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between the present theory and the static model for

angular distributions are also displayed.

We observe that the static model, although giving
a satisfactory total cross section, where the con-
tribution of the nucleon-pole terms is less than 15%%u~

(kgr/Moor)'), is not adequate for the angular dis-

tributions where the nucleon-pole terms can contribute

as much as 40% $ (her/Mror)]. Our angular distribu-

tions have the correct slopes in general. Their quantita-
tive discrepancies reQect the discrepancies in the total

cross sections. Apparently more accurate measurements
are needed to test the theory.
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A quantum field theory of spin-0 particles traveling with speeds greater than that of light has been con-
structed. The theory constructed here is explicitly Lorentz-invariant; and the quanta of the field obey Bose
statistics. Formalism developed for the free field has been extended to the case of interaction of these parti-
cles with nucleons. A new feature of theory is the occurrence of negative-energy particles; this is a necessary
consequence of the relativistic invariance of the theory, since the distinction between positive and negative
energies is not a relativistically invariant concept for such particles. The occurrence of these negative-energy
particles does not, however, prevent the theory from being meaningful; the physical interpretation of the
situation is provided by the postulate that any process involving negative-energy particles is to be identified
with a physical process with only positive-energy particles traveling in the opposite direction, with the roles
of emission and absorption interchanged. The scattering amplitudes are the same as in the usual theory with
m2 replaced by —m .

INTRODUCTION
' 'T has generally been believed that no particle can
~ - exceed the speed of light. ' This has meant in turn
that in formulating the quantum theory of 6elds it has
been tacitly assumed that all the particles described by
such fields belong to one of two classes: those which
have a finite rest mass and travel with speeds less than
the speed of light; and those which have zero rest mass
and hence always travel with the speed of light. We
may also consider a third class of particles: those which
travel with speeds greater than the speed of light. If we
try to ascribe a rest mass to such particles it will be
pure imaginary, but this leads to no conceptual di%-
culties since these particles cannot be brought to rest.
The real difFiculty with such particles has been that the
usual Lorentz transformation properties lead to nega-
tive energies in suitable frames. Several years ago it
was shown how this difhculty may be overcome';

' H. Poincar6, Bull. Sci. Math. 28, 302 (1904);A. Einstein, Ann.
Physik (Paris) 17, 891 (1905).

~ O. M. P. Bilaniuk, V. K. Deshpande, and E. C. G. Sudarshan,
Am. J. Phys. 30, 718 (1962).

crucial to the resolution of the dif6culty is the reinter-
pretation of "negative-energy particles traveling back-
ward in time" to be positive-energy particles traveling
forward in time. All the puzzles and paradoxes that
have been put up by various people could be resolved
using this basic idea, at least as far as classical theory
is concerned. It also motivated two brilliant experi-
ments' searching for these faster-than-light particles,
which we shall call tachyons. ' Both these experiments
had negative results, but we believe that this should be
interpreted to mean that, like particles of vanishing
mass, tachyons carry no electric charge. '

It is now of interest to consider a quantum theory of

' T. Alvager, P. Erman, Nobel Inst. Report 1966 (unpublished);
T. Alvager and N. M. Kreisler, Phys. Rev. 171, 1357 (1968).

4 The name "tachyon" is the contribution of G. Feinberg, Phys.
Rev. 159, 1089 (1967).

'K. C. G. Sudarshan, Proceedings of the Nobel Symposium,
Lerum Sweden, 1968 (to be published). For an exactly solvable
Hamiltonian model for the charged scalar theory using both
positive- and negative-energy mesons, see E. C. G. Sudarshan,
in Theoretical Physics INI (W. A. Benjamin, Inc. , New Yor&,
1962).
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tachyons. The quantum theory would have to incor-
porate, in a suitably amended form, our resolution of
the negative energy difhculty of the geometric trans-
formation. We know that this must imply fundamental
di6erences in the principle of quantization since there
is no invariant distinction between positive and negative
frequencies. Arons and Sudarshan have shown how this
is to be carried out; they introduce creation and de-
struction operators for both positive and negative
energy tachyons. ' The quantum field theory so obtained
uses the physical reinterpretation postulate: In any
transition amplitside vieroed from any frame, a negative
energy tachyon in the initial (anal) state is to be rep/aced

by an antitachyonin t,he final (initial) state toith the

opposite values of all additive dynamical variables

Since tachyons have spacelike momenta, their po-
larization states should furnish a unitary representation
of the Lorentz group in three dimensions. This group is
composed of rotations around the direction of the spa-
tial momentum and the pure Lorentz transformations
in the two directions perpendicular to it. Since this
group is noncompact except for its one-dimensional
representation, all other representations are infinite-
dimensional. In other words, except for spin-0 tachyons,
all other tachyons must have an infinite number of
polarization states. '

It is advisable to study scalar (or pseudoscalar)
tachyons to start with; in this case we can use the
Klein-Goron Lagrangian to exhibit a quantum theory
of the tachyon field. We have studied the free field
and the interacting field. The latter case can be worked
out with the same degree of consistency as the local
6eld theory of ordinary quantized (scalar) fields in
interaction. This theory is developed in detail in the
subsequent sections of this paper. Consistent with the
fundamental theorem on the connection between spin
and statistics, ~ we find that spin-0 tachyons satisfy
Bose statistics.

where

+ (k2 m2)1/2

Since k, hp are real, it follows that

k'&m'.

Canonical quantization requires

(1.3)

&(+—y')[~'(*),~(y)j=0,
b(+—y')[4'(*)A(y)3= b(*—y)b( '—y') (1 4)

In the second equation the function 5 that appears on
the right-hand side is the "filtered 8 function, " which
does not contain any spatial momenta violating Eq.
(1.3):

b(x) =
(2pr)'

d'h e'"' 8x(k' —m')

=b(x)—
2Ã Q

sihkr
dk k'

kr

From (2) and (4) we obtain the commutation relations

[a(~p, k),a(4p', k') j=0,
[a(4p, k),at(4p', k')g= 24pb(k —k'),

[a(pp, k),at (-4p', k') 7=0,
[a(—rp, k),at(—4p', k')$= —2~pb(k —k').

Since alt wave fields appropriate to (1) for Q(x) are
expanded in terms of the annihilation operators, we

have to introduce the conjugate field pt(x) which con-
tains the creation operators. The complete tachyon
field is

I. FREE TACHYON FIELD

The free scalar tachyon field satisfies the equation
of motion:

(ci'/cixPP —V'—ms)y(x) =0.

The general solution of (1.1) may be written in the
form

X(x)= (1/V2)[y(x)+tt t(x)j
1 d'k 1—[a(rp, k)+at( —ot, —k) je '"*'+'~ *

(2v-)'" 2&p W2

i
+—[at((o,k)+a(—

&p,
—k) je'"'4 'a'* . (1.7)

~(*)= d4h a(h)b(h'+ms)e '" P+'"'x
(2a)'t'

Using (1.6) we can write down the general commutation
relation for the tachyon field (1.7):

i d'k

(a (4p k)e k0$0+4a ' x

(2v)PI' 24p

(1.2)
[&(x),&(y)j=— simp (xp—yp)

e'~' i x'»
(2pr)'

+a( (p k)e'koxp Ia'x}

6 M. E. Arons and E. C. G. Sudarshan, Phys. Rev. 173, 1622
(&968,).

r E. C. G. Sudarshan, Proc. Ind. Acad. Sci. A67, 284 (1968).

= id, (x—y) .

The invariant function h(x —y) so delned contains all
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a(x-y)b(xb-yb) =0, (1.9,) p(*),x(y)5b(*' —y")=0,
(1.10)

E(~/~y')A(x —y)7b(x' —y') = b(» —y)b(x' —y') (1.9h)

(il'/Bxb2 V—'—m') 5 (x—y) =0, This tachyon field is self-conjugate (particles and anti-
particles are identical); if we want to describe non-self-

(1.9d) conjugate tachyons, we can writea(x —y) = —Z(y —x).

frequencies, but only spatial momenta satisfying the As a consequence we obtain the equal-time commuta-

inequality (3). This function has the properties tion relations

&(x) = (1/v2)[~p(x)+p'&p(x)5

d'k

I [a(~ k)+b+( bp k)5& i~xp+—ik ~ x+[b+(~ k)+a( ~ k)5&iwxp —ik. xI
(2pr)bi' 242(u

a((o,k) = (1/K&)[a&(bp, k)+ia, ((o,k)7, b(~, k) = (1/v2)[ag(a), k) —p'ap(~, k)7,

where X&(x) and &&(x) are two self-conjugate tachyon
fields. The general commutation relations are

Ex(x),xt(y)5= iD(x —y), (1.12)

with the creation and annihilation operators satisfying

[a (cu, k),at (cu', k') 5= 2' 8 (k —k'),

[a(a),k),a'( —co', k')7=0,
[b(co,k),bt(pp', k')5= 2(ub(k —k'),

Ea(—pp, k),at( —(o', k')5= 2cob(—k k'), —
Ea (a)k)b, '((,o k )'5, '0=

(1.13)

and so OIl.

To complete the quantization of the free field, we
must also introduce the vacuum state ~0) by requiring
that it be annihilated by all the annihilation operators:

a((o,k) i 0)= a(—co, —k) i 0) b((u=, k) i 0)
=b( (u, —k) i—0)=0. (1.14)

We have immediately a Fock representation of the
field X in terms of the particles and the antiparticles.
For the self-conjugate field we have only one kind of
particle.

The total number of particles minus the number of
antiparticles is given by

where

j~(x) = i(4.'(x)a~4. (x)-[8~4.(x)54.(x)
—4b(x)8~4 b(x)+[8~4 b(x)74b(x) }, (1.17)

and the fields C and C» are given by

i d'k
4.(x) =- (a(~ k)~ iurxp+ik —x

(2pr)bi' 2co

+a( ~ k)ei(axp —ik ~ x} (1 17/)

1 d'P
4b(x) =- (b (~ k)~ i(oxp+ik x-

(2pr)'i' 2pp

+b (—~ k)eiGlxp —pk x}

j"(x) is the charge-current four-vector satisfying the
usual continuity equation

B„j"(x) =0. (1.18)

It is understood that the expressions (16), (17), and
(19) are normal-ordered.

The expressions for the energy and momentum of the
field are

H = d'x[4.t(x)4.(x)+ V4.t(x) V4. (x)

+4bt(x)4b(x)+ V4b" (x) V4b(x)
—m'4 t(n)4, (x) m'4bt—(x)4b(x)7, (1.19)

P= — d'x[4.'(x) V4.(x)+ V4.'(x)4.(x)d'k
[at((u, k)a((v, k) —at( —a&, k)a( —(u, k)

2' +4pbt (x) V4 b(x)+ V4pbt (x)4pb(x)5.

—bt(pp, k)b(~, k)+bt( —pp, k)b( co, k)7. —(1.15) These yield, in terms of the particle operators,

This coincides with the field-theoretic expression

Q= i [4.'(x)4. (x)—4.'(x)4. (x)

4 bt (x)4Pb (x)+@bt (x)4 b (x)5

d'x j'(x), (1.16)

(o[at((o, k)a(&o, k)+at( —
pp, k)a(—pp, k)

Zcd

+b'(bp, k)b(pp, k)+b'( bp, k)b( bp, —k)5, —

k[at((u, k)a(cu, k) —a'( —
&v, k)a( —pp, k)

2'
+bt(cu, k)b(bp, k) bt( p&, k)b—(—~—, k)7.

(1.20)
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By virtue of the commutation relations (10) and
(13), we can verify the standard relations

[x(x),Q3= x(x),
[x(x),&3=~x(x)

[x(x),P]=i-iV x(x).
(1.21)

The theory so constructed is manifestly invariant
under the Poincare group. The inequality (3) is a, rela-
tivistically invariant requirement as long as the field
equation (1) is implied. The "filtered" commutator
function t1 (x) defined by (8) is also an explicitly covari-
ant function by virtue of the fact that A(x) satisfies
Eq. (9c), so that it gets contributions only from the
mass shell.

The present theory has the unfamiliar features of
having negative-energy particles. We would like to
consider as physical only those particles which have
positive energy. These negative-energy particles, how-
ever, are a necessary consequence of relativistic invari-
ance for faster-than-light particles, since the distinction
between positive energy and negative energy is not
relativistically invariant for such particles. Any at-
tempt at avoiding Fock states fox. negative-energy
particles violates the relativistic invariance of the
theory.

The same problem occurs in the classical theory of
tachyons also, though in this case we do not deal with
state vectors. A close study of the physical framework
showed that the negative-energy particles travel back-
wards in time. Hence a process involving negative-
energy particles is physically indistinguishable from
another process involving positive-energy particles
traveling in the opposite direction, with the roles of
emission and absorption interchanged. This provides
the basis for the physical interpretation of our theory.
Any process involving negative-energy particles is to be
identified with a physical process with only positive-
energy particles traveling in the opposite direction, with
the roles of emission and absorption interchanged. '

It is most important to note that this interchange of
the roles of emission and absorption can be done owly

for processes (i.e., transition amplitudes) but not for
states. Any attempt to do it for the states would lead to
violation of relativistic invariance of the theory. When
the roles of emission and absorption are interchanged,
the negative-energy particle in the initial state corre-
sponds physically to a positive-energy antiparticle in
the final (not the initial) state. Such a transformation
requires the consideration of a process which has both
initial and final states; it would not be possible to give
such a physical interpretation if we had to deal with
states alone without considering processes.

As long as we restrict attention to positive energy
particles alone, the states of the system can be given the
usual invariant probability interpretation.

S. Tanaka, Progr. Theoret. Phys. (Kyoto) 24, 171 (1960);
G. Feinberg, Phys. Rev. 159, 1089 (1967).

The physical interpretation of processes involving
negative-energy particles together with the possibility
of the change of sign of the energy of tachyons under
Lorentz transformations means that a physical process
of a certain type in one Lorentz frame may appear as a
process of a diferent type in another Lorentz frame.
For example, a process of elastic scattering of two par-
ticles may appear as the decay of a particle into three
particles in another Lorentz frame.

G(*—y) &(y)d'y,

where G(x—y) is any Green's function satisfying

E,G(x y) = —8 (x—y—) .

The general solution is

(2.2)

x(x) =xo(*)— d'y G(x—y) &(y) (2.3)

where xo(x) is any solution of the homogeneous equation

E.xp(x) =0.
We may rewrite (2.3) in the form

(2.4)

xo(x) =x(x)+ d'y G(x—y) k(y), (2.5)

which shows that for the same solution x(x), as we
change the Green's function G(x—y) we also change
xo(x).

If G(x—y) and Gi(x —y) are any two Green's func-
tions, (Gi—G) is a solution of the homogeneous equa-
tion, so that

[Gi(*—y) —G(*—y)]k(y)d'y

is a solution of the homogeneous equation. The change
from G to G& without any change of the physical field
x(x) thus implies a change from the asymptotic field
xo(x) to

xo(x)— d'yLG(* —y) —Gi(x—y)]h(y). (2 ~)

We shall have occasion to make use of this result in
the next section.

II. GREEN'S FUNCTIONS AND
CONTRACTION FUNCTIONS

As a preliminary to considering interactions of tachyon
fields, we wish to consider some mathematical ques-
tions. If we consider the inhomogeneous equation

(8'/ax" —V'—m')X(x) =—E',x(x) = $(x) (2.1)

then a solution for x(x) is given by
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Two simple choices for the Green's function are components (1,0,0,0), and D(x—y; g) is the function

and

G(x—y) = Z(x—y) = d'k
(27r)4 k'+m'

e-a (~-&)

(2.7) D(x y; p—)= — d'k
(2ir)' (k'+m')

X8(k'+m~ —(q k)') . (2.14)

Gi(x—y) =&p(x —y) = d'k . (2.8)
(2~)' k'+m'+i&

The change of Green's function from (2.7) to (2.8)
without change of the Heisenberg field X(x) implies the
change from the asymptotic field Xo(x) to

22
xo(x)—

(2n)'
d4y d4k e '" &* "'g(y)b(k'+m')

=~0(x)--'i d'y ~"'(x y)k(-y), (2 9)

6 &" (x)= d4k e '~ *8(k'+'m') . (2.10)
(2m)'

This is an essential result for the calculation of the
scattering amplitude in perturbation theory.

Let us now calculate the contraction functions for
the tachyon fields. Care must be exercised in its evalua-
tion because of the inequality (1.3) that is satisfied by
the spatial momenta. Since the contraction functions
involve discontinuous functions of time, they get con-
tributions from momenta off the mass shell and, conse-
quently, (1.3) is no longer an invariant restriction. The
contraction function is defined by

r(x —y) = «I &(X'(x)»(y))10) (2.11)
= 2'(X'(x)»(y)) —&(X'(x)»(y) ).

Making use of (1.11) and (1.13) we obtain

r(x y) = ,'i —e(——xp —yo)
(2~)'

d'k
e+'~'

g sin~ (xo—y,)8 (k—m')

d'k 8 (k'—wz') .
(2m)4 k'+no'

(2.12)

This contraction function is not relativistically invariant
because of the appearance of the factor 8(k~—eP),
which depends on the Lorentz frame. We can write

r(x —y) =iZ(x y) iD(x y; q)—, —(2.13—)

where we have introduced the timelike vector g with

where 6(') is the symmetric invariant solution of the
free-field equation:

The singularity of the integrand is integrable and we
need not bother to indicate a positive imaginary in-
finitesimal in the denominator.

It is important to note that the contraction function
(2.12) is not a Green's function, since the components
with spatial momenta not satisfying the inequality
(1.3) are not contained in the contraction function.

III. INTERACTING TACHYON FIELDS

As an example of tachyon interactions, we consider
the coupling of a self-conjugate tachyon to a pair of
fermion fields:

Z;.t ——yP (x)P(x)x(x) . (3 1)

The usual symmetrization of the fermion 6elds is
understood and will not be explicitly indicated. This
interaction would le*d to single tachyon emissions or
absorptions. The energy-momentum conservation laws
would permit these emissions or absorptions to become
real processes:

fermion ~ fermion+ tachyon. (3 2)

P= u(A+y QB)u,
2 = -',g'ML (1/s —M')+ (1/u —M') )
8= -',g'L (1/s —M') —(1/u —M')) .

(3.3)

It is understood that we are talking about elastic
scattering of positive-energy tachyons. In (3.3) the
quantities s and u are the squares of the center-of-mass
energies in the direct channel and in the channel with
the tachyons crossed. This same amplitude describes
also the decay of a fermion into itself and a pair of
tachyons. It is also possible to obtain the reactions with
the tachyons "crossed" by going to a Lorentz frame
which would tend to give both the mesons negative
energy. Unlike the case of reactions involving ordinary
particles only, where crossed reactions can only be

However, such a reaction is forbidden as a physical
process unless the initial fermion is in motion with a
suitable kinetic energy. This is a characteristic property
of tachyons: An ordinary particle stable in its own rest
system can decay into itself and a tachyon in Right.
Such a possibility affords a natural method of detection
of tachyons in high-energy reactions.

We can now consider the effects to second order in
the interaction (3.1). The simplest of these is the
"Compton" scattering of a tachyon by the fermion.
The calculation proceeds in the usual fashion and leads
to a relativistically invariant scattering amplitude:
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placing (4.2) by

Wi(x) = gP(x)P(x)&; (x)+-,'g'P(x)P(x)

&& d'3 Di(*—3; n)4b')0(3), (44)

where

Di(x —y;p) = D(x—y; g) —-', iA ~" (x—y). (4.5)

(—i)'
d'«'3':0(x)4 (x) (*—3)k(3)4(3):,

2l
(4 |i)

s'"=2(—i)a' d'* d'3"&(x)4(x)Di(x 3;~)4b)4(3')—:

The sum of these two terms leads to the familiar
expression

-'-(—i)Y d'* d'3"4(x)4(x)Li~~(x —3)34(3')&(3'):

(4.7)

This expression is of the same form as would have been
derived from an interaction of the form

Wp(x) =gP(x)P(x)&(x)

but with a contraction function

rp(x) =id, p(x y). —

This simple property, demonstrated here only for
second-order amplitudes, is true to any order in per-
turbation theory. To fourth order we have verified it by
direct calculation in the Appendix; a general com-
binatorial argument can be given to any order in
perturbation theory.

The reduction of the S matrix now proceeds as in the
usual theory: We rewrite (4.1) in a normal-ordered ex-

pansion for the asymptotic field X,„(x).The coeflicients
of appropriate normal-ordered operators yield the vari-
ous transition amplitudes. The results so calculated of
course contain the standard divergences and would
have to be subjected to a suitable renormalization before
physically meaningful results can be extracted. There is

essentially no difference between the renormalization
of this theory and one in which the tachyon field is re-
placed by an ordinary scalar meson 6eld; we shall con-
tent ourselves, therefore, with a derivation of the un-

renormalized covariant perturbation expansion.
A particularly simple amplitude is the Moiler scatter-

ing amplitude; to second order there are no divergences
in the perturbation calculation of this amplitude. We
get two contributions to this amplitude: one in second
order from the first term of (4.4) and one in first order
from the second term of (4.4). These are, respectively,

The situation here is very similar to quantum electro-
dynamics in the radiation (Coulomb) gauge. ' In this
case, for each value of the momentum there are only
two types of photons which are both transverse. The
contraction function of two such Maxwell field opera-
tors is not covariant. Hence we have to add the direct
Coulomb interaction between the electric charge densi-
ties with the coupling strength —,'e'. The net result of all
this is that the perturbation series can be developed as

if the contraction function were covariant and as if
there were longitudinal and scalar photons.

In the case of tachyon fields the covariant effective
contraction function looks as if there were tachyons
with complex energies in the range of 0 to Aim. But,
in fact, there are no states with these imaginary en-

ergies; instead we have the direct interaction through
D(x y) with th—is form factor.

V. DISCUSSION

The study outlined in this paper has substantiated
the view that the Usual objections to the possibility of
faster-than-light particles in relativistic quantum
theory can be overcome. There may be objections of a
fundamental nature which are not yet known to us
which Inay make them physically inconsistent, but
there is no reason why we must not search for such

particles.
In this paper we have shown how to construct a

quantum field theory of spin-zero tachyons and their
interactions. It was necessary to construct a space of
particles of both positive and negative energies. The
physical processes, however, describe only positive-
energy particles. It is thus clear that the factorization
of a transition amplitude into initial and Gnal states
cannot be relativistically invariant if tachyons are
included. This can be done only in the enlarged space
containing both positive- and negative-energy states.

We have shown in this paper that the theory of
interacting tachyons leads to processes in which the
tachyon-exchange diagrams have the usual one-particle
structure though the steps leading to this structure are
nontrivial. Once such a structure is obtained, we could
use it to search for tachyons; if the scattering amplitude
between two ordinary particles has a "resonance"
peak for a fixed value of the momentum transfer,
independent of the center-of-mass energy, we have
evidence for a tachyon. This feature, though motivated
by perturbation theory, is valid as long as there are
tachyons which are strongly coupled.

The most interesting feature of tachyons is the
possibility that a particle which is stable "at rest" may
emit a tachyon when the particle is moving with
sufhcient speed. This would be an alternate method of
detecting tachyons. A search for such events in bubble-

J. D. Bjorken and S. D. Drell, Relativistic Quunhf~n Fields
(McGraw-Hill Book. Co., New York, 1965), Chap. i4.
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chamber and spark-chamber pictures of high-energy
collision processes is clearly important.

If tachyons exist they are probably neutral. If they
do exist we ought to find them. If we do not find them
we ought to be able to find out why they could not
exist. So far we have found no reason why they could
not exist.
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APPE5'DEX

The fourth-order terms which correspond to the exchange of two tachyons between the interacting nucleons are
contained in S&4&, and are given by

(A1)

where

~(xi)$1 y$2)$2 ) .L(4 ($1)+SF($1 $2)4 ( 2$))(f( 1$)2SF($1 $2 )f($2 ))
+(p ($1')iSF(x,'—$2)/ ($2))(&($1)iSF(xl—$2')p ($2'))
+($($1)iSF($1 $2)f($2))(mt'($2 )2SF($2 $1 )$($1 ))

+(p($2)iSF(x,—$1')p($1'))(p($1)iSF($1—$2')p($2'))]:. (A2)

This is not a Lorentz-invariant quantity. There are, however, related contributions of the same order present in
S('~ and S(",which are given by

aIld

( 2) (2 )g d xld $1 d $2d $2D1($1 xl i 'g)D1($2 $2
q Tl)F($1)$1 )$2,$2 ) (A3)

( Z) (2g ) d xld xl d $2d $2 P 1($1 $1 '
YJ) (T$2 $2 )+T($1 $1 )Dl($2 $2,' 'g)]1 ($1,$1,$2,$2 ), (A4)

respectively. The sum total of the three expressions (Al), (A3), and (A4) may be written as

( 2) (2g ) d xld $1 d $2d $2 fT($1 $1 )+ZD1($1 $1 i Tl)]LT($2 $2 )+ZD1($2 $2 i 'g)]F($1)$1 )$2)$2 )

= (—2) (2g ) d xld xl d $2d $2 $ZAF($1 $1 ) j/ZDF($2 $2 )]P ($1)$1 )$8)$2 ) . (A5)

(A5) is a Lorentz-invariant quantity, and is just of the kind which would be given by an interaction of the form

~p($) =g4'($)0'($)" ($)
with the contraction function

TP($) =ihF(X).


