the decay rl —+s+y,
which is forbidden if charge-conjugation invariance is
demanded, and similarly the terms in (3.1c) represent
A i~ ))+y decay which is a, iso forbidden by the same
argument. We drop the terms in (3.1a), as they are
highly momentum-dependent, i.e., cubic in the pion
momenta, as has been shown by Rubinstein and Vene-
ziano ' and by Intemann and I.apidus. The highly
momentum-dependent form factor leads to a smaller
branching ratio compared with the other terms. If
further we drop the o.-dependent term in (3.1d) which
represents Ai~))+(r+y (Ai' —& i) +o'+y), then we
are left with terms in (3.1b) only. The neglect of the
terms in (3.1d) may be justified as the decay Ai —+

r)+(r+y is not seen at all now. Thus we notice from the
above discussion that the p —+3xp decay process is
related directly to the p —+ x2p process. Using the PCAC
relation and rewriting the T product in (3.1b), we obtain
the following expression for the p —+ 3m' decay matrix
element in the g2~ 0 limit:

(7r(q.)n (gs) s.(g.)e~(k)
~ i)(p„))=3iF.—'(2m)-«'

In order to apply the current-commutator relation
for M1 photon decay in q —+ 3xp, we must disperse the
three pions simultaneously because the quantum num-
ber of the three-pion system suggests that any two
pions are in relative p wave leading to an I=0 state. It
may be remarked that it is not necessary to disperse all
the pions and the photon simultaneously (as was done
in Ref. 5), and doing so does not lead to any new result
except that of making the reduction phenomenon ex-

X(gq~qsq. ) ' ' d'xd'y e'«'+""+'"&(qs g,)e e, se—

X("(k)
I
TCy..(q.),&"(x)jl ~(p,))

+ (symmetric terms in bc and ca),
10 Lay-Nam Chang, Phys. Rev. 162, 1497 (1967)."S. Weinberg, Phys. Rev. Letters 17, 336 (1966)."H. R. Rubinstein and S. Veneziano, Phys. Rev. Letters 18,

411 (j.967); see also J. Pasupathy and R. E. Marshak, ibid. 17,
888) ()966).
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where in Eq. (1b) the right-hand side is essentially the
matrix elements for the p —& x 2p decay. We can then
write

(e~~r))=(3/6)P -s(2a) «'(8g,gsg, ) t~s(g& —g )
X e.sW.~"'(p„,(g.+gs) s,g.)

+symmetric terms,

where 3f denotes the q —+ m 2y invariant matrix ele-

ment. If we now use co dominance for p —+ x'2p decay,
then we can write down the following expression for

M,d»:

(5' p'p'/—m-')
1'cd"'= &cue"""(ga+gs)"ga'

(p' —m ')

e&»p„k~+ symmetric terms, (3.2)
where

p= (p,—k).

16-
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We thus obtain finally

gap ~yggo1 y
(3ay

~
r)) =3J'.—'(2~)—' '(8g.gsg.)-'"e.s.

2

(5 ~—p p~/m. ')
»P ksen

(p' —m.')
(3.3)
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FIG. j.. The calculated photon energy spectrum in the decay
q ~ m+m ~ y in the q rest frame, using the I-dominance model.
(kp is given in MeV. )

4. CONCLUSION

X~"""g.~q b"g,

The vector-domiance and the current-algebra results

are identical if

g.-s-= 3(~'/F-') g-7 (3.4)

which is the Karawabayashi-Suzuki relation. This re-

lation was obtained from a direct application of the
current commutation techniques to the co~ 3m decay
process in Ref. 9.

Having established the connection between the vector
dominance and CCR results, we now compute the
branching ratio for the g —+ 3' and g —+ x'2y decay
processes. Using the vector-meson dominant result,
Eqs. (2.7) and (2.8), for t1 —+ 3ay and ti —+ a'2p and the
Kawa, rabayashi-Suzuki rela, tion (3.4), we find"

Z'=1(~ 3~~)/1(~ ~~~)=0.2%%u,
'.

In writing Eq. (3.2) we have used the Lagrangian Eq.
(2.1).

In the co-dominance model for g —+ 3m', we have sup-

pressed the normalization factor, using the Lagrangian,
Eq. (2.1):

go13xgg~y (6'"—p'p"/m '}
(3a-y

~
t7) — e'"& e, 'p„&k~

p' (p&—k)' —nz '-

It remains now to discuss the inner bremsstrahlung
contribution to the p —+ 3xp decay. As pointed out in
Ref. 5, the direct emission term is 5 times as large as
the inner bremsstrahlung contribution, so we have not
considered the bremsstrahlung contribution for Mi
photon emission. It was also pointed out in Ref. 5 that
Singer's p-dominance calculation agrees with" that ob-
tained by current algebra, a result demonstrating the
equivalence of the two calculations for q —+ 3~p decay
when a photon is emitted in the Ei state. The present
calculation shows similarly that for 3I1 photon emis-
sion both methods again give identical'4 results if we

a,ssume the Kawarabayashi-Suzuki (K-S) relation LEq.
(3.4)j and further that the neglect of o termsis justified. ts

Here we wouM like to remark that Sakurai" has pointed
out the equivalence of current algebra and p-pole-
dominance calculations, through the use of the K-S
relation g, '=2m, 'J '. From the very small observed
rate q

—+ 3m', it is unlikely that the o. meson contributes
significantly. However, this point needs further
investigation.

"We do not give details of the phase-space calculation as it
is given in great detail in Ref. 5.

"See, however, Ref. 6.
"We must emphasize here that the cu-dominance g~ 3m'

amplitude agrees with the current-algebra result if we calculate
7t

—+ m'2p decay via the co meson again which seems to be quite
reasonable (see Alies et al. , Nuovo Cimento 45, 272 (1966)g."J. J. Sakurai, Phys. Rev. 156, 1508 (1967).
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In the above calculation we have also not used the
mixing between g' and X'. As has been pointed out in
Ref. 4, its inclusion reduces the rate by a factor of
0.68 or enhances it to double its value depending on the
sign of the mixing angle, and it is also easy to predict
a similar branching ratio for the decays. We find that
E.' 0.20 for the M1 transition case, to be compared to
the rate 0.42 when E1 is predominant (see Ref. 6).

In any case the experimental limit is & 0.9% ol 0.6%
which is quite large. Hence the M1 transition can also
contribute appreciably. In Fig. 1 we have plotted the
photon spectrum in the co-dominance model.
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Calculation of the Sixth-Order Contribution from the Fourth-Order
Vacuum Polarization to the Difference of the Anomalous

Magnetic Moments of Muon and Electron*
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We present the details of a calculation of the sixth-order contribution to $ (g„—g,) from the proper fourth-
order vacuum polarization. As a byproduct of this calculation, we have also obtained the finite part of the
fourth-order contribution to the charge-renormalization constant Z3.

I. INTRODUCTION

1
W~NE of the classical successes of quantum electro-

dynamics has been the prediction of radiative
corrections to the Dirac value of the gyromagnetic ratio
of the electron and of the muon. To first order in the
fine structure constant n, these corrections' are pre-
dicted to be the same for the electron and the muon:

This is, however, no longer true at higher orders.
Already at fourth order in the electric charge constant
e (e'/4s =a), the Feynman diagram shown. in Fig. 1(a)
gives a sizable contribution to s-(g„—2), while the
corresponding diagram obtained by interchanging the
muon and electron lines /see Fig. 1(b)j gives a very
small contribution to —,'(g, —2). All other diagrams in-
volve only one kind of lepton, and therefore their
contributions do not depend on the masses.

The total contribution to the electron g factor in
fourth order is given by

n ' 197
—,'(g, —2) &4' = — +—,', ~'+-,'f'(3) —-', ~' ln2

144

+—
(
—)+0 ~

—
) ln—

= —0.3284784( /~) ', (2)

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

t Present address: CERN Theory Division, CERN, Geneva 23,
Switzerland.

' J. Schwinger, Phys. Rev. 75, 1912 (1949).

where f (3) is the Riemann zeta function of a,rgument 3,
defined in the Appendix. The terms independent of the
ratio m, /m„were calculated by Karplus and Kroll, '
Sommer6eld, ' and Petermann' using standard quantum
electrodynamics, and by Terent'ev'" using dispersion
techniques. We have calculated the term (1/45)
X(m,/m„)', which comes from the diagram shown
in Fig. 1(b).'

The corresponding contribution to the muon g factor
in fourth order is

o. ' 97
s (g,—2) &4' = — +—'s-'+-sl (3)—qm' ln2

x 144

mp e We 'Pgp2

+-'ln —+-' '—4(—1n—3
~e ~p mp fjge

+3~1 —
) +&

~

—
)

= (+0 765779m 7X10 ')(o./~)'. (3)

This includes the contribution from the diagram shown
in Fig. 1(a), which was first estimated by Suura and

' R. Karplus and N. M. Kroll, Phys. Rev. 77, 536 (1950).Their
calculation, however, contained an error which was corrected by
Sommerfield (Ref. 3) and Petermann (Ref. 4).' C. M. Sommerlield, Phys. Rev. 107, 328 (1957); Ann. Phys.
(N. Y.) 5, 26 (1958).' A. Petermann, Helv. Phys. Acta 30, 407 (1957).' M. V. Terent'ev, Zh. Eksperim. i Teor. Fiz. 43, 619 (1962)

.LEnglish transl. : Soviet Phys. —JETP 16, 444 (1963)j.' To our knowledge, this term has not been taken into account
before.


