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between the present theory and the static model for
angular distributions are also displayed.

We observe that the static model, although giving
a satisfactory total cross section, where the con-
tribution of the nucleon-pole terms is less than 159,
[~(kq1/Mw)%], is not adequate for the angular dis-
tributions where the nucleon-pole terms can contribute
as much as 409, [~ (kgi/Mw1)]. Our angular distribu-
tions have the correct slopes in general. Their quantita-
tive discrepancies reflect the discrepancies in the total
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cross sections. Apparently more accurate measurements
are needed to test the theory.
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A quantum field theory of spin-0 particles traveling with speeds greater than that of light has been con-
structed. The theory constructed here is explicitly Lorentz-invariant; and the quanta of the field obey Bose
statistics. Formalism developed for the free field has been extended to the case of interaction of these parti-
cles with nucleons. A new feature of theory is the occurrence of negative-energy particles; this is a necessary
consequence of the relativistic invariance of the theory, since the distinction between positive and negative
energies is not a relativistically invarjant concept for such particles. The occurrence of these negative-energy
particles does not, however, prevent the theory from being meaningful; the physical interpretation of the
situation is provided by the postulate that any process involving negative-energy particles is to be identified
with a physical process with only positive-energy particles traveling in the opposite direction, with the roles
of emission and absorption interchanged. The scattering amplitudes are the same as in the usual theory with

m? replaced by —m?

INTRODUCTION

T has generally been believed that no particle can
exceed the speed of light.! This has meant in turn
that in formulating the quantum theory of fields it has
been tacitly assumed that all the particles described by
such fields belong to one of two classes: those which
have a finite rest mass and travel with speeds less than
the speed of light; and those which have zero rest mass
and hence always travel with the speed of light. We
may also consider a third class of particles: those which
travel with speeds greater than the speed of light. If we
try to ascribe a rest mass to such particles it will be
pure imaginary, but this leads to no conceptual diffi-
culties since these particles cannot be brought to rest.
The real difficulty with such particles has been that the
usual Lorentz transformation properties lead to nega-
tive energies in suitable frames. Several years ago it
was shown how this difficulty may be overcome?;
1 H. Poincaré, Bull. Sci. Math. 28, 302 (1904) ; A. Einstein, Ann.
Physik (Paris) 17, 891 (1905).

20. M. P. Bilaniuk, V. K. Deshpande, and E. C. G. Sudarshan,
Am., J. Phys. 30, 718 (1962).

crucial to the resolution of the difficulty is the reinter-
pretation of “negative-energy particles traveling back-
ward in time” to be positive-energy particles traveling
forward in time. All the puzzles and paradoxes that
have been put up by various people could be resolved
using this basic idea, at least as far as classical theory
is concerned. It also motivated two brilliant experi-
ments® searching for these faster-than-light particles,
which we shall call tachyons.* Both these experiments
had negative results, but we believe that this should be
interpreted to mean that, like particles of vanishing
mass, tachyons carry no electric charge.?

It is now of interest to consider a quantum theory of

3T, Alviger, P. Erman, Nobel Inst. Report 1966 (unpublished) ;
T. Alviger and N. M. Kreisler, Phys. Rev. 171, 1357 (1968).

4The name “tachyon” is the contribution of G. Feinberg, Phys.
Rev. 159, 1089 (1967).

5 E. C. G. Sudarshan, Proceedings of the Nobel Symposium,
Lerum Sweden, 1968 (to be published). For an exactly solvable
Hamiltonian model for the charged scalar theory using both
positive- and negative-energy mesons, see E. C. G. Sudarshan,
11% 672“;teoretical Physics 1961 (W. A. Benjamin, Inc., New York,
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tachyons. The quantum theory would have to incor-
porate, in a suitably amended form, our resolution of
the negative energy difficulty of the geometric trans-
formation. We know that this must imply fundamental
differences in the principle of quantization since there
is no invariant distinction between positive and negative
frequencies. Arons and Sudarshan have shown how this
is to be carried out; they introduce creation and de-
struction operators for both positive and negative
energy tachyons.® The quantum field theory so obtained
uses the physical reinterpretation postulate: In any
transition amplitude viewed from any frame, a negative-
energy tackyon in the initial (final) state is to be replaced
by an antitachyon in the final (initial) state with the
opposite values of all additive dynamical variables.

Since tachyons have spacelike momenta, their po-
larization states should furnish a unitary representation
of the Lorentz group in three dimensions. This group is
composed of rotations around the direction of the spa-
tial momentum and the pure Lorentz transformations
in the two directions perpendicular to it. Since this
group is noncompact except for its one-dimensional
representation, all other representations are infinite-
dimensional. In other words, except for spin-0 tachyons,
all other tachyons must have an infinite number of
polarization states.®

It is advisable to study scalar (or pseudoscalar)
tachyons to start with; in this case we can use the
Klein-Goron Lagrangian to exhibit a quantum theory
of the tachyon field. We have studied the free field
and the interacting field. The latter case can be worked
out with the same degree of consistency as the local
field theory of ordinary quantized (scalar) fields in
interaction. This theory is developed in detail in the
subsequent sections of this paper. Consistent with the
fundamental theorem on the connection between spin
and statistics,” we find that spin-0 tachyons satisfy
Bose statistics.

I. FREE TACHYON FIELD

The free scalar tachyon field satisfies the equation
of motion:

(8%/9x"2— V2—m?)¢p(x)=0. (1.1)

The general solution of (1.1) may be written in the
form

1
¢(x)—22—)-— A% a(k)d(k24m?)e—kozotik x
d*% (1.2)
(2 yoiz _—{ (@ k)etosories
us

+a(—w, — k)eiwzo—ik~x} ,

( “M) E. Arons and E. C. G. Sudarshan, Phys. Rev. 173, 1622
1968
7E. C. G. Sudarshan, Proc. Ind. Acad. Sci. A67, 284 (1968).
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where
w=~4 (k2—m?)"2,
Since k, ko are real, it follows that
k2>m?, 1.3)
Canonical quantization requires
3(x*—y")[¢'(x),6(»)]=0,
5(a"— )" (), () ]=16(x—y)3(x*—»"). (1.4)

In the second equation the function § that appears on
the right-hand side is the “filtered & function,” which
does not contain any spatial momenta violating Eq.

(1.3):
§(x)= &k e x0 (k2—m?)
( )3

(L.5)

sinkr

——ﬁ(x)—-——-/ dk —

From (2) and (4) we obtain the commutation relations

[a(“’)k)ya(“’l7k’)]=0:
[e(w,k),e" (", K')]=2wé(k—K),
[a(w,k),a*(—w',k'):l:O,
[e(—w, k),at(—o’, k') ]= —2wd(k—K’).
Since all wave fields appropriate to (1) for ¢(x) are
expanded in terms of the annihilation operators, we
have to introduce the conjugate field ¢(x) which con-

tains the creation operators. The complete tachyon
field is

(1.6)

X(x)= (1/V2)[$(x)+¢' ()]

1 rdk (1 . I
= o] oo Lo (o =0

1
+Le @l Fa(—a, —Jesexy (L)

Using (1.6) we can write down the general commutation
relation for the tachyon field (1.7):

[X(x),x(y)]= —zz:)*/‘— sinw (wg— yo)etk” x-¥)

=iA(x—y). (1.8v)

The invariant function A(x—y) so defined contains all
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frequencies, but only spatial momenta satisfying the
inequality (3). This function has the properties

A(x—y)8(x0—9") =0, (1.9a)
[(8/9y°)A(x—)]8(a"— ") =8(x—y)8(x*—»°), (1.9b)
(9%/9x92— V2—m?)A(x—y)=0, (1.9¢)
Alx—y)=—A(y—x). (1.9d)

X(x)= (1/V2)[Xa () +iX,(x) ]

1 3
- (2@3/2/ 22w
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As a consequence we obtain the equal-time commuta-
tion relations

[X(x)yx(y)]ﬁ(x(’“y") =0,
DX (%), ()] (60— 5°) =36 (x— y) 5 (a"—»") .

This tachyon field is self-conjugate (particles and anti-
particles are identical) ; if we want to describe non-self-
conjugate tachyons, we can write

(1.10)

a(w,k) = (l/ﬁ)[al(w,k)+iag(w,k)], b(w)k) = (1/\/2)[01(60,]()—1.(12(&7]()] )

where X;(x) and X,(x) are two self-conjugate tachyon
fields. The general commutation relations are

[X(@) X" (y)]=1A(x—y),
with the creation and annihilation operators satisfying
[a(w,k),a' (' k) ]=2wé(k—K),
[a(wk),a’ (=o', K)]=0,
[6(w,k),0% (o’ k) ]=2ws(k— k'),
[a(—w, k),a'(—o’, K')]=—2wd(k— k'),
[a(w,k),bT(w’,k")]=0,

(1.12)

(1.13)

and so on.

To complete the quantization of the free field, we
must also introduce the vacuum state |0) by requiring
that it be annihilated by all the annihilation operators:

a(w,k)[0)=a(—w, —k)[0)=b(w,k)[0)

=b(—w, —k)[0)=0. (1.14)

We have immediately a Fock representation of the
field X in terms of the particles and the antiparticles.
For the self-conjugate field we have only one kind of
particle.

The total number of particles minus the number of
antiparticles is given by

@k
0= / Lo @Re(ol—d (—o, Ka(—a, k)

— b (w0, k)b (w,k)+ b (—w, k)b(—w, k)]. (1.15)
This coincides with the field-theoretic expression
0= [ [, ()= (0.
— &y () by () + o' () Py (%) ]
=/d3xj°(x), (1.16)

(1.11)
where
JH(x) = i{P, T ()P () — [0#®4 () Ba (x)
— @y ()34 () + [0°Ps (x) 1®p ()}, (1.17)
and the fields ®, and ®; are given by
L e
= (2m)*2) 2w talek)e
+a(—w, —k)eeromikxy - (1.177)
. Y L PPN
= [k

+b(—w;— k)etoro—tk-x}
7#(x) is the charge-current four-vector satisfying the
usual continuity equation

du7*(x)=0. (1.18)
It is understood that the expressions (16), (17), and

(19) are normal-ordered.

The expressions for the energy and momentum of the
field are

H= / B[ d.T (2)b, () + VO, (x) - VO, (x)
+ &4 (x)ds (x)+ VBT (i) - Vdy(x)

— 2Pt () u () — m*®y! ()@ () ], (1.19)
P=— / B bt (x) VP, (x)+ VO, (x)d, (%)
+ &' (x) Vs () + VB ()b (x) ].
These y'ield, in terms of the particle operators,
&k
H= /—2—— wla (w,k)a(w,k)+a' (—w, k)a(—w, k)
16}
+b+ (w’k)b(w)k)+bf(—w) 1{)6("‘0), k)] ’
(1.20)

ek
P= /T k[a' (w,k)a(w,k)—a' (—w, k)a(—w, k)

8" (w0, k)b (w0, k) — b7 (=0, K)b(—w, K) ].
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By virtue of the commutation relations (10) and
(13), we can verify the standard relations

[X(@),0]=X(x),
X@),H]=1x(x),
[X(x), P]=1"1VX(x).

The theory so constructed is manifestly invariant
under the Poincaré group. The inequality (3) is a rela-
tivistically invariant requirement as long as the field
equation (1) is implied. The “filtered” commutator
function A(x) defined by (8) is also an explicitly covari-
ant function by virtue of the fact that A(x) satisfies
Eq. (9¢), so that it gets contributions only from the
mass shell.

The present theory has the unfamiliar features of
having negative-energy particles. We would like to
consider as physical only those particles which have
positive energy. These negative-energy particles, how-
ever, are a necessary consequence of relativistic invari-
ance for faster-than-light particles, since the distinction
between positive energy and negative energy is not
relativistically invariant for such particles. Any at-
tempt at avoiding Fock states for negative-energy
particles violates the relativistic invariance of the
theory.

The same problem occurs in the classical theory of
tachyons also, though in this case we do not deal with
state vectors. A close study of the physical framework
showed that the negative-energy particles travel back-
wards in time. Hence a process involving negative-
energy particles is physically indistinguishable from
another process involving positive-energy particles
traveling in the opposite direction, with the roles of
emission and absorption interchanged. This provides
the basis for the physical interpretation of our theory.
Any process involving negative-energy particles is to be
identified with a physical process with only positive-
energy particles traveling in the opposite direction, with
the roles of emission and absorption interchanged.®

It is most important to note that this interchange of
the roles of emission and absorption can be done only
for processes (i.e., transition amplitudes) but not for
states. Any attempt to do it for the states would lead to
violation of relativistic invariance of the theory.? When
the roles of emission and absorption are interchanged,
the negative-energy particle in the initial state corre-
sponds physically to a positive-energy antiparticle in
the final (nof the initial) state. Such a transformation
requires the consideration of a process which has both
initial and final states; it would not be possible to give
such a physical interpretation if we had to deal with
states alone without considering processes.

As long as we restrict attention to positive energy
particles alone, the states of the system can be given the
usual invariant probability interpretation.

$S. Tanaka, Progr. Theoret. Phys. (Kyoto) 24, 171 (1960);
G. Feinberg, Phys. Rev. 159, 1089 (1967).

(1.21)
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The physical interpretation of processes involving
negative-energy particles together with the possibility
of the change of sign of the energy of tachyons under
Lorentz transformations means that a physical process
of a certain type in one Lorentz frame may appear as a
process of a different type in another Lorentz frame.
For example, a process of elastic scattering of two par-
ticles may appear as the decay of a particle into three
particles in another Lorentz frame.

II. GREEN’S FUNCTIONS AND
CONTRACTION FUNCTIONS

Asapreliminary to considering interactions of tachyon
fields, we wish to consider some mathematical ques-

tions. If we consider the inhomogeneous equation
(0%/02”—VP—m*)X (x)=KX(x)=£(x),  (2.1)

then a solution for X(x) is given by

- / Gla—y)E)dy,

where G(x—y) is any Green’s function satisfying
K.G@r—y)=—06(x—y).

The general solution is

() = Xo () / dy Gle—9)E0),

(2.2)

(2.3)

where X,(x) is any solution of the homogeneous equation

K. Xo(x)=0. (2.4)
We may rewrite (2.3) in the form
Xo(x)=X(x)+ / My GE—EB),  (25)

which shows that for the same solution X(x), as we
change the Green’s function G(x—y) we also change
Xo(x).

If G(x—y) and Gi(x—7y) are any two Green’s func-
tions, (G1—G) is a solution of the homogeneous equa-
tion, so that

[ [Ga(—y)— Gla—3) T (3)dy

is a solution of the homogeneous equation. The change
from G to G, without any change of the physical field
X(x) thus implies a change from the asymptotic field
Xo(x) to

Xo()— / I[G(—y)—Gr(e—3) ). (26)

We shall have occasion to make use of this result in
the next section.
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Two simple choices for the Green’s function are

P ik (=)
Gla—y)=B(a—y)=—— | d* 2.7
=p=Blep= [ e

and

1 ik (=)
Ga(a—3)=Ar(e—y)=— | d% . @8
= arlm) (21r)4/ vrmrie Y

The change of Green’s function from (2.7) to (2.8)
without change of the Heisenberg field X(x) implies the
change from the asymptotic field Xo(x) to

30

Xo(x)—
@ Gy

/ d'y f @ o V()3 (k- m?)

—%Xo(x)— b [ dy A® (= y)E(), (2.9)

where A® is the symmetric invariant solution of the
free-field equation:

1
AD (x)=———/d4k e~k ag(k+m?).  (2.10)
(2m)?

This is an essential result for the calculation of the
scattering amplitude in perturbation theory.

Let us now calculate the contraction functions for
the tachyon fields. Care must be exercised in its evalua-
tion because of the inequality (1.3) that is satisfied by
the spatial momenta. Since the contraction functions
involve discontinuous functions of time, they get con-
tributions from momenta off the mass shell and, conse-
quently, (1.3) is no longer an invariant restriction. The
contraction function is defined by

T(x—y)= (0| T(X"(x),X())|0) (2.11)
=T(X"(x),X(3))— N (X" (x),X(5))-
Making use of (1.11) and (1.13) we obtain
1 %
r(v= )= —¥i——cla—y0) [ —ei -
X sinw (xo— y0)6 (k—m?)
i e~k (z—y)
= P | d* 0 (k2—m?). 2.12
(2m)* / k2+-m? (k=) @12

This contraction function is nof relativistically invariant

because of the appearance of the factor 6(k*—m?2),

which depends on the Lorentz frame. We can write
T(x—y)=iA(x—y)—iD(x—y;7),  (2.13)

where we have introduced the timelike vector n with

DHAR AND E. C. G. SUDARSHAN
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components (1,0,0,0), and D(x—y;») is the function

etk (z—v)

D ! %
(x_yy 77) - (271-)4/ e (k2+m2)
X0(k2+m2— (,7 .k)z) .

(2.14)

The singularity of the integrand is integrable and we
need not bother to indicate a positive imaginary in-
finitesimal in the denominator.

It is important to note that the contraction function
(2.12) is not a Green’s function, since the components
with spatial momenta not satisfying the inequality
(1.3) are not contained in the contraction function.

III. INTERACTING TACHYON FIELDS

As an example of tachyon interactions, we consider
the coupling of a self-conjugate tachyon to a pair of
fermion fields:

Line=gd ()Y ()X (). G.1)

The usual symmetrization of the fermion fields is
understood and will not be explicitly indicated. This
interaction would lead to single tachyon emissions or
absorptions. The energy-momentum conservation laws
would permit these emissions or absorptions to become
real processes:

(3.2)

However, such a reaction is forbidden as a physical
process unless the initial fermion is in motion with a
suitable kinetic energy. This is a characteristic property
of tachyons: An ordinary particle stable in its own rest
system can decay into ifself and a tachyon in flight.
Such a possibility affords a natural method of detection
of tachyons in high-energy reactions.

We can now consider the effects to second order in
the interaction (3.1). The simplest of these is the
“Compton” scattering of a tachyon by the fermion.
The calculation proceeds in the usual fashion and leads
to a relativistically invariant scattering amplitude:

F= ﬁ(A+7'QB)u7
A=3gM[(1/s— M)+ (1/u—M?],
B=3g"[(1/s—M*)— (1/u—M?)].

It is understood that we are talking about elastic
scattering of positive-energy tachyons. In (3.3) the
quantities s and # are the squares of the center-of-mass
energies in the direct channel and in the channel with
the tachyons crossed. This same amplitude describes
also the decay of a fermion into itself and a pair of
tachyons. It is also possible to obtain the reactions with
the tachyons ‘“crossed” by going to a Lorentz frame
which would tend to give both the mesons negative
energy. Unlike the case of reactions involving ordinary
particles only, where crossed reactions can only be

fermion — fermion--tachyon.

(3.3)
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related to each other by analytic continuation through
a set of unphysical states, the present theory relates
reactions with tachyon lines crossed by suitable Lorentz
transformations.

The other second-order process that is entailed by the
interaction (3.1) is the ‘“Mbller” scattering of two
fermions with the exchange of a tachyon. To compute
this we calculate the tachyon field generated by the
first fermion at the position of the second fermion. In
the previous section we have calculated the meson field
produced by the scalar source:

X(x) = Xo(x)—g / 0y Gy ONG).  (34)

The second term is the contribution of the fermion at
the point y. The interaction of this term with the fer-
mion field at the point x is given by

~£PNE) [ 9 G OWO).
The complete interaction is

i / d / &y FEWECE—TONG). (3.5)

The factor % is added to compensate for the double
counting. Choosing Ar as the Green’s function accord-
ing to (2.8) we get for the effective interaction

1
-1 / dt / d*y f &% P (e ———
k*+mP+-ie

Xe v (yW(y). (3.6)
This leads to the standard form for the fermion-
fermion scattering by exchange of a scalar meson. The
only difference is that this amplitude develops a pole
in the physical region at a value of the momentum
transfer squared equal to —m?, reflecting the possi-
bility of reaction (3.2) occurring as a physical process.

It is interesting to note that (3.6) involves the in-
variant Green’s function rather than the noninvariant
contraction function. This means that the tachyon-
fermion Yukawa interaction is not simply expressible
as a trilinear interaction in the interaction picture,
though the original interaction in the Heisenberg pic-
ture is trilinear.

Comparison with (2.13) shows that there should be
a direct fermion interaction (whose structure and cou-
pling are determined by the Yukawa interaction) which
should be added to the trilinear interaction so as to
produce a relativistically invariant result. The total
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interaction in the interaction picture has the form

¢ / 040 § (W ()X ()b f di / dty

XY@ @)D E—y; PO G). (.7)
The second term is nonlocal in form; but the sum of
these two interactions restores Lorentz invariance to
the scattering amplitudes. For second-order predictions
this is verified by inspection; and the first-order pre-
dictions are unaltered by it.

The choice of the Green’s function in (3.5) was up to
us; and reflects the ambiguity in the choice of the
tachyon field “produced by the source gy (x)y¥(x).” If
we change the Green’s function this contribution would
change. We have chosen Ar to ensure the proper one-
particle structure to the scattering amplitude. Such a
structure, together with the fact that the tachyon mass
is pure imaginary, leads to several simple methods to
search for tachyons in high-energy particle reactions.

IV. REDUCTION OF THE S MATRIX

To develop a covariant perturbation theory for the
interaction (3.1), we work in the interaction picture
and consider the expression

sy

where W (x) is the interaction in the interaction picture.
Starting with the interaction

g ()Y ()X (x)

in the Heisenberg picture, we get two terms in the
interaction picture:

W (x) =gy (2)¢ (%)X () + 582 ()¢ (x)

(4.1)

X / dy D (=) POWG). (42)

We have already seen that the sum of these two terms
is Lorentz-invariant, but neither of them is Lorentz-
invariant separately.

To obtain the scattering amplitudes from (4.1), we
need to proceed to a normal-ordering operation. Before
doing that we recall from Sec. II that there is still some
freedom in the definition of the asymptotic field; com-
pare the discussion following (2.6), and, in particular,
(2.9). We make the choice

Xon () = Xo(x) +-ig / dy AD (= )P ON().  (43)

This choice of the asymptotic field is equivalent to re-
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placing (4.2) by
W)= g ()¢ (2)Xin () + 3% ()¢ ()

X / & Dy(i—y; DEOGWE),  (44)
where

Dy(x—y;n)=D(x—y;n)—5A0(x—y). (45)
The reduction of the S matrix now proceeds as in the
usual theory: We rewrite (4.1) in a normal-ordered ex-
pansion for the asymptotic field X, (x). The coefficients
of appropriate normal-ordered operators yield the vari-
ous transition amplitudes. The results so calculated of
course contain the standard divergences and would
have to be subjected to a suitable renormalization before
physically meaningful results can be extracted. There is
essentially no difference between the renormalization
of this theory and one in which the tachyon field is re-
placed by an ordinary scalar meson field ; we shall con-
tent ourselves, therefore, with a derivation of the un-
renormalized covariant perturbation expansion.

A particularly simple amplitude is the Moéller scatter-
ing amplitude; to second order there are no divergences
in the perturbation calculation of this amplitude. We
get two contributions to this amplitude: one in second
order from the first term of (4.4) and one in first order
from the second term of (4.4). These are, respectively,

(i _ _
g [ s [ ey bR ONO):,
' (4.6)
SO=y(=0g [ dt [ dyHHDD—yinBONO)

S@ =

The sum of these two terms leads to the familiar
expression

3(—1)%g / d*x / dy () () Ar(x—y) W OWO):.
(4.7)

This expression is of the same form as would have been
derived from an interaction of the form

Wo(x) = g ()¢ (€)X (x)
but with a contraction function
To(x)=iAr(x—y).

This simple property, demonstrated here only for
second-order amplitudes, is true to any order in per-
turbation theory. To fourth order we have verified it by
direct calculation in the Appendix; a general com-
binatorial argument can be given to any order in
perturbation theory.
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The situation here is very similar to quantum electro-
dynamics in the radiation (Coulomb) gauge.?® In this
case, for each value of the momentum there are only
two types of photons which are both transverse. The
contraction function of two such Maxwell field opera-
tors is not covariant. Hence we have to add the direct
Coulomb interaction between the electric charge densi-
ties with the coupling strength %¢2. The net result of all
this is that the perturbation series can be developed as
if the contraction function were covariant and as if
there were longitudinal and scalar photons.

In the case of tachyon fields the covariant effective
contraction function looks as if there were tachyons
with complex energies in the range of 0 to =tim. But,
in fact, there are no states with these imaginary en-
ergies; instead we have the direct interaction through
D(x—1y) with this form factor.

V. DISCUSSION

The study outlined in this paper has substantiated
the view that the usual objections to the possibility of
faster-than-light particles in relativistic quantum
theory can be overcome. There may be objections of a
fundamental nature which are not yet known to us
which may make them physically inconsistent, but
there is no reason why we must not search for such
particles.

In this paper we have shown how to construct a
quantum field theory of spin-zero tachyons and their
interactions. It was necessary to construct a space of
particles of both positive and negative energies. The
physical processes, however, describe only positive-
energy particles. It is thus clear that the factorization
of a transition amplitude into initial and final states
cannot be relativistically invariant if tachyons are
included. This can be done only in the enlarged space
containing both positive- and negative-energy states.

We have shown in this paper that the theory of
interacting tachyons leads to processes in which the
tachyon-exchange diagrams have the usual one-particle
structure though the steps leading to this structure are
nontrivial. Once such a structure is obtained, we could
use it to search for tachyons; if the scattering amplitude
between two ordinary particles has a ‘“resonance”
peak for a fixed value of the momentum transfer,
independent of the center-of-mass energy, we have
evidence for a tachyon. This feature, though motivated
by perturbation theory, is valid as long as there are
tachyons which are strongly coupled.

The most interesting feature of tachyons is the
possibility that a particle which is stable “at rest’” may
emit a tachyon when the particle is moving with
sufficient speed. This would be an alternate method of
detecting tachyons. A search for such events in bubble-

o J. D. Bjorken and S. D. Drell, Relativistic Quantum Iields
(McGraw-Hill Book Co., New York, 1965), Chap. 14.
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chamber and spark-chamber pictures of high-energy
collision processes is clearly important.

If tachyons exist they are probably neutral. If they
do exist we ought to find them. If we do not find them
we ought to be able to find out why they could not
exist. So far we have found no reason why they could
not exist.

INTERACTING TACHYONS
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APPENDIX

The fourth-order terms which correspond to the exchange of two tachyons between the interacting nucleons are

contained in S®, and are given by

(=) (%gz)2/d4x1d4x1’d4x2d4x2’1 (w1—21")7 (22— x2") F (1,51, %2,%2") ,

where

(A1)

F (21,51 20,00 ) = L@ (1) +S r(w1—22)¥ () ) (#1)2S 7 (21 — 202" W (227))
+ @ (@1)iS p (1 = x2)¥ (22) ) P (01)2S 7 (01— 22 W (x2))
+ (P (21)iS r(w1— 22)¢ (2) ) (P (22 )iS p (2’ — 01 W (1))

+ (P (22)iS r (a—21 W (1) ) (@ (1)3S p (01— 22 W (%27)) ] :.

(A2)

This is not a Lorentz-invariant quantity. There are, however, related contributions of the same order present in

S® and S®, which are given by

(—irE)e / dordioy' d*acad 3Dy (w1— 21”5 1) D1 (22— w0 5 ) F (1,51, %02,%27)

and

(A3)

(—12)? (%g2)2/d“x1d4x1’d4x2d4xg’[Dx(xl— 21"y T (@e— 2 )F 7 (X1—21") D1(a— o’ ; ) JF (wr,01",20,%2") ,  (A4d)

respectively. The sum total of the three expressions (A1), (A3), and (A4) may be written as

(—i)4(%g2)2/d4x1d4x1'd4x2d4x2'[~r(xl—xl’)-{-iDl(xl—xl’; T])][T(xz—le)‘*“iDl(xz'—xz’; n)]F(xl,xl’,xg,x2’)

= (— i)4(%g2)2/d4x1d4x1’d4x2d4x2’|:iAp (xl—- xl/)][tAp(xz—' le)]F (xl,xl’,xa,xg’) . (AS)

(AS) is a Lorentz-invariant quantity, and is just of the kind which would be given by an interaction of the form
Wo(x) =g (x)¢ ()X (x)

-ro(x)=zAp(x) .

with the contraction function



