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Chiral Dynamics for High-Spin Baryons and an Application to
Double-Pion Photoproduction*
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An SU(2)XSU(2) chiral-dynamical Lagrangian for baryons of arbitrary spin and isospin is discussed.
Cross sections for low-energy double-pion photoproduction from a nucleon are calculated by assuming that
the nucleon and one 6nal pion form an isobar D(1236 MeV). The results are compared with those obtained
by the soft-pion dispersion-relation approach. It is shown that the static-nucleon model gives satisfactory
total cross sections but is inadequate for angular-distribution differential cross sections. Our theoretical pre-
dictions are consistent with experiment.

I. INTRODUCTION

HE chiral-dynamical Lagrangian' ' represents the
starting point for analytic continuation of the

current-algebraic soft-pion limit to higher energies. It
is hoped that in cooperation with unitarity the Lagran-
gian may be used to provide the dynamics for the strong
interaction. The Lagrangian has since been applied' '
to the low-lying members of the particle spectrum. In
this paper we study its extension to include baryons of
arbitrary spin and isospin.

The general nonlinear realization of SU(2))&SU(2)
chiral symmetry has been given by Weinberg. ' In order
to obtain an explicit interaction Lagrangian, we gen-
eralize the method of Wess and Zumino. '4 This gen-
eralized method reproduces Weinberg's results in a
simple way and gives the explicit couplings between
baryons and mesons (including photons) immediately.
The coupling constants can be measured experimentally.
Determination of one coupling constant leads to a
number of predictions due to chiral symmetry. Our
general formulas explicitly indicate the power (and the
limitation) of the prediction.

The method is illustrated by an application to double-
pion photoproduction from a nucleon, which is essen-
tially the hard-pion extension of a current-algebraic
soft-pion calculation given in a previous paper. In the
Lagrangian method we assume that the nucleon and
one of the final pions strongly rescatter and form an
isobar A(1236 MeV). As a result, one must know the
coupling constants for mEA and yEA to predict the
cross sections for double-pion photoproduction. Ap-
parently, knowing these two coupling constants, one can
calculate cross sections for many other reactions, in-

cluding xÃ —+ m-xlV, xS —& m.Ey, etc. These calculations
will be presented elsewhere.

In Sec. II we briefly review chiral symmetry and re-

*Research supported in part by the U. S. Atomic Energy
Commission.' S. Weinberg, Phys. Rev. Letters 18, 188 (1967).' J. Wess and B.Zumino, Phys. Rev. 163, 1727 (1967).' S. Weinberg, Phys. Rev. 166, 1568 (1968). A more complete
list of references is given in this paper.' H. W. Huang (unpublished).

'P. Carruthers and H. W. Huang, Phys. Letters 24B, 464
(196/).

produce Weinberg's results' in preparation for subse-
quent discussions. In Sec. III we introduce baryons of
arbitrary spin and isospin and construct their chiral
gauge-invariant couplings with meson systems. In Sec.
IV the +3~A and p3~h coupling constants fitted by
Gourdin and Salin' are reevaluated by using a new

experimental width for A(1236). We use the couplings
of lowest multipolarity to describe low-energy double-
pion photoproduction (from threshold to about 1.5
GeV c.m. total energy). The amplitude mainly consists
of a contact term, a pion-current term, and nucleon-
pole terms. The Af exchange term is shown to be
negligible. For comparison, we also use the soft-pion
technique, current algebra, and the Chew-Goldberger-
Low-Nambu (CGLN)' dispersion-relation method to
solve the matrix element in Sec. V. It turns out that
the two approaches produce essentially coincident solu-
tions for the energy range that we are interested in.
This coincidence, however, is not a priori obvious, al-
though the two approaches should be identical in the
soft-pion limit. It is shown in Sec. VI that the con-
tribution of the nucleon-pole terms to the total cross
section is of order (kqr/Afar»)' compared with the con-
tribution of the dominant contact term, where 4 is the
photon energy, q& and co& are the momentum and energy
of the pion that does not rescatter with the nucleon
(k, qr, and cot are the quantities in the over-all c.m.
system, i.e., the c.m. system of the photon and nucleon),
and M is the nucleon mass. This explains why the static-
nucleon model due to Cutkosky and Zachariasen, ' which
consists only of the contact term and the pion-current
term, gives satisfactory total cross sections. On the
other hand, it is also shown that the contribution of the
nucleon-pole terms to the angular-distribution differ-
ential cross section is of order kqr/Mco& compared with
the contribution of the dominant contact term, so that
we expect the static-nucleon theory to be inadequate
for angular distributions. The numerical figures are

'M. Gourdin and Ph. Salin, Nuovo Cimento, 27, 193 (1963);
Ph. Salin, ibid. 28, 1294 (1963).' G. Chew, M. Goldberger, F. I ow, and Y. Nambu, Phys. Rev.
106, 1337 (1957); 106, 1345 (1957).

R. E. Cutkosky and F. Zachariasen, Phys. Rev. 103, 1108
(1956).
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given in Sec. VII, where our theoretical predictions are
shown to be consistent with experiment.

II. SU(2)X SU(2) CHIRAL SYMMETRY: REVIEW

To facilitate the discussions in subsequent sections,
we shall recapitulate the SU(2) XSU(2) transformation
laws for a system consisting of pions, nucleons, and
vector and axial-vector mesons, and also the general
results of Ref. 3.4

One starts with the following SU(2)XSU(2) trans-
formations for the nucleons: isospin rotation with pa-
rameter gg~,

duces the gauge fields y„and a„, which transform as

y„~y„+&„7(,"+g(y„Xg'),
a„~a„+g(a„X 7C. ),
p„~0„+g(a.Xg ),
a„a„+&„g +g(io„X 7r,'),

(2.10)

and defines 'U„and Q,„such that

Py (ir)„+', gy„~-+zgy'a„~)P=Ãy (ir)„+', g'0„.-
+-',gy'e„~).V. (2.11)

From the relations (2.3) it follows that

4 ~4+-'igx'~4

and chiral transformation with parameter gg,

(2.1) sinO' 2 sin'(-'0)
'U„= p„+ (a„Xsr)—— (srXD„~),

g 7l

f~P+ si gy' ~'f. (2.2)

However, the transformation (2.2) would obviously
leave the nucleon-mass term noninvariant. In order to
remedy this, we make a canonical transformation

P~ Jt/=U ~ (~)P y~X= PU'~ (~)—, (2.3)

1 S1110" sin'(-'0')
(Xs= ay+ Ds& 2 [(&Xas) X&]

g 7l 7r'

1 t' 0~ Sin 0~'l
+-i 2— isr. f)„~sr, (2.12)

gk ~ ~si

~„+g(~„x~)+a„~,
&s~ @s+g(Q,„X7('),
~„~&„+g(&„x~.)+&„~.,
Cs ~ +s+g(O'sX + ) ~

(2.13)
(2.4)U(sr) =o(vr')+iy'C(m')~ ~,

where o(s.s) and C (s') are two arbitrary real functions
of m'. The reality property is due to the Hermiticity
condition on the Lagrangian. The transformation (2.2),
on the other hand, implies'

It is clear that the chiral-guage-covariant derivative is

Ss= r)s—zgos' T, (2.14)

so that gU(m)/=XIV is invariant under the SU(2) where D„=B„+gy„X Their .transformation laws are
XSU(2) transformation. Isospin invariance, Lorentz
invariance, and parity conservation then restrict the
function U(sr) to the form

o'+4's'= 1 (2.5)

.~ .y[—(~/C) 3.,—(C'/~')~. ~,]g7f&.. (2.6)

cosO= o, sln0~= 4z

m = (er')"', z-= sr/z . (2.8)

The chiral transformation law for the physical nucleon
E is then"

S~E1siigQ .~A, (2.9)

where@ =(7C Xz)tanso".
The covariant derivatives can be easily constructed

by using a trick due to Mess and Zumino. ' One intro-

'Our Eqs. (2.5) and (2.6) are equivalent to Eqs. (2.10) and
(2.11) of Ref. 3."Our Eq. (2.9) is equivalent to Eqs. (3.1) and (3.10) of Ref. 3.

The primes indicate the derivative with respect to z'.
Because of the self-consistency condition (2.5), one can
rewrite (2.4) as

U(sr) = exp[i''0~(ms)s" ~$, (2 &)

where 0(7r') is a real function of s.s and is related to ~
and C by

As emphasized in Ref. 3, different choices of the
function 0'(s') can be transformed to give the same
chiral-symmetric Lagrangian by redehning the pion
6eld. The rede6nition of the pion 6eld only affects the
chiral-symmetry-breaking term, which is unknown be-
yond the soft-pion limit where PCAC works. "One can
therefore choose his own convenient O(vr'). For our
purposes we choose

@=(sjnO~)/z-= o

o = cose = (1—cs7r')'" (2.16)

where c is fixed to be —1/F by the PCAC relation
81'J„~ =Ii„m 'x . The axial-vector current of isospin
index n J "~ is defined to be —m, sa ~/g's The di-

"PCAC means the hypothesis of partially conserved axial-
vector current: M. Gell-Mann and M. Levy, Nuovo Cimento 16,
705 (1960); Y. Nambu, Phys. Rev. Letters 4, 380 (1960};Chou
Kuang-Chao, Zh. Eksperim. i Teor. Fiz. 39, 703 (1960) LEnglish
transl. : Soviet Phys. —JETP 12, 492 (1961)g.

's T. D. Lee and B. Zumino, Phys. Rev. 163, 1667 (1967).

where T is the isospin operator. We define the covariant
curl 'U„„ for later use:

V„„=r)P)„B„V„+—g('U„X'U, ) . (2.15)
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agonalization of a„and 8„~ defines the axial-vector
meson Ar„as a„—D„ee/2gF

similarly constructed:

8 Jt1'' Jtt Jgt Ig Jg'+17 bel" ok+'ok+1 sk' 1+e-k 'ok '+I+
(3.10)

III. CHIRAL DYNAMICS FOR
HIGH-SPIN BARYONS

In Sec. II we discussed the chiral dynamics for a
system of pions, nucleons, and vector and axial-vector
mesons for simplicity. With Eqs. (2.12)—(2.14) one can
easily expand the system to include any particle of
arbitrary spin and isospin.

We follow Ref. 13 in describing the kinematical prop-
erties of the baryons by means of Rarita-Schwinger
wave functions. "Denote the wave function for spin
S=k+rshy B»" »(x,X), where )t denotes the helicity.
The wave function is symmetrical in the p;. It also
satisfies

(i'7"8„—M)B"'""k(a X)= 0

q B»" »(oo),)=0

and therefore

a„,B»»(x,))=0

(3.1)

(3.2)

(3.3)

when the field is free.
For a baryon of isospin T, we assume its SU(2)

&&SU(2) transformation laws to be (omitting the space-
time factors)

B~B+igyr TB

B-+B+igQ'TB.
(3.4)

(3.5)

The chiral gauge-invariant QB,Bb vertex of lowest
multipolarity is, apart from a coupling constant,

Bo ''' FTBb» okSok+, Sek, Ssk +H, c, ) (3 6)

where B, is a baryon of spin S,=k'+ra and isospin T„
Bb is a baryon of spin Sb= k+-,' and isospin Tb, and we
have taken S,&Sb for definiteness. 7=1 or iy5, de-
pending on the parities of B and Bb and the relative
orbital angular momentum. The isospin coupling is de-
fined in the standard way"" (omitting space-time
factors):

B'TBe=g( 1)'Br.&»T(„.)—&'&Br, '"&(t'-", (3.7)
l

Ti„„)i'& = (2T +1)"'C(T„1,Tb, trt, t)N),

(Tt) t-)"'=(—1)'T(-)' "
(3.8)

(3.9)

'e P. Carruthers, Phys. Rev. 152, 1345 (1966).
"W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941)."M. E. Rose, Etementary Theory of Angular Momentum (John

Wiley R Sons, Inc. , New York, 1957).

where the superscripts of the wave functions denote the
s components of isospin, and C is the Clebsch-Gordan
coeKcient. "

The chiral guage-invariant 'UB,Bb vertices can be

where 7=1 or 75.,

Ba FTS Bb» sk"Sok

ok ok+i+ ~ ~ ~ ( ~ )
where I"=1 or iy5',

gok'+iB, et" ek'pTBb„

s„k, ,'U„k,„k,+,+H.c. , (3.12)
where F= 1 or iy5.

The couplings (3.6) and (3.10)—(3.12) are the simplest
possible vertices, which reduce to the lowest multipoles,
and therefore are most important for low energy. The
couplings of higher multipolarities can be similarly
constructed.

The coupling constants are determined experimen-
tally, or one can, if one wishes, assume a certain sym-
metry beyond SU(2))&SU(2), e.g., SU(4), to relate
the coupling constants among different vertices. Since
g„, 'U„,and S„each contains more than one term, deter-
mination of one coupling constant yields many pre-
dictions under chiral symmetry. The expressions (2.12)
explicitly show the power and the limitation of the pre-
diction. In the subsequent sections we shall concentrate
on one such example and leave further applications to
other occasions.

IV. PHOTOPRODUCTION OF DOUBLE
PION FROM NUCLEON

It has been shown in a previous paper' that current
algebra" and the PCAC hypothesis" in the soft-pion
limit, reproduce the total cross sections of the static-
nucleon model' for double-pion photoproduction. In
comparison with experiment, ' "the static model seems
quantitatively smaller. Therefore we are tempted to see
whether the hard-pion approach would improve the
static results.

The energy range that we are interested in is from
threshold up to about 1.5 Gev c.m. total energy. In
this region we expect, and therefore will assume, that
one of the final pions strongly rescatters vrith the nu-
cleon in the total angular momentum J= ~, isospin I= 2,
positive-parity state (hereafter abbreviated as the 33
state). The expectation (or the assumption) is based on
the experimental observation that in low-energy (from
threshold to about 1.35 GeV c.m. total energy) pion-
nucleon elastic scattering and single-pion photoproduc-
tion, this resonant state strongly dominates the pro-

"M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Physics 1, 63
(1964)."J.M. Sellen, G. Cocconi, V. T. Cocconi, and E. L. Hart,
Phys. Rev. 113, 1323 (1959); B. M. Chasan, G. Cocconi, V. T.
Cocconi, R. M. Schectman, and D. H. White, ibid. 119,811 (1960)."J.V. Allaby, H. L. Lynch, and D. M. Ritson, Phys. Rev.
142, 887 (1966).
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exp(ib3, )sinb33 1

12m O' —Mg' —iMF
A. Lagrangian for ~Noh, and DNA Couylings

cesses. In our phenomenological Lagrangian approach, " in the 33 state, one obtains from the coupling (4.6)
we shall treat the resonance as an isobar A(1.236 GeV,
g» —a+) 1

The first step is to estimate the coupling constants
for the relevant vertices:

where B„ is the wave function of the isobar A(1.236
GeV, S"=2+) and we have introduced the electromag-
netic interaction by the gauge-invariant substitution"
~=~(p& ~p& )& U —= U(p& ~t'& )& p&

=
p& & p& —=

p& &-
p„"=—p„'—(e/g)A„; 2 „ is the electromagnetic field. The
isospin transition matrices T for the couplings (4.1)—
(4.4) are"

1 0
0 1/VS T 0

—1/VS 0 '
i/vS

0 —1. . 0

0 0
—2/K3 0

0 —2/K3
0 0

0
i/v3

0 )

(4 5)

We shall neglect the other couplings of higher multi-
polarity in our energy region.

In order to estimate the coupling constants X», C», C2,
and Cs, we take the n.lVD coupling from (4.1),

&2gF—(hi/m )(ETtB„+B„T1V)e'&, (4.1)

—(g/v2) (Ci/m ) ( i'„—p~TtB„+i8„p„y&T1V)

&&
'U'&" (4.2)

(g—/v2) (C,/m. ')(1Viy, T"n„B„
+n„B„i~,TV)~'", (4.3)

(g/v2) (C3/m. ') (S+iy,T'B„+B„ip,TS„iV) 0'~", (4.4)

~
(E+N), (4.10)

& m. i

A»= 1.88. (4.11)

On the other hand, from the data of single-pion
photoproduction, C2 and C3 are measured to be negli-
gible (C~——C3= —0.0043)." It follows from (4.6) and

(4 7)" that

Mip(W) 1 X»C»
e

12m t/I/" —Mg' —iMF„m '

)([(Ei+~)(E2+1)I)]'i2 (4.12)

where Mi+ (CGLN notation~) is the amplitude of mag-
netic-dipole transition to the 33 state, E» and E2 are
the initial and final nucleon c.m. energies at resonance,
4 and q are the initial and final c.m. momenta, 8' is the
c.m. total energy, and F~ is the phenomenological width
for photoproduction. What Gourdin and Salin fitted'
are equivalent to FR=160 MeV, and C»=0.43 in Eq.
(4.12) (with Xi=1.88). On the other hand, if one as-
sumes that FV=F =120 MeV and keeps the height
of the resonance unchanged, one obtains C» ——0.32. In
the latter case, we have, from (4.10) and (4.12),

cVi+(W) Ci Ei+3f "'
-=e- h33(W) =0.17eh33(W), (4.13)

qh Xi E2+3E

where E and q are the c.m. energy and momentum of
the nucleon at resonance, W is the c.m. total energy,
and F is the phenomenological width of the resonance.
For F„=120MeV, one obtains"

(1/v2) pi, /m. ) (B„TÃ8&"~+H.c.), (4.6) where

and the y&VA coupling from (4.2)—(4.3),

—(e/v2) (Ci/m )( iB„y„ysTSNF""+—H.c.), (4.7)

—(e/v2) (C2/m ') (B„B„iy~T3VF &"+H.c.), (4.8)

(e/v2)(C3/m ')(B„iy5T38„1VF""+H.c.), (4.9)

where F&"=8"A"—8"A&. They can be compared with
experiments following the isobar-model analysis of
Gourdin and Salin, ' " which gives a satisfactory de-
scription of single-pion photoproduction.

For the pion-nucleon scattering I'-wave amplitude

'9The author thanks Professor T. D. Lee for suggesting the
examination of this problem with the phenomenological Lagran-
gian.

20 M. Gourdin and Ph. Salin, Xuovo Cimento 27, 309 (1963).

~i+(W)
-hag(W),

qk 2f„/m
(4 14)

where p„=2.79e/23II and p„= —1.91e/2' are, respec-
tively, the total magnetic moments of proton and neu-
tron and f„/m = G,/23' (G,'/4~= 14.5) is the strength

"The Gourdin-Salin value 'AI ——2.07 was obtained for F =140
MeV (Ref. 6).

2' If the reader notes the slight difference between our expression
(4.12) and that in Ref. 20, it is because they used free-field equa-
tions for E and 6 in converting their interaction Lagrangians.
Our expression (4.12} is derived directly from the couplings (4.6}
and (4.7l.

hing(W) = [exp(ib33)sinhaaj/q'.

Using dispersion relations, CGI.N~ gave the following
solution for the magnetic-dipole amplitude of single-pion
photoproduction:
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of m3llV gradient coupling. With these experimental
numbers, we find

Mi+(W)/qk =0.175ehss(W), (4.15)

in remarkable agreement with the fitted expression
(4.13).

B. Model

Having evaluated the coupling constants X~, C~, C~,
and C3, we are now ready to calculate the double-pion
photoproduction process. We shall consider the follow-
ing "tree diagrams": (1) contact term, Fig. 1(a); (2)
pion-current term, Fig. 1(b); (3) Ai-exchange term,
Fig. 1(c); and (4) nucleon-pole terms, Fig. 1(d).

We describe the reaction

y(k)+X(pi) —+ 7r (qi)+s-p(qs)+E(ps) (4.16)

in terms of the S matrix

S= —s(2~)'S'(k+ pi —qi —q, —p, )
X (3f'/Sk sruti(esEiEs) '"T,

4.17
T= eel'M„= p(4oiioisE, E,/~ )'I

X&'l (P ) '(q) (q ) I~.-(0) "I&'(P )),
where e& is the photon-polarization vector and we have
treated the electromagnetic interaction to lowest order.
n, P= 1, 2, 3 represent the isospin indices of the pions.
We shall, for definiteness, assume that the pion irP(qs)
and nucleon are resonant in the 33 state and shall make
the proper symmetrization between the two pions at the
end. The projection of the invariant amplitude T in
which mP(qs) and .V(Ps) are in the 33 state will be de-
noted by T».

(1) Contact term: This term arises from the following
interaction Lagrangian Lfrom (4.1)]:

—(e/v2) (hi/m ) (es pB„TplVA I'n+H c ). (4..18). .

We calculate its contribution to T and project the s.P(qs)

iV(ps) system into the 33 state in their c.m. system:

-W +M E+Mi'"
ie4x h„(W„)(3q, e—e q,e e)

2M Es+M)

X es.,(&p, srpr, ), (4—19)

(c)

I'. IG. 1. Various terms in the phenomenological Lagrangian that
contribute to the reaction yE —+71-6 —+ arm.E. Solid lines denote
nucleons, dashed lines denote pions, wiggly lines denote photons,
the zigzag line denotes the axial-vector meson, and rectangular
blocks denote the isobar A. (a) represents the contact term, (b)
the pion-current term, (c) the AI-exchange term, and (d) the
nucleon-pole terms.

two cases. In single-pion photoproduct. ion, (4.20) is the
dominant term at threshold, but beyond the threshold
it is small compared with the contribution of the 33
resonance. On the other hand, (4.19) dominates the
double-pion photoproduction from the threshold ( 1.22
GeV) up to at least 1.5 GeV. This is shown in Fig. 2.

(2) Pion-current term: This term arises from the in-
teraction (4.6) and the pion-current interaction —ees v
XAI'm- B„x~. Its contribution to T33 is

—ie4m-

s' +M~(e +M)'" 2q ",
hss(Wss)

2M E,+N m. '—(k —qi)'

X[3q, (k—q, )—e q,e (li —q,)]
X esN~(Bpv ', rprv) (4.2—1-)

i00—

80—

in the c.m. system of mp(qs) and iV(ps)
It turns out that, besides the contact term, this is the

only other important term contributing to the total
cross section below 1.5 GeV (although it is much smaller
than the contact term).

8(fp/m )es 7X2 0'' er Xi (4.20)

(where n is the isospin index of the pion and Xi and Xs
are the spinors of the initial and final nucleons) to the
invariant amplitude at threshold. The term (4.20) is
just the well-known Kroll-Ruderman term. 23

The significance of the contact term is different in the

"N. M. Kroll and M. A. Ruderman, Phys. Rev. 93, 233 (1954l.

where W33——$(qs+ps)'j"' is the c.m. total energy of
n.P(qs) and $(P,).

In the case of single-pion photoproduction, the cor-
respondent contact term would contribute

60—

20—

T

I

400
I

600
& Mev)

I

800

jy+P w+m +P

, $ y+p ~a +w' +p
'

[ f y+p-~ + n"
I I

1000

FIG. 2. Total cross section for y+p ~ m 1~++p and y+p ~
7l- +6++~ 71- +m.++p versus lab photon energy. The solid curve
is our total cross section for y+p —+ ~ +4++—+ ~ +~++p. The
dashed curve is the contribution of the contact term alone.
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(3) At-exchange term: This term arises from the fol-
lowing interactions:

&2gF, (7 t/m ) (B»TNAt»+H. c). (4.22)

xg(8»x 8,)'U"", (4.24)

where ~ is a constant to be determined by experiment.
The contribution of the A~-exchange term to T33 is

iex4x
Wss+Mn(Et+M "' 2

k„(W„)
2M &Es+M nzgts —(qt —k)'

X[(3qs e—s qs(r e)qt»k» —(3qs k —o qss. k)qt»e»]

(ex/2gF )es p(8»A„B„A—„)
X (civA t~» —ci»A, v)harp. (4.23)

The coupling (4.22) comes from (4.1), while (4.23) is
deduced from the chiral gauge-invariant interaction
Lagrangian

when the ftnal-state 7rP(qs) and N(Ps) are projected into
the 33 state in their c.m. system.

. The signiicance of the nucleon-pole terms for the
angular-distribution differential cross section will be
discussed in Secs. VI and VII.

V. SOFT-PION AND DISPERSION-
RELATION APPROACH

The application of current algebra" and PCAC" to
double-pion photoproduction has been described in a
previous paper. ' Here we shall make some remarks
regarding its comparison with the Lagrangian approach.
In the current-algebra approach, we will take one pion
to be soft and use the dispersion-relation method to
solve the four-point matrix elements that have xE in
the Anal state. As a result, we need fewer imputs to
predict the cross sections in comparison with the Lagran-
gian approach.

In the expression (4.17), we contract vr (qt):

Xe..,(S„—,";,). (—4.25)
d'x e'si*( +no. ')

x(N(p, ) p(q, ) Ir( -(*)z„-(0))IN(p, )), (5.1)

which in turn is reduced to

F m ' t2(osEgEs "'
M„=I q~" de e'"~

m~s —qts k M'—(e/&2)(Ct/m )(—iB„y»ysTsNF»"+H. c.) (4.26)

(2(o E E ) '

Its order of magnitude is ittetk/rN&ts times the contact "
I, Ms )

term. If one believes that the value of a lies in a range
0&a&1, which was argued on the basis of the widths
of p and 3~,

' "one might neglect the A ~-exchange term
(&10%of the contact term).

(4) Nucleon-pole terms: They arise from the following
interactions:

[from (4.7)], and the pion-nucleon coupling

(f~/m )Ny»ysr NB»vr +H.c. , f~~1 0 (4.27). .

where

(q) = q&

Sp '(p+q)=M —(p+q),
and the invariant single-pion photoproduction ampli-
tude is de6ned by

e»s7(ps)OR»p(ps, q, p,k)N(pl) = (EtEs2ce/Ms) lls

x(N(ps)~p(qs) I
e»&»™(0)IN(pt)), (4.29)

which is equal to

Ct7 t Was+Ma
3M [(E,+M) (E,+M )]»'

2Mnzx 2

Their contributions to T are given by

ie(f /~ )+(p2)[15 (ql)+F(p2+ql)e OR (p2+ql qs pl k)

+ e OR (ps qs pl q1 k)5 F(pl ql)1 5 (ql)]Q(pl)
(4.2S)

x(N(ps)~p(qs) I &(~," (~)J»'™(0))
I N(pt))

fs,P'(Pm)~'(C ) l
J.""(o)

I &(Pi))) (& 2)

by partial integration and making use of the PCAC
relation B~J„~ =Ii m 'z and the commutation rela-
tion'~ "

I
~o""(&)~»™(0)]o=s= &es pJ» —'(0)6'(&) (5 3)

In Eqs. (5.2) and (5.3), we have omitted the contribu-
tion of the Schwinger term" both because we are treat-
ing the electromagnetic interaction to the lowest order
and because we are going to take the soft-pion limit
q~~0. Under such conditions Schwinger terms con-
tribute nothing. " From (5.2) we proceed to take the
soft-pion limit q~

—+0 and employ the CGLN~ disper-
sion-relation method to obtain our approximate
solution.

It has been shown' that the matrix element of the
axial-vector current between N and z.N, (N(Ps)z P(qs) I

XJ»"r(0) IN(pt)), can be decomposed into a pion-pole

X [3q (kXe)—~ qe (kXe)]
8'332—M g' —iaaf I"

~
X (Bps——',rpr, ) (4.30)

"H. J. Schnitzer anti S. Weinberg, Phys. Rev. 164, 1828 (1967l.

'5 M. Veltman, Phys. Rev. Letters 17, 553 (1966); M. Nauen-
berg, Phys. Rev. 154, 1455 (1967). The connection between the
commutation relation and the gauge condition was discussed in
these papers.

26 J. Schwinger, Phys. Rev. Letters 3, 296 (1959).
27 See Ref. 12 for details.
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term The nucleon-pole terms are similar to (4.28):
(h —qr)„

-P(ps)~p(qs) I j-'(0) l&(pt)& (54) f . M' &"'
p

P™
m. '—(h —qr)' I ~(ps) 3)7.p(Ps, qs; Pr qr—h)

E2'MsErEs) ' ' 2pr qrp

plus
(&(ps)~p(qs) I~I""'(0)l&(pt)&, (5 5)

where j v= ( +m ')a.~ and J„"v&'&=J„"v r) '—r)„r)"—

&(J„~&. Using the CGLN expression

P(ps)~p(qs) I j-'(0) I&(pt)&=(M'/2~sErEs)"'
X4s (W33/M)hss(W33)L3qs (ys+qs —yt) —a qsa

~ (ye+ qs —yr) j(bp, —-', rpr, ), (5.6)

one sees that the contribution of (5.4) to T is one-half
the pion-current term (4.21). For the matrix element
(5.5), one can solve it by using the technique of
CGLN~ ":
(~ (p,) p(q, ) I

I„"&&(0)"1~v(p, )&

ggM f M' )'" Wss/(Et+M)(Es+M))'I'
I

4~
G, E2tosEtEsl M 'E 4Es'

Xhss(Wss)(3qs e—a q2a. e)(bp, ', rpr, ) (—5.7-)

in the c.m. system of a p(qs) and 1V(ps). The nucleon
axial-vector coupling constant is g~~1.18. Now if one
uses the Goldberger-Treiman relation" F AM/G„, ——
one sees that, besides a factor

I 2Wss/(Wss+Ma)]
X(Es+M)/2Es almost equal to 1, the contribution of
(5.7) to T is the same as the contact term (4.19).

We now turn to the integral term in (5.2),

qr" d'x e'&&*(Ã(ps) ~p(q, ) I

x2'(J," ( )s„-(0))Ix(pt)). (5.8)

In the soft-pion limit q&
—+ 0, the only important terms

are the pion-pole terms, and the nucleon-pole terms in
which the axial-vector current J„~ attaches to the ex-
ternal nucleon lines. " There are two pion-pole terms
corresponding to J„"~ —F (t)„m —eesv A„m'r), i.e.,

p qts

(2MsEtEsl m~ —qt

&3apqz"—zI' P'(ps)~p(qs) I j-'(0)
I
~'(pr) &

m. '—(h —qr)'

The term (5.9) combines with left-hand side of (5.2)
to be F M„, while (5.10) yields another one-half of the
pion-current term (4.21)."

"N. Domhey, Phys. Rev. 127, 653 (1962).
"M. L. Goldberger and S. B. Treiman, Phys. Rev. 110, 1178

{1958);110, 1478 (1958).' S. I.. Adler, Phys. Rev. U9, B1638 (1965); S. L. Adler and Y.
Dothan, ibid. 151, 1267 (1966).

"This is also pointed out by S. I,. Adler and W. I. Weisberger,
Phys. Rev. 169, 1392 (1968).

Ps+M
Xgxqr'Vsse +gsqtVssr

2ps"qtr

X31ts (ps+qlp qsj pl, h) +(pl) ~ (5 11)

The solution for the single-pion photoproduction
amplitude given by CGLN is

p~—y W33
e&u(ps)3)T, „p(ps, q; pr, h)N(pr) = -4~ h, s(Wss)

2f,/m M

XL3q (kX e)—a qa" (kX e)](3p3 s'Tpr8) (5.12)

Because of the coincidence between (4.13) and (4.15),
the expressions (5.11) and (5.12) essentially reproduce
the same nucleon-pole terms (4.28) and (4.30) obtained
by our previous method.

Ke have found that the two methods produce essen-
tially coincident solutions. The first method uses chiral
symmetry, PCAC, and the phenomenological Lagran-
gian in which the coupling constants of yEA as well as
of mSA must be fitted from the experimental data. The
second method takes one pion to be soft (qr ~ 0) and
employs current algebra, PCAC, and the CGLN dis-
persion-relation method. It is not obvious from first
principles that these two methods should produce nu-
merically coincident solutions over a fairly wide range
of energies. Since the two solutions should, in principle,
be identical in the soft-pion limit, one might conclude
that (a) the soft-pion effect is small and (b) the CGLN
method gives good solutions.

VI. RELATION TO STATIC THEORY

The Chew-Low static-nucleon theory" for pion-nu-
cleon scattering and single-pion photoproduction was
historically the first step toward understanding of the
strong interactions. The theory was applied to double-
pion photoproduction by Cutkosky and Zachariasen, '
who gave explicit formulas for the cross sections. It was
years later that some data of double-pion photoproduc-
tion became available; Carruthers and tA'ong" noted
that the rapid rise of the total cross section around 550
MeV (photon lab energy) could be explained by the
Cutkosky-Zachariasen theory.

Assuming a P-wave interaction between a pion and a
nucleon and imposing the gauge-invariance condition,

"G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956);
101, 1579 (1956); G. C. Wick, Rev. Mod. Phys. 27, 53 (1955);
E. Henley and W. Thirring, Elementary Quantum Field Theory
(McGraw-Hill Book Co., New York, 1962)."P. Carruthers and H.-S. Wong, Phys. Rev. 128, 2382 (1962).
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Cutkosky and Zachariasen obtained, for double-pion
photoproduction, a pion-current term and an inter-
action-current term that are, respectively, equivalent
to our pion-current term (4.21) and contact term (4.19)
taken in the static limit:

—ie4~(qi" e„/k„qi")h$3(W33) [3q2 (k ql)
—o q~n (k—qr)]~3.,(&e,—arp. ,) (6.1)

ie4mhg3(IV33)(3qg r.—n. q2o a)r), (8e, 3r—pr-~). (6.2)

Let us now consider the nucleon-pole terms. If one
takes the static limit of (5.11) and (5.12) [or (4.28) and
(4.30)], they become

i4~(I—„p„)(—(8e, —', rer—,)-',-r, [3q, (kX a) —o

q,o (kX a) j(n q&/(ug)h33(~, )+-',r.(8e3—arera)
X(o"qi/id')[3q2 (kXa) —o q2o" (kXa)]h33(k)). (6.3)

For the dominant charge mode yp —+ ~ (qr)sr+(q~)p,
for which experimental data are available, we find the
charge factors ea, ~(le~ —arar~) = i, —(oe: arer3)-', 7—„
= 0, and 2r (Sea —arer~) = —a. The ratio of the nucleon-
pole term (6.3) to the dominant contact term (6.2) is
of order kor/M, where vr ——q~/a». Although this ratio
vanishes in the straight static-nucleon limit M —+~, it
is in fact not small. For a c.m. total energy of 1400 MeV,
just above the ~h threshold, k/M=0. 40. Nevertheless,
the contribution of the nucleon-pole terms to the total
cross section is only of order (ka~/M)' compared with
the contribution of the contact term. The reason is that
the ~—

(qr) of the contact term is in the 5-wave state,
while the ~ (qq) of the nucleon-pole terms is in the P
wave state; as a result, the contribution of the inter-
ference between these two terms vanishes when one
integrates over the angle of 7r (qr). This is why the
Cutkosky-Zachariasen static model, which consists
only of the contact term and the pion-current term, can
describe the total cross section satisfactorily. However,
the interference between the contact term and the
nucleon-pole terms does contribute to the angular-dis-
tribution differential cross section, and we expect its
effect to be important (of order km~/M compared with
the contribution of the contact term). Indeed, in com-
parison with the experimental data on angular distribu-
tions of m. (qq), the sta, tic model is inadequate. The in-
clusion of the nucleon-pole terms makes the theory
consistent with experiment. (See Sec. VII.)

VII. COMPARISON WITH EXPERIMENTAL DATA

The experimental data of low-energy double-pion
photoproduction have been published. ' ' In particular,
Allaby et al."have measured the angular distribution of
m for the process y+p~ x +5++~ ~ +~++p. To
compare our theory with the data, we must transform
our (4.19) and (4.21), which are expressed in the c.m.
system of m(q2) and E(p2), to the over-all c.m. system
[c.m. system of y(k) and AT(p~) j.A complete calculation

is straightforward although lengthy. Since we have ob-
served that our total cross section should not diBer
much from that of the static model, and since we are
more interested in the effect of the nucleon-pole terms
on angular-distribution differential cross sections, we
shall for the present content ourselves with an approxi-
mate evaluation and an estimate of possible corrections.

In the following calculations for the cross sections,
the polarizations will be summed over final states and
averaged over initial states. For convenience, the pion
mass will be set equal to i.

The measured process is y(k)+p(pr) —& ~ (q&)

+m+(q~)+p(p;). We calculate the contribution of the
contact term to the total cross section to be

d(W33) [1+0(idgqg/W»q2)]

X8nq&q2 W33 ~h»(W33)
~

/kW', (7.1)

where W= [(k+p )']'" n= e'/4+~1/137, and q2'

[(W33 +M' —1)/4W»' —M')'I'. In the energy range
under consideration (from threshold to W=1.5 GeV),
co2/W33 is sma. lier than 4, whereas qr/q2 is small when the
resonance factor

~
h„(W33)

~

is large, and vice versa. For
comparison, we quote the corresponding Cutkosky-
Zachariasen static result:

$V p
—3I—j

d((og)8nqrq2'M
~
h33((u2)

~

'/kWO, (7.2)

where IVO ——M+co~+~~. In our numerical calculations,
the term in (7.1) with the factor 0(au~qr/W33q, ) will be
neglected.

For the contributions of the pion-current and nucleon-
pole terms, we shall, for simplicity, use their static
limits (6.1) and (6.3). Again the ratio of the neglected
relativistic corrections for each term to the term itself
is of order a&Qq$/W33q2.

Our final results —which consist of the contact term,
the pion-current term, interference between the contact
and pion-current terms, and interference between the
contact and the nucleon-pole terms —are the following:
total cross section:

q~q2"&V»'I h»(W») I

'
d(W33) 8n

V+1 kW'

Wp—3f—1

d( )8 Ih ( )I'
HIWp

Gly 1
x

I
+ lni +q))

k kqg

1 coy( g
—k

+—(—qg'+hear)+ — ln(cog+qg); (7.3)
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&+1 k8"
Wp-3f—I

~ q 3Jg 2

+ d(~s)~ Ihss(~s) I'
1 &~&0

t 4rjt(pr 1) —2(1—pt )(gt +k —2gtkpt)
xI +

kk(tet/gt pt) k (tet/gt pt)

47.1 qtk
+ ~t I, (7 4)

9 a)pe )

angular-distribution differential cross section:

do tt res"W'»'
I h»(W») I

d(Wss) 4n

I I I

4

I I I I I I

+08 +04 0 —p4 -08
cos8-

FIG. 6. Same as Fig. 3 for 650 MeV.

I I I I I I I I I

knob = 575 NIeV Ip--.
I I I I I I I

kebab= 700MeY

6

6--

I I I I I I I I

knob= 600MeY

I I I I I I I I I

+0.8 +0.4 0 -0.4 -0.8
cos 8—

FIG. 3. Angular distribution of ~ in the c.m. system for p+p ~
~ +5++—+ ~ +~++P for a photon lab energy of 575 MeV.
case —=k q /kq . The d-ata a—re measured by Allaby er al.
(Ref. 19).The solid curve is the result of the present theory. The
dashed curve is the contribution of the contact term alone. The
dot-dashed curve is the contribution of the contact term plus
pion-current term, i.e., the static-nucleon theory.

I I I I I I I I I

+0.8 +0.4 0 -0,4 -p.8
cos8„

Ip

I I I I I

FIG. 7. Same as Fig. 3 for 700 MeV.

6

I I I I I I I
&

I

+0.8 +0.4 0 -0.4 -0.8
cos 8~

Pro. 4. Same as Pig. 3 for 600 MeV.

I
''

I I I I I I I

k,ob= 625MeY

I I I I I I I I

+0.8 +0.4 0 —0.4 —0.8
cos8

FIG. 8. Same as Fig. 3 for 750 MeV.

4

+0.8 +0.4 0 -Q.4 -Q.8
cos8-

FIG, 5. Same as Fig. 3 for 625 MeV,

where p&=qt k/gtk in the over-all c.rn. system. In the
interference between the contact term and the nucleon-
pole term, the factor h33(tes+M)hss (k+M)+c.c. has
been approximated by 2

I h33(Gls)
I

'=—2
I h»(tes+M)

I
'.

The curves in Figs. 2—8 are obtained by using the ex-
perimental Breit-Wigner form'4 for h33. Comparisons

"M. Gell-Mann and K, M. Watson, Ann. Rev. Nuci. Sci. 4, 219
(1954).
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between the present theory and the static model for

angular distributions are also displayed.

We observe that the static model, although giving
a satisfactory total cross section, where the con-
tribution of the nucleon-pole terms is less than 15%%u~

(kgr/Moor)'), is not adequate for the angular dis-

tributions where the nucleon-pole terms can contribute

as much as 40% $ (her/Mror)]. Our angular distribu-

tions have the correct slopes in general. Their quantita-
tive discrepancies reQect the discrepancies in the total

cross sections. Apparently more accurate measurements
are needed to test the theory.
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A quantum field theory of spin-0 particles traveling with speeds greater than that of light has been con-
structed. The theory constructed here is explicitly Lorentz-invariant; and the quanta of the field obey Bose
statistics. Formalism developed for the free field has been extended to the case of interaction of these parti-
cles with nucleons. A new feature of theory is the occurrence of negative-energy particles; this is a necessary
consequence of the relativistic invariance of the theory, since the distinction between positive and negative
energies is not a relativistically invariant concept for such particles. The occurrence of these negative-energy
particles does not, however, prevent the theory from being meaningful; the physical interpretation of the
situation is provided by the postulate that any process involving negative-energy particles is to be identified
with a physical process with only positive-energy particles traveling in the opposite direction, with the roles
of emission and absorption interchanged. The scattering amplitudes are the same as in the usual theory with
m2 replaced by —m .

INTRODUCTION
' 'T has generally been believed that no particle can
~ - exceed the speed of light. ' This has meant in turn
that in formulating the quantum theory of 6elds it has
been tacitly assumed that all the particles described by
such fields belong to one of two classes: those which
have a finite rest mass and travel with speeds less than
the speed of light; and those which have zero rest mass
and hence always travel with the speed of light. We
may also consider a third class of particles: those which
travel with speeds greater than the speed of light. If we
try to ascribe a rest mass to such particles it will be
pure imaginary, but this leads to no conceptual di%-
culties since these particles cannot be brought to rest.
The real difFiculty with such particles has been that the
usual Lorentz transformation properties lead to nega-
tive energies in suitable frames. Several years ago it
was shown how this difhculty may be overcome';

' H. Poincar6, Bull. Sci. Math. 28, 302 (1904);A. Einstein, Ann.
Physik (Paris) 17, 891 (1905).

~ O. M. P. Bilaniuk, V. K. Deshpande, and E. C. G. Sudarshan,
Am. J. Phys. 30, 718 (1962).

crucial to the resolution of the dif6culty is the reinter-
pretation of "negative-energy particles traveling back-
ward in time" to be positive-energy particles traveling
forward in time. All the puzzles and paradoxes that
have been put up by various people could be resolved
using this basic idea, at least as far as classical theory
is concerned. It also motivated two brilliant experi-
ments' searching for these faster-than-light particles,
which we shall call tachyons. ' Both these experiments
had negative results, but we believe that this should be
interpreted to mean that, like particles of vanishing
mass, tachyons carry no electric charge. '

It is now of interest to consider a quantum theory of

' T. Alvager, P. Erman, Nobel Inst. Report 1966 (unpublished);
T. Alvager and N. M. Kreisler, Phys. Rev. 171, 1357 (1968).

4 The name "tachyon" is the contribution of G. Feinberg, Phys.
Rev. 159, 1089 (1967).

'K. C. G. Sudarshan, Proceedings of the Nobel Symposium,
Lerum Sweden, 1968 (to be published). For an exactly solvable
Hamiltonian model for the charged scalar theory using both
positive- and negative-energy mesons, see E. C. G. Sudarshan,
in Theoretical Physics INI (W. A. Benjamin, Inc. , New Yor&,
1962).


