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The quantum electromagnetic zero-point energy of a conducting spherical shell of radius r has been
computed to be AE(r) —0.09hc/2r. The physical reasoning is analogous to that used by Casimir to obtain
the force between two uncharged conducting parallel plates, a force confirmed experimentally by Sparnaay
and van Silfhout. However, while parallel plates are attracted together because of the zero-point energy,
a conducting sphere tends to be expanded. Thus although relevant for the understanding of the quantum-
mechanical zero-point energy, the result invalidates Casimir s intriguing model for a charged particle as
a charged conducting shell with Poincar6 stresses provided by the zero-point energy and a unique ratio
for e'/hc independent of the radius.

I. INTRODUCTION

HE attractive force between two conducting
parallel plates was calculated by Casimir' using

the notions of quantum electromagnetic zero-point
energy for the normal modes in the region between the
plates, and experimental work by Sparnaay and van
Silfhout' has confirmed the result. The present paper
reports an analogous calculation for the forces on an
uncharged conducting spherical shell.

The motivation for the calculation arises from
Casimir's intriguing model' for a charged particle. The
model cuts across the lines of classical and quantum
electrodynamics, beginning with the Abraham-Lorentz
model of classical electron theory and then adding
Poincare stresses from the zero-point energy of quantum
electrodynamics in a manner which makes the vanish-

ing of the stresses independent of the radius of the
configuration. The model suggests a unique value
C= es/Itc necessary for the vanishing of the self-stresses,
and this value is determined unambiguously from the
geometrical considerations used to evaluate the zero-
point energy of a conducting spherical shell. However,
the calculated magnitude of the zero-point energy
turns out to be of the opposite sign from that proposed
in the model, and any connection between the values
for the zero-point energy and the fine-structure con-
stant n is not immediately apparent.

In the Sec. II, we outline briefly the Casimir model
for a charged particle. In Sec. III, we carry out the
required calculation of the zero-point energy of a
sphelical conducting shell and conclude that the result,

*Research supported in part by the OfIIce of Naval Research.
' H. B. G. Casimir, Koninkl. Ned. Akad. XVetenschap, Proc. 51,

'793 (1948).' M. J. Sparnaay, Physics 24, 751 (1958).' A. van Silfhout, DisPersion Forces Between MacroscoPic
Objects (Drukkerij Holland, N. V., Amsterdam, 1966). Lifshitz,
Derjaugin, and collaborators have carried out extensive theoretical
and experimental work on dispersion forces; see B.V. Derjaugin,
I. I. Abrikossova, and E. M. Lifshitz, Quart. Rev. (London) 10,
295 (1956);also, the references in van Silfhout's thesis.

H. B. G. Casimir, Physica 19, 846 (1956).The model has been
termed suggestively a "mousetrap" to catch e'/A . c

although relevant for understanding quantum-mechani-
cal zero-point energy invalidates the proposed model.

II. CASIMIR MODEL FOR A CHARGED PARTICLE

In the early part of this century, there was con-
siderable interest in models for charged particles
within classical electromagnetic theory, and today the
Abraham-Lorentz model still finds its way into text-
books' on electromagnetism. However, this classical
electron theory was beset by numerous difhculties, and
since quantum mechanics and notably quantum elec-
trodynamics have succeeded essentially by side-
tracking or ignoring problems of electron structure,
the question has not been one of great interest recently.

One of the difhculties with the classical electron
theories was the need for the ad hoc stresses postulated
by Poincare in order to make stable the particle's 6nite
charge configuration despite the repulsion of the distinct
parts of the distribution. Since all the effects of classical
electromagnetism seemed to have been already in-
corporated, the Poincare stresses were presumed to
be "mechanical, " nonelectromagnetic.

In 1953, Casimir, surely encouraged by his successful
calculations of the attraction of two conducting parallel
plates due to quantum electromagnetic zero-point
energy, suggested that Poincare's stresses could be
viewed as a quantum electromagnetic effect due to zero-

point energy. The idea is strikingly simple, and has the
further virtue that now the electron model is filled out
entirely by electromagnetic effects.

The Abraham-Lorentz model is extended by Casimir
as follows. In its rest frame, a charged particle is re-

garded as a conducting spherical shell carrying a homo-

geneous surface charge of total magnitude e. Taking
the radius as a in the intermediate stages of the model,

' See, for example, J. D. Jackson, Classical Flectrodynamics
(John Wiley R Sons, Inc. , New York, 1963). Recent work on
classical electron theory includes that by F. Rohrlich, Classical
Charged Particles (Addison-Wesley Publishing Co., Inc. , Reading,
Mass. , 1965); S. Coleman, Rand Corporation Report No. RM-
2820-PR, 1961 (unpublished).
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AEgphepe~ 0.09Ac/28 ~ (6)

giving a value for Casimir's constant C only about j.0
times as large as that of the 6ne-structure constant.
This might be regarded as relatively good agreement
for this rough approximation.

Considering the apparent beauty of the model, it
seems most melancholy to report that the results of
the full calculation of the zero-point energy of a con-
ducting spherical shell which follows in the remainder of
this paper shows that actually the contribution of the

we find that the electrostatic energy of the con6gura-
tion is, in Gaussian units,

E,=e'/2',

with a corresponding tension e'/Ss-u' tending to expand
the sphere. On the other hand, the presence of the con-
ducting boundary alters the zero-point energy of the
universe. Arguing by analogy with the parallel-plate
calculations, Casimir suggested that the zero-point
energy might tend to collapse the sphere, giving an
energy

E,= —C(hc/2a),

where C is a constant, and hence a corresponding
tension —Chc/Svra4. This latter tension would supply
the Poincare stress, making the configuration stable in-
dependent of the value of the radius u provided that

e'/Ss-a4 —Chc/Smu'= 0;
i.e., provided that the total charge on the sphere is
such that

e'/bc= C.

We notice that the condition (4) is independent of the
radius a of the con6guration, and we may even allow
a —+ 0 so as to again avoid further questions of electron
structure. This suggests that if by some chance—
perhaps best compared to that for the Bohr model of
the atom —the model did represent an approximation to
nature, it might be possible to calculate the value of the
fine-structure constant n as the Casimir constant ap-
pearing in the zero-point energy of a conducting
spherical shell. The constant C is a pure number follow-
ing uniquely and unambiguously from the electro-
magnetic normal modes of a sphere. The idea recalls a
suggestion, which the author has heard attributed to
Feynman, that the fine-structure constant might some-
time be calculated in terms of Bessel functions.

Indeed the situation seems to be even more encourag-
ing. Thus if we take the parallel-plate result for the
energy of two conducting plates of area 3 and separa-
tion d,

AE = —~'Aced/'/20d',

and very roughly approximate a sphere of radius a as
two parallel plates of area ~a' a distance a apart, then
substituting into Eq. (5),

zero-point energy in Eq. (6) is positive; that is to say,
it is of the opposite sign from that suggested. Thus in-

stead of balancing the electrostatic repulsion, the
quantum zero-point force also expands the sphere. Our
calculation invalidates the Casimir model in the form
given here.

III. CALCULATION OF QUANTUM ELECTRO-
MAGNETIC ZERO-POINT ENERGY OF A

CONDUCTING SPHERICAL SHELL

$(x,t) = Re 2 aqfrq(x) exp' —sro~tj.

This same system is described for the quantized elec-
tromagnetic 6eld in terms of collection of independent
harmonic oscillators having energy eigenstates

Er, (n+-,')h~j„——n=0, 1, 2, (8)

where the coi, ——ck are precisely the frequencies of the
classical normal modes. The allowed energies do not
start at E&=0 but rather have a lowest possible energy
~ho&&. Thus naively, even in its lowest possible energy
state, the quantum system has a ground-state or zero-
point energy

E=P hrsg. —
R

(9)

Since there are an infinite number of normal modes of
increasingly high frequency, this energy E is infinite.
However, rather than inquire about this infinity, we will
reformulate the problem in a manner analogous to that
suggested by Casimir' for two conducting parallel
plates. We will not calculate the zero-point energy E
for a sphere but rather the difference AE in zero-point
energy between two configurations.

The system to be considered consists of a large con-
ducting sphere of radius E. enclosing the quantization
"universe, " and a small concentric sphere of variable
radius. The zero-point energy of the inner sphere
AE(a,E) will be the charge in the zero-point energy of
the total system when the radius of the inner sphere is
changed from a radius a to some radius It/rt, rt) 1 which
is a 6xed fraction of the radius of the universe. If we
label the zero-point energies EI Eiz Erxi, and EIv as
in Fig. 1, then

AE(rr E) (EI+EII) (EIII+EIV) ~ (10)

After making this subtraction, we will allow the radius
E to increase indefinitely (E—&De) and obtain the zero-

H. B. G. Casimir, Philips Res. Rept. 6, 162 (1951).

A. Physical Problem of Zero-Point Energy

In classical electromagnetic theory, a conducting
shell may contain radiation describable in terms of a
linear superposition of a discrete set of normal modes

E(x,t) =Re P aug(x) exp/ —ia)„tj,
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Fzo. 1. Spherical con6gurations for finite quantization
universe of radius R.

point energy of a spherical shell

AE(a) = lim DJ:(a,R).
R-+eo

It will turn out that the energies AE(a, R) and AE(a) are
finite, although the energies Ez, Ezz, Ezzz, and Ezv are
infinite.

The value for AE(a, R) for large R is found' to depend
upon only the radius a of the physical sphere, and to be
independent of the radius R of the quantization universe.

Also this energy is independent of the value chosen for

ri provided that R/ )t)iaand R))R/ti. We note, how-

ever, that if ti is chosen very close to 1, so that R R/rl,
then there would be an additional energy owing to the
attraction of the inner comparison sphere to the outer

sphere of the universe. This will not occur if q) 1 is held

fixed while R increases. The independence of the value

of AE(a, R) from the values of R and ri used in the inter-

rnediate calculations allows us to speak of the limit

AE(a) in Eq. (11) as the zero-point energy of the

spherical shell of radius a.
In the above, we have brushed over a significant

mathematical problem. The subtractions involved in

(10) involve the subtraction of infinite quantities, more

specifically, of divergent series. Mathematical tech-
niques for smoothing divergent series have been
developed' to a very sophisticated degree, and the
only question arising is as to the physical quantity
appropriate for use as a cutoff. Here we take a cue from
the behavior of physically realizable conductors in
contrast to the mathematical idealization which gave
the infinite series. A real conductor will conduct well

at low frequencies or long wavelengths, but will become
a poorer conductor as the frequencies increase or the
wavelengths decrease. We thus require that any cutoff
introduced in the mathematics should depend only on
the wavelength and should cut off the short wavelengths.
Once we have made this requirement, there are a wide
variety of specific mathematical procedures which may
be employed; ul/ of those which meet certain well-

defined mathematical criteria will give the same result. '

B. Electromagnetic Normal Modes in Conducting
Concentric Spherical Shells

The calculation of the series for the zero-point

energies Ez and Ezzz requires a knowledge of the TE
and TM normal modes in a conducting spherical shell,

and for Ezz and Ezv a knowledge of the normal modes in

the annular region between two conducting concentric

spherical shells. The analysis leading to the normal

modes appears in many textbooks" and will not be
repeated here. A summary of the normal modes appears
in Table I.

The author has prepared" an extensive analysis of

these norznal modes in an article which will be referred

to as A.
Substituting the normal modes into the expression

of the previous section,

00 re

AE(a) = lim lim sr kc Q (2l+1) I p Lk(, (a)r(hkt, (a))+k(,(a)G'(7k„(g))]
re x 0

R ) Rq R f
R~-

+ P [K&s(a,R)&(XK&s(a,R))+K,8(a,R)5'(hK&s(a, R))3 Pk&, —rI —7tk&, — I+k&, —+I ~k
8=1 g )

( R l R
t

R
&~.s —,R I&I ~Kt8 —,R I+KGB —,R

where 5 is a suitable cutoff function vanishing for large argument. We will have occasion to use the notation

DE(a,R) for the expression in (12) before the limit R —+~ and the notation 6 (ERa, )7for the expression before

both the R and X limits.

7 See Sec. III E, in particular the comments following Eq. (66).
'See, for example, G. H. Hardy, Divergent Series (Oxford University Press, London, 1965).
' See Ref. 8, or the summary of such questions in K. Knopp, Theory and App/ication of Infinite Series (Blackie and Sons Ltd. ,

London, 1964), Chap. XIII.
' J. C. Slater and N. H. Frank [Electromagrseeism iMcGraw-Hill Book Co. , New York, 1947)1 present a detailed and readable

account."T.H. Boyer (to be published), hereafter referred to as A.
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C. Preliminary Considerstion of Finiteness or Divergence of Zero-Point Energy

The first step in the evaluation of AE(a) is to prove that a, cutoff function 7 depending only on the wave riumber
can actually give a finite value AE(a, R,X) to the infinite series in / and s before allowing the limits X —+ 0 and
R ~~. The convergence of each of the series in (12), e.g. ,

P (2l+1) P ki, (a)r(Xki, (a)),
/=1 s=l

follows from the following list of extremely rough limits" appearing in the analysis of A,

ki, (a) =j &~„,/a& [I+7r(s 1)]/a,—

ICis(a, R) = xi+~„s(,s/a & D+ir(S —1)]/R,
k,.(a) = i,+„,'/a& t l+~(s—1)j/a,

Eis(a R) xi+i, ii/, s /a& D+ir(5 —2)j/R.

(13)

(14)

(13)

(16)

The notation of A appears as the center term in the inequalities. As an example, we will carry out the proof for

P (2I+1) P k„(a)5P.k,.(a))
l=i 8=1

when P(x)=exp( —x). Thus

00 00 00 ~ l+ir(s —1)
0~& g (2l+1) P ki, (a) expL —k~, (a)X]& P (2l+1) P

s=l

( I+a-(s 1)—
exp~ ——

a

f, l —
w ( ir(s —1)

(21+1)—exp ——X
~ Q exp~ — X + P (2t+1) exp ——X

L l=l. 8 a, ) s=l k a l=l 8

ir(s —1)
X

. s=l

( n-(s —1)
exp) — X . (1i)

a

For X)0, each of the series in brackets converges by
the ratio test. The original series is thus a bounded
series of positive terms, and hence is convergent.

It will be of some interest later to have an upper
bound to the rate of divergence as X —+ 0 of the series
appearing in (12). We can obtain this by using the
bounds of (13)—(16) and then summing the bounding
series such as those which appear in (17).By using the
device of term-by-term differentiation allowed by the
uniform convergence of the series for X~& e)0, we have
for example

00 00 t
P (21) exp ——X = —2a—Q exp ——'A

L=I 8 BX ~=j 0

ci exp( —X/a)= —2a— (18)
N. 1—exp( —X/a)

and analogous expressions for all the remaining series
appearing in (17). Summing explicitly, we see that each
of the series in (12) diverges at most as OP ').

'2 The following comments may be helpful: (i) The first zero
j,, i&v and the spacing between zeros j...+1—j„,, ~&m. (ii) See A,
Fig. 4 or Fig. 7; x, , ~,q&&j„,q/E. (iii) The first zero satisfies
j,, i')v and the spacing between zeros j,,.+1'—j...'&~+. (iv) See

. A, Figs. 8 and 9; z„,s, ~' &~ a/X and z„,s, s' ~& j„,s &'

In the calculation of the zero-point energy AE of
two conducting parallel plates, Fierz" showed that
with a cutoff F(Xk)= exp( —Xk) the energy E(X)
=P -', AM'((X/c)n~) in a rectangular volume with sides
L)(I.Xd could be given as a power. series

l8 bg b2 b3
+ + +f.+br+"

I

N, X'

The final result for DE was finite because all the terms
involving inverse powers of P cancelled in the sub-
tractions analogous to those of Eq. (10). It appears as
though in the case of present interest, the energy of the
individual regions again diverges as powers of X ',

8 Ci(a) Cg(a) Cs(a)
Ei(a,),) — + +

BX X' X' X

(20)
ci (Ci(a,R) C2(a,R) C3(a,R)l

Eii(aX) —
I + +

ax(

"M. Fierz, Helv. Phys. Acta. 33, 855 (1960); see also T. H.
Boyer, thesis, Harvard University, 1968 (unpublished). Proper
treatment of the +=0 modes in Fierz's work shows that b2=0
in Eq. (19).
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TE
kr, (a): solutions of

TM
kr, (a): solutions of

j r(alrr, (a))=0, —Lrjr(r!'pr, (a))] =0,

TAsz, F.. I. Spherical electromagnetic normal modes.

Spherical region CoeKcient TK modes

cr(a)
c2(a)
err (a)

(4/3rr) a'
a2

(2/3rr)a

TM modes TK+MK modes

(4/3rr) a' (8/3rr) u'
a2 0—«/3~)a —(2/3~) a

TAar, E II. Coefficients for divergent terms in Eq(a).

TM
Ere(a, R): solutions of

TK
Ere(a,R): solutions of

rrrj r(rErs—(a,R))j

jr(aErs(a, R))

rrr(aErs(a, R))

j r(RErs(a, R))
=0

rrr(RErs(a, R))

—Lrrrr(rErs(a, R))j
dr

d
Prj r(rE—rs(a,R))g

r=R-=0

l=1, 2, , m= —l, —/+1, ~ ~ ~, l, s=1, 2, ~ .

Annular region

D. Mathematical Relations Involving Spherical
Normal Modes

In order to proceed to the evaluation of EE(a)
from Eq. (12), we must first develop a number of
mathematical relations connecting the frequencies and
the index labels of the normal modes.

The spherical Bessel functions" may be written in
terms of trigonometric functions and polynomials in—1X )

xjr(x) = sin(x ', hr—)A—r(x)+cos(x ,'hr—)B—r(x),
(22)

xrr r(x) = —cos(x—-', hr) A r (x)+sin(x —-', lrr) Br(x),
—Lrlr(rE

re�

(u,R))j
dr

l=1, 2, ~ ~ ~, m= —l, —l+1, ~ ~ ~, l, 5=1, 2, ~ ~ ~ .

where
2 =hi l] A),„

Ar(x)= g (—1)"
r=p (4xs) r

(It is by no means clear from the theory of Dirichlet
series' that Ez and Ezz here have Laurent expansions
about the point ) =0, and the author's work indeed
suggests the contrary. ) If the result /r E(a,R) in Eq. (10)
is to be finite for X —& 0, then we require that

fc;(a)+C;(a,R) r (c;(R/rf)+—C,(R/r), R)j=0,
i=1, 2, 3. (21)

and

r= [s l—~s] 8),„
Br(x) =—P (—1)"-

2x (4x')"

The derivatives of the functions are

(l+2r)! (l+2r+ 1)!
Ai, „——

) I/l, r
(2r)!(l—2r)! (2r+1)!(l—2»—1)!

(23)

At an early stage in this work, the author tried to fit
E&(a,X) using orthogonal polynomials in 3,, and found
the results of Table II for the coefficients c,(a). The first
coefficient c,(a) is just that expected from considering
the number of normal modes in a large volume, in-

dependent of the shape of the volume, such as is done
in the derivation of the Rayleigh-Jeans or Planck
formula for black-body radiation. It is proportional to
the volume enclosed and hence the required cancella-
tion will occur in Eq. (21). The second coeflicient c&(a)
seems to vanish, so that here Eq. (21) is irrelevant.
The coefficient cs(a) will depend linearly on a, cs(a)
= —(2/3rr)a, and if C(a,R)= —(2/pr)(R —a), then we
will indeed have fuO cancellation. The codhcients were
evaluated for the spherical case alone, since only for
this situation had we computed a sufficiently large
collection of normal modes.

The arguments regarding the coeKcients c;, C; are
particularly relevant for the calculation of temperature
radiation in a conducting sphere; here they are intended
merely as suggestive of what is involved. The actual
calculation for AE(a) which follows makes no use of
Eq. (21).

"See V. Berstein, I'rogres Recent de la Theories des Series de
Dirichlet (Gauthier-Villars, Paris, 1933).

—Lxjr(x)j= cos(x——,
' lrr) LA r(x)+B,'(x)j

dx
—sin(x ——,'hr) LBr(x)—A r'(x) j,

d—Lxrsr(x) j= sin(x ——,'hr) $A r(x)+Br'(x)j
dx

+cos(x ,'ls.))Br(x—) —Ar'(x)j —(24).
It follows from these expressions that if kr, (a) is the

sth zero of xajr(xa), then

-Br(ukr, (a))-
ukr. (a)——,'ls.= rrs —arctan, (25)

A r(ukr, (a))
or equivalently

jr(akr. (a))
ms= —arctan

nr(akr, (a))
(26)

'5 For excellent short review of information on Bessel functions,
see Handbook of Mathematical FNnctions, edited by M. Abramowitz
and l. A. Stegun (Dover Publications, Inc. , New York, 1965).

Although the first form wiH be found more convenient
for arithmetic computer computations, the second form
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will be used in the mathematical analysis because the
information available from classical function theory is
linked to the Bessel functions and not to the coefficient
functions Ai(x) and B&(x). Similarly, for the TM modes

ki;(a) which are zeros of

we have

and

akim;(a) —2(l—1)s =m(8 —1)—arctan
-Bi(alai;(a)) —A i'(aki;(a))-

A i(aki;(a))+Bi'(aki;(a))
(27)

d
~(8—1)= —arctan —(xji(x)) —(xni(x))

-dx dx - x=aTc l,s (a)

The situation is quite analogous for the annular modes. The TE annular modes Kts(a, R) satisfy

ji(aKis(a, R)) ji(REis(a, R))

ni(aEis(a, R)) ni(REis(a, R))
so that for integer S

(28)

(29)

aEis(a, R) ——,'lm+ arctan
-B,(aK,s(a,R))-

A t(aKts(a, R))
= —~S+REts(a, R) —-', l~+ arctan

Bi(RKs(a,R))

A,(REis(a,R))
(30)

ji(aEts(a, R)) ji(RKis(a, R))
mS= arctan —arctan

n((REis(a, R))ni(aK(s(a, R))

The TM annular modes Eis(a,R) are solutions of

(31)

giving for integer 8

—(xjt(x)) —(xni(x)) = —(xji(x)) —(xni(x))
dx dS —*=~&tS'(~, R) dS —s=RI7 Q'(a, R)

(32)

-B&(aEis(a,R))—A i'(aEis(a, R))-
aEis(a, R)—-', (l—1)ir+ arctan

A i(a@s(a,R))+Bi'(aEis(a, R))

and

= —ir(8 —I)+REis(a,R)—~ (l—1)ir—arctan
Bi(REis(a,R))—A i'(REis(a, R))-

A,(REis(a,R))+B,(RE,s(a,R))
(33)

ir(8 —1)= arctan —(xj&(x)) —(xni(x)) —arctan —(xji(x)) —(xn&(x))
-ds ds —~-~&lÃ(r, R) -dx dS —x=RIYQ (a,R)

Si(a,R,K)= si(R,K) si(a, K), —
Si(a,R,E)= si(R,K) 8i(a,K)+ 1—. (35)

Equations (25)-(34) were derived for integer indices

s, 8, S, 8. However, the expression can be regarded as

giving these indices as analytic functions of the fre-
quencies of the normal modes, or, in suitable domains,
as giving implicitly the frequencies of the modes as a
function of the indices. We will denote these functions
in the obvious notation as ki(a, s), si(a,k); ki(a, 8),
8i(a,k); Ei(a,R,S), Si(a,R,K); Ei(a,R,S), Si(a,R,E).
From (26), (28), (31), (34), we note the relations among
the functions

of the indices s, 8, S, S above the index= 1 are shown for
1=5 in Figs. 5 and 10 of A.

It will be of some importance in the later development
of the calculation for AE(a) to obtain expressions for the
derivatives of the frequencies with respect to the index
and to consider the asymptotic expansions of these
derivatives for large index l. In handling these expan-
sions, it turns out to be more convenient to use the
variable v= l+~ rather than I; in what follows, l and v

will be used simultaneously always with this connection.
The first derivatives of si(a,k) and 8i(a,k) as functions

of k and k may be found by differentiating (26) and
(28) with regard to k and k. Using the relation for the
Wronskian of the spherical Bessel functions

Graphs of the behavior of the frequencies as functions j&(x)ni'(x) —n&(x) ji'(x) = 1/x', (36)
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we find

dsi(a, k) a=afl"(ak) = (37)
dk [akji(ak)]'+ [akni(ak)]'

dsi(a, k) =afl™(ak)
dk

a[1—l(l+ 1)/(ak) ']
( [d(xjl(x))/dx]'+ [d(xni(x))/dx]2), .l,

The functions fl™(x)and fiTE(x) go to zero rapidly as
x —+ 0, change most rapidly in the region x v+0(v'I')
and finally, approach the value 1 for x))v. The asymp-
totic forms in the various regions may be found from
those for the cylindrical Bessel functions J„(x), cV„(x)
which are customarily given in the literature. The
spherical Bessel functions jl(x), ni(x) are related to the
cylinder functions as

jl(x) = (2r/2x) "2Ji~,(x), nl(x) = ( 2r/2x)" i' 44;( x). (38)

For / 6xed and x ~ 0, we can use the expansions" of
jl(x) and 22l(x) in ascending powers of x, and conclude
that as x —+0

f TE(x) o- x2l+2+0(x2l+4)

f T M (x) ~ x2 l+2+0(x2 l+4)

In the opposite limit of x —+ ~ for l fixed, we use the ex-
pansions of Eqs. (22)-(24), or more specifically the ex-
pansions (23) and (37) of A to find

fl' (x),fi™(x)-1 l(l+ i)/2x'—+0(x-') (40).
The behavior of the functions for large index 1 can be
obtained from the asymptotic expansions of Debye
and Olver. " Thus for x= v secho, , a fixed, and
l+2= p ~m,
flT (x) sinhu exp[—2v(u tanhu)][—1+0(v ')],
fi™(x) sinhu exp—[—2v(u —tanhu)]

~ [1+0(v ')] (41)

In the transition region x v+rv"',

2i/3
zTEx ~

y [A i'( —2'~2T)+Bi2( —2'~'T)]-'+0(v —"),
(42)

g2/3

&& [Xi"(—2'"T)+Bi'(—2'"T))—'+0(v—')

Finally, for x= v seep,

fl (x), fl™(x) sinP [1+0(v ')]. (43)

16 See Eqs. (76) and (77) of A.
"See Kqs. (80), (81), and (40)—(43) of A.

The asymptotic forms for the derivatives of flTE(x)
and fl M(x) can be found" for l 6xed merely by dif-
ferentiating (39) or (40) with respect to x. However,
for the asymptotic forms in large v, we can not use this
procedure directly because a dependence upon v enters
both in the index l= v ——,

' in flTE, fl™,as well as in the
expression for the argument. However, one may dif-
ferentiate with respect to the parameter in x which
does not involve v. Thus, for example,

1
fl '(v SeChu) =— fl (v SeChu)

v d secho.
(44)

and we may use the asymptotic form (41) for
fiT~(v sechu) differentiating with regard to sechu
which is independent of v. Similarly,

1

f TK'(p+ Tpll2) —= f Ta(p+ Tpl/3)
v'/' dv.

(45)

E. Elimination of R~ ~ Limit

From dimensional arguments alone, it is clear that
the final zero-point energy DE(a) for the sphere must
depend only upon the dimension a of the sphere and not
on the radius E. of the outer sphere which represents
the limitation to a finite universe in the intermediate
calculations, nor on the fixed ratio q)1 which repre-
sents the choice of a zero energy level in the intermediate
calculations. Since the author has not been able to
obtain a simple analytic expression for EA( Ra, X), it
will be convenient to remove the E.—+~ limit in Eq.
(12) before letting X —+ 0. We will explicitly justify any
interchange of limits.

The procedure will be to rewrite the sums over the
annular modes in Eq. (12) by using the Euler-Maclaurin
summation formula with remainder. %e explicitly
group together the two sets Kla(a, R) and Kls(R/rhR)
of TK annular modes, and similarly group the TM
annular modes Kls(a, R) and Kls(R/21, R). Any re-
grouping of terms is possible since we have shown that
al1 the sums are convergent. Thus for the TE modes

' See Theorem 3, of K. Knopp, Theory and Application of
Infinite Series (Blackie and Son Ltd. , London, I964); see p. 542
for the justification of term-by-term differentiation of asymptotic
series.

can be used together with the asymptotic form in (42).
Thus from Eqs. (41)—(43) we learn that

fl E'"'(x), fl™")(x)=0(exp[—2v(u —tanhu)]),
x= v sechn,

=0(v '"+"") x=v= rv"'
) )

=0(v ~), x= v seep. (46)

The asymptotic behavior of the annular functions
5 (l,aR, K), 8l(a, R,K) and of their derivatives follows
from their relations (35) to the spherical functions
sl(a, k), al(a, k) which we have just considered.
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Q [Itis(a,R) S(XEls(a,R))—I~ l s(R/l!, R)lf(XEls(R/l!, R))]=
8' I

dS[K,(a,R,S)S (ZK, (a,R,S)) E—,(R/&, R,S)

&([Kl(a,R,S)F(XKl(a,R,S)) Kl(R—/g, R,S)$(XKl(R/l!,R,S))]— dS B~N(5—[5])
S=1 d52N

X [K,(a,R,S)rP, K,(a,R,S)) K,(R/—&,R,S)~(uC, (R/&, R,S))],

&(P(XEl(R/l!,R,S))]4-~ [Ell(a,R)P(XEli(a,R))—Ell(R/rJ, R)P(XEll(R/tJ, R))]+ p
~=i (2Y)!dS~~l

00 d2N

(47)

where B&~(x) is the Bernoulli polynomial of order 2&V.

All of the contributions which would appear from
5 —+~ limit vanish because of the cutoff function. The
argument to follow shows that in Kq. (47) we may
actually ignore all terms on the right-hand side beyond
the initial integral. This holds because in the region
where the correction terms between the sum and
integral are important, the functions are approximately
independent of a and R/l! and hence cancel in the
subtractions.

It is shown in A, Kqs. (79)—(85) that for large l the
first zero of El(R/8, R,S) for any 8) 1 is given by

I'll(R/8, R) = kll(R)+ e/R, (4g)
where

c (v" '/1. 238) exp[ —2v(P„—tanhP„)], (49)
with

sechP„=8 '(y„l/v) 8-'[1+0(v '")]. (50)

Thus the zero depends only on the outer radius R, ex-
cept for a correction term which decreases exponentially
with increasing v. But then in the first correction term
in the Euler-Maclaurin formula, the principal contribu-
tions cancel as

g [(kll(R)+ E/R)(f (Xkll(R))+X(6/R) 5 (Xkll(R))+ ' ' ' )
—(kll(R)+ e'/R) [r(llkli(R))
+X(e'/R) f'(Xkli(R))+ . ]]

0(e/R)+0(e'/R) . (51)

The correction term decreases exponentially with in-
creasing v even if we let X —+0, and, as R —+~, the
contribution vanishes.

In order to make an analogous argument for each of
the higher correction terms in (47), we reconsider the
function El(a,R,S) defined implicitly by Kq. (31). In

the neighborhood of the first zero, the contribution from
«ctan[jl(aEl(a, R,S))/el(aI&l(a, R,S))) for large v can
be found, using the Debye asymptotic expansions for
small argument. These show that the term decreases
exponentially with increasing v and the ratio of ex-
ponential decrease is governed by the ratio R/a,
so that for E.~ this term vanishes entirely. On
the other hand, the term in arctan[jl(REl(a, R,S))/
e l(REl(a, R, 5))) near 5= 1 is finite and depends on a
only through the exponential correction factor given
above in (49) with 8 —+ R/a. Thus in the neighborhood
of 5=1,

Kl(a, R,S)=kl(R, S)+8l(a,R,S), (52)

where 8l(a,R,S) decreases exponentially with in-
creasing v and vanishes as E.—+~. Differentiating with
regard to 5, we have the same result for any finite
number of derivatives. But then we can turn back to
any finite number of correction terms in the Euler-
Maclaurin summation formula (47) and conclude that
the principal contributions, which depend only upon the
outer radius R, vanish, and the remaining correction
terms decrease exponentially with increasing v, vanish-
ing for R —&~, and the conclusion is unaffected by the
limit X ~ 0.

We now proceed to the remainder term in (47). The
function Bl~(5 [5]) is a periodic —function of period
one which agrees with the Bernoulli polynomial B(S)
for 0(5(1. Since the function is bounded independ-
ently of v as ~Bnv(5 —[5))

~

( ~B&~~/(2.V)! where Bl+
is the 23,' Hernoulli number, we wish to show that the
remaining function in the integrand gives a finite
integral decreasing rapidly with increasing v. We re-
write the remainder integral as

)2N

[Kl(a~ReS) K(XICl(a~ReS)) Ill(R/&, R,S)F(P Kl(R/—&,R,S)))~

d52N I

d2N

[Kl(a,R,S)5(XKl(a,R,S))]
d$2N

dm~v

dS [K,(R/„,R,S)S(XK,(R/&, R,S))], (53)
(2$)! s=s+ dS"-~

d2N

dS Bg~(5 [5]) [El(a,R,S)F(X —E( laR, )5)
— E(Rl/, l!,R)5F(XEl(R/l!,R,S)))

I
B&&

I

s-s
ds

(2E)! s l

+ dS
(2-'V) ' s-s*
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where S*=sl(R/g, R,v/b) with b fixed: R/g(b(R.
When v is large, the functions E'l (a,R,S) and
E&(R/rI, R,S) can be expanded using the Debye asyrnp-
totic expansions for wave numbers K&v/b, and we

can repeat the arguments given above to show that
for the integral from S= 1 to S=5~, the principal con-
tributions from Ei(a,R,S) and El(R/rj, R, S) cancel
leaving an integrand, and an integral, which decreases
exponentially with increasing v.

Only the remaining two terms on the right-hand side
still require consideration. Noting the relation (35),
we see that

dKl(a, R,S) (dsl(a, R,K))
dS 4 dE

(54)
RfiTF(RK) aflTE(a—E)

and, in applying increasingly high derivatives

d"El(a,R,S)/ds", we may use the large v asymptotic
forms of (41)—(46). We find for m) 1,

d Ei(a,R,S)
=0(v' "), v/R«El(a, R,S)«v/a,

F'(XEl(a, R,S)) Ot', f(XEi(a,R,S))j, as is exactly the
case for an exponential cutoff $(XL)=exp( —XK),
P'(XK) = —exp( —XE). Now if 1V in Eq. (47) is chosen
large enough, each term arising in the differentiation of

d2N

[Ki(a,R,S)S(XKi(a,R,S))]

f K,(,R,S)& E*=./b= E(,R', S*)

will decrease faster than 0(v ') as v —+~ or else will

have five or more factors of X. We now take the absolute
value of each one of these terms. We see that the in-

tegrand for each term is smaller than the summand in

(17) where the series diverged at most as X 4 as X —+ 0,
and hence in the limit X —+ 0 those terms having five or
more factors of A vanish. On the other hand, for those
terms which decrease as 0(v ') we may bound them
above by setting the cutoff function equal to 1. After
integration from S=S* to ~, these contribute at most
as 0(v'")0(v 4)+0(v)0(v ') 0(v ') where the first
contribution is from the transition region El(a,R,S)

(v+ 7v'i')/a and the second arises from the integration
in the region where the Debye asymptotic expansions
for large arguments may be used. Thus we note that if
x= v secP, then

=0(r —"I'), El(a,R,S)-(v+ rv'~')/a, (55)

=0(vl ™),v/a«El(a, R,S) .

—&(X E(l,aR, S))=
dS

dEl(a, R,S)' '
~r'(7.E,(a,R,S))

1
XO —$(X E(la, R, s)), (56)

R

where we recall from (43) that for El(a,R,S)= v (secP)/R.)v/R, dKi(a, R,S)/ds 0(1/R) in v, and have assumed

Thus if a sufFicient number of terms are taken in the
Euler-Maclaurin formula (47), we will have derivatives
d El/dS which decrease with increasing v at any
desired power of v 'I'. The derivatives also fall on the

cutoff function F(XEl(a,R,S)) and each derivative

brings out a factor of X,

dx F„(x)= v d(secP)F„(v secP)

and we may use the asymptotic expansions in v for
F„(v seep). It follows from the asymptotic expansions of
(43) that the integral with regard to the parameter secP
will be finite even for S—+~. The analysis may be re-
peated with R/g replacing a to arrive at the same con-
clusions for the very last term in (53).

The upshot of this painfully explicit analysis is that
every term in the Euler-Maclaurin summation formula

(47) beyond the first integral gives a contribution which

on multiplication by 2l+1 and summation over all /

from /= 1 to ~ is a finite, continuous function as X —+ 0
and which vanishes for R —&~.

From the form (46) of the asymptotic limits for the

TM modes, we see that an exactly analogous argument

may be made in this case also. Hence we may rewrite

AE(a) as

ca ( oa

AE(a) = lim lim ~ikc P (2l+1)~ /k), (a) F(Xki,(a))+z~~ )~0 s=1 s=1
dS K,(a,R,S)~(XE,(a,R,S))+P k,.-(a)~(Xk„-(a))

s=l

S=1
dS Kl(a, R,S)F(X K(i,aR, )8)

—Q kl, (R/g) &(&kl,(R/n))—
s=1

ds K,(R/rI, R,S)F(XKi(R/rI, R,S))

dS El(R( g, R,S)P(XKl(R/g, R,S))
~

. (57)
=1
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R S)P(XEi(a,R,S))=dS E&(a,R,

S)d8K) a,t R8)F(XEi(a,R, )

K-K~1 (a,R)
Es(ZE)

. EE
dE

""' 'E.(K).dE

R

( ) —' ~~ k (a)P(Xki, (a))—(a) = -' ~ (2t+1)](Q.)= 11D1 11ID gACb,Etu = dK
K=K)1(a, R)

K=K )1(a,R)

s using Eq. 35 .ssi an 8gof the functions

S=l

)/dE in terms oE /dE and d i 8 E~EHowever, we can expre
nd rearranging1 r modes in this h ancwriting all the annu ar m

P ki;(a) F(Xkg;(a)—
1 K=K )1 (a,R)

S(XE)—g k,.(R/ )S X — . r(u„(R/~))
d

K~K )1(R/y, 8)

dsi(R/y, E)
E& X — - P(Xki;(R/g))+

dE K X )1 (R/q, R)

E (xE)dE- r

K=K ~1(a,R)

EV(uC)—
RE)

=K)1(R/g, R)
f(XE)+

dE =Kgb(a, R)

'nes cancel excep t forThe last two hnes c
K=K )1(R/y, R)

Es(xE)dK
K=K 71 (R/rl, R)

K=Ki1(a, R) dsi(R, E)
dE EF (6o)

Eii(

a dsi(a E) a
fTs(aE)—

dE

dE

a R)—Kii(R/g, R) decrease ex-

K=K )1(R/trf, R)

a R/q, R) and En(a,a R)—Eii

us function
EK (+hl from (42) w

o tib ti ofth t si

The same basic argumen c ate o
E=O. Thus forextended to

C

a —' ' -'hc Q (2l+1) i,AE(a)= hm hm —, c 1
K=0

as in t e preevious paragraphlacing u. Thus exactly as e
'

ll
'

Similar expressiopo 5'

the contributio

ombining the above resu s,

00

k (R/~) ~(zk„(R/~)—E(E)~—
~

Pk,
dE

""'" E.(.E)
E

dE

dsi(R/g, E)
dE K&

d
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( ))+i
Lk, (a)p(Xk)i(a))]ds kl a&p k„(a)F(Xki.(a))

d
(62)g) Lk, (a s)p(Xk ((ap))] .(

ds

S=i

matlon f'pim a in its

] TP4

f the Euler-Maclaurin stransfprmed further yThe expression foi
simplest form

f k fol- all k, so thatk);, a single-val "eed function o19 function of sk (a s) is a single-va ue
t k. Furthermore&

Npw fpi s) .
l f integration frpm se the varia e o inwe can change

&=A:fi (a)

k=0
( k)]—-', )—Lks(zk)]=dk{s((a,k) —s( a,

=0
dk[s((a, k) ;'] f—km-(X—k)]

s can be converted into an integraThus the sum over s can e con

= -,'k)i(a) 0 (hk(i(a)—
k Sty(a) =ds (a k)

(63)dk- k5 X

=0

(64)Q k(, (a) r(Xk(, (a))= —-' —Lks(zk)].dk(s((a, k) —Lsi(a, k)]——,)—(Xk)+
S=l le=0

(

(1
aE(a) = lim lim ,kc-a — ' 'fic (2l+ 1)-~—

d
s x —s((x)]—1)—(xS((X/a)x)]dx(s, (x) —Ls,(x)]+s,(x)—s, x — — a x

=0

dk
dk

h n k; a and for the termsTM normal modes ~; a ancontributions h nfrom theent can be repeated for the
' '

h

te

The same argument can e re
tead of a.

.e ration from.e
'

k t.o x=ak and x=(R/))
w ere

convenient to change t e vIt is clearly
s~ 1,k)=s~(k) and B~(1,k)=B~

where
=0

d s x —s( x (
— —1 —LxS((gh/E)x)] i (65)d. . s x —Ls, (x)]+&,(x) —I s,(x)]—)—x

)
dx six —s~x

x x 1 13((x)
ix = —— =— 2f+ —ai'ctali(x) = ——arctan

n ((x

s)(x) = 1—arcs& ——1—ctan —(xj&(x))
1 8 (x)—A '(x)x —3)+

dx

(66)

ntof R,E a) in (65) is independent o
b o t/o i 't.

fi t otbt fo
dt h t ki th

summ
then we may neg ec
R —+ ~ limit.

F. Numerical Evalua iation of CATE(a)
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' '
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~ ~

forme ad a convenient cu
be written as acause

ldb dial term cou
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erical
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M 1 X as a multip licative ac o .
w n for an exponwas faster t an

it was not
evaluation w

n the parameter M, igi g "
ne rt the integral over ag, — ut
merely to integ rate from the o o
add the new integrals on to os

"See Ref. 8, p. 86,
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and then combine in polynomial form to give the new

compute
approximation for ZE(a). The numerical evaluations

Ac d /' x)'
~E(a) = iim — d. g (2/+1)(s, (x)—P,(')]+8,(x)—L-.—,(x)]—1~—x] 1—[~ "gg z=i dx

(67)

where ~ is any integer larger than some Axed Ko. We note
that the integrand involves an infinite series in / which
is very rapidly convergent for any finite x. Thus using
the Debye asymptotic expansions for large v, x= v sechn,

s~(x) —', expt —2v(cL —tanhn)]L1+0(1/v)),
(68)

s~(x) 1—2 expL —2v(n —tanhn)][1+0(1/v)),

so that in this region x((v, Ls~(x))= LB~(x)]=0, and

s)(x)—Ls((x))+sg(x) —Ls)(x)]—1

0(expL —2v(n —tanhn)](1/v)) . (69)

The integrand in (67) is discontinuous at each of the
TF. and TM spherical normal modes and hence the
integrations were carried out using Gaussian quadrature
integration for each continuous section of the curve.
Gaussian quadrature is particularly suitable here since
the endpoints of the interval are not involved. All cal-
culations were made in poRTAN Iv double-precision
arithmetic on the IBM 7094 computer.

The results of the integration for various values of
the cutoff parameter 3I are given in Table III and
seem to indicate

DE(a) +0.09hc/2—a. (70)

The computer program was tested by omitting the
sum over / and evaluating the expression /sE~(a) for
fixed values of / where it can be proved that the expres-
sion does indeed converge. Although AE~(a) for /=0
does not enter into the sum involved in AE(a), it can
be computed exactly analytically as DE&=0(a) = —(~/24)
Xhc/2a. The numbers found using the cutoff with Riesz
typical means appear in Table IV and seem to con-

verge rapidly to the required limit. The fact that the
~=2 form gives the exact result each time is an ac-
cident due to the fact that each of the values of M used
is a TE or TM normal mode.

TABLE III. Approximate values for AI&.'(u) using Riesz means
(in units of Ac /2a).

K=3

The calculation for AE(a) is incomplete unless we can
determine whether the limit of Eq. (67) exists as a
6nite number and can estimate the rate of convergence
so that we may be confident that the integral has indeed
been carried suKciently far that the value found will

not differ significantly from the true limiting value.
Unfortunately, we have not been able to derive a
mathematically rigorous proof, and the apparently dis-
appointing nature of the result has inclined us to be
satisfied with the patent stability of the values seen in
Table III, and some strong qualitative arguments.

Although from the point of view of computer cal-
culations the use of Riesz typical means is far more con-
venient than an exponential cutoff, when we wish to
make theoretical arguments the latter is more tractable.
We emphasize that the limiting results are the same
independent of the cutoff procedure.

If we take F(Xx)= exp( —xX) in Eq. (65) and consider
only a single term AE~(a, X) in the sum over /, it is easy
to prove that d, E~( a)=limy o A~E(a, X) is finite. This
follows since we may separate oR a finite integral from
x= 0 to, say, x=- 2v, and then apply the Euler-Maclaurin
summation formula with remainder. The remainder
term may be integrated by using the expansions for
large x given by McMahon for the TK modes and by
the author for the TM modes. (See Eqs. (23) and (38)
of A.) The rate of convergence also follows from these
expressions.

In Table V we list the values for HE~(a) for /=0, 1, 2,
10, 11, 20, and 21. We note that as / increases through
the values indicated, AE&(a) seems to go very rapidly
over to a value independent of / which is very nearly
the negative of the value found for d,E( ). aSince 0E~(a)
is a continuous function of t', it seems extremely likely,
although we have not proved this, that this behavior
will hold for arbitrarily large t.

For. x&v, we may use the Debye asymptotic ex-
pansions to see that the integrand (69) appearing in

Eq. (65) for AE&(a) is exponentially small in v unt:il

x v+0(v'"). Thus AE&(a, X) falls oR in X roughly as
exp( —vX) and we may approximate

9.095011
12.485947
15.514603
17.838643
20.121806
23.591274
26.791390
29.642604
32.334735
35.1996423
37.804940
40.503839

0.09580
0.09481
0..09372
0.09221
0.09278
0.09325
0.09282
0.09202
0.09344
0.09251
0.09192
0.09383

0.09232
0.09299
0.09305
0.09300
0,09302
0.09297
0.09294
0.09297
0.09288
0.09288
0.09285
0.09284

0.09125
0.09245
0.09280
0.09292
0.09297
0.09300
0.09299
0.09298
0.09296
0.09293
0.09291
0.09289

(71)

9.424777
18.849555
47.123889
84.823000
92.247779

K=2

—0.130899-0.130899-0.130899—0.130899—0.130899

K=3

—0.129445—0.130536—0.130841—0.130881—0.130885

—0.128718—0.1.30354—0.130812—0.130872—0.130877

—0.127292—0.129992—0.130754—0.130854—0.130863

DE~(a, X) —q(hc/2a) exp( —vX/a) .

TABLE IV. Convergence of Riesz means for AA/(u)
(in units of Ac/2a) for l=O.
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TABLE V. Values computed for ttt&(a) (in units of Ae/2o).

0
I
2
10
11
20
21

—s /24 —0 130899—0.094541—0.093969—0.09375—0.09375—0.09373—0.093U

, then

Ac
AE(a) = lim —Q (21+1)

x o2c
dx(st(x) —Lst(x) i

d tr X)
+st(x) —Cat(x) j—1)—x expl ——x

l

dx E a~

(=lim
l

1+X—
l P AEt(a, 'A)

0

But if we now assume that Eq. (71) is an equality

of modern high-speed computers made possible a partial
check by merely directly summing the numerical values
for the modes as indicated in Eq. (12).With a collection
of nearly 5000 spherical and annular modes at g= 2, and
using Riesz typical means «=3 cut off at 1/)I. M = 10.0,
we obtained AE(a= 1, R= 10, 3I= 10) +0.17hc/2 and
AEt t(a=1, R=10, 3E=10) —0.02hc/2. The order of
magnitudes, the change in sign between the two quanti-
ties, and the fact that AE(a,R))DE(a) and &Et(a,R)
)ZEt(a) are all consistent with the results AE(a)

+0.09Itc/a, AEt=t(a) 0 0—945. hc/2a, obtained earlier
for the limit R-+~. In the case of AEt=t(a, R), it was
possible to increase substantially the number of normal
modes to obtain thelimit as' ~~, AEt t(a= 1, R= 10)—0.0218hc/2, in agreement with the value at M = 10.
Although this method of direct summation does allow
this qualitative check, any attempt to check BE(a)
further by increasing the values of M or of R
significantly would at present run into prohibitive ex-
penses in computer time.

( c) ( Ac exp( ——,'X/a) )
a) & 2. 1—exp(-)/a)i

fsc
=+g—,(72)
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which agrees within the stated approximation with
the results given in Eq. (70) and Table III. Moreover,
the discrepancies between the values of DE(a) and
—limt „DEt(a) can also be accounted for satisfactorily
by noting that if (71) holds for large I, then

Ac ~ f' Acl
AE(a) =+q—y P l

i),Et(a)+g—l.
2a t=t E 2a&

(73)

Finally, the rate of approach to the limit in Kq. (72)
is of the order of X, which is again in rough agreement
with the calculations using Riesz means with the cor-
respondence 1/X M.

G. Independent Numexical Check

Because of the surprise at the positive result for
AE(a), we have made an effort to conftrm the con-
clusion by a method as different as possible from that
presented in the body of this paper. The availability

H. Condusions

Thus in summary, the hoped for connection between
electromagnetic zero-point energy and charge quantiza-
tion was not found; rather the Casimir model fails in
the form described. The calculation gives a finite value
for the zero-point energy of a conducting spherical
shell, but the sign of the energy is opposite from that
anticipated. Looked at from an entirely different point
of view, the result shows the first example of the repul-
sive aspect of retarded dispersion forces which was con-
jectured by Verwey and Overbeek. "However, implica-
tions for the theory of dispersion forces will be con-
sidered elsewhere.
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