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Current-algebra techniques are used to calculate u(+), the even-crossing xN S-wave scattering length. The
o6-mass-shell extrapolation includes sizable terms (~0.1m ') of order q' and of all orders in v. These
contributions are found by using a pole model for axial-vector-current —nucleon scattering and on-mass-
shell dispersion relations. The experimental result, a, p„'+ = (—0.001&0.004)m ', is matched if the 0. term
is vanishing or very small: o = (0.06+0.14)m . Alternatively, if we take o =0, then the calculation predicts
a+ = (—0.011~0.022)ns ', which agrees with experiment. In the case of a, the off-shell extrapolation is
identical to that used in the derivation of the Adler-Weisberger sum rule. The predicted value of a( ~ also
agrees with experiment.

1. INTRODUCTION

~~VRRENT —ALGEBRA calculations of rrN S-wave~ scattering lengths involve the extrapolation of an
off-mass-shell scattering amplitude F(q', v) to the thresh-
old point (q', v) = (srt ',m ) from the origin (0,0), where
the amplitude is characterized by equal-time com-
mutator and 0- terms. Most methods" of. extrapolation
ignore terms of order q' v' and higher. Other authors'4
conjecture a g' dependence of the sort considered by
Adler. '

This paper describes a calculation which includes
terms of order g' and all terms in v. These contributions
are determined using a pole model for nucleon —axial-
vector-current scattering and on-mass-shell dispersion
relations. The terms are large in magnitude (on the
order of 0.1srt ') but, opposite in sign. The resulting
predictions for the scattering amplitudes are compatible
with a vanishing or very small o- term.

In Sec. 2 we define the o6-mass-shell scattering
amplitude and derive the current-algebra restrictions
on it. Section 3 sketches the calculation of the even-
crossing scattering length a(+' in terms of the 0- term.
In Sec. 4 we compute a( ' from the equal-time com-
mutator contribution. Appendices A and 8 explain
the notation and the pole model for axial-vector-
current —nucleon scattering, respectively.

2. CURRENT-ALGEBRA CONDITIONS

Equation (A1) suggests the PCAC (partially con-
served axial-vector current) definition of the sr field'.
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&
-(q'), p(p, ) s—1l -(q) p(p;))

2~8(p;+q —pr —q') (q' m.—') (q" m.—')
(4qvqs')'" (im. 'f„)'

X d'x e-'"&Pr
I
T(c)A'+'(0) c)A & '(x)}

I P,). (2.2)

The oR-mass-shell forward-scattering amplitude F(q', v)
is defined as
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The sr p scattering length is determined by F(rrt ',srt ):
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To analyze F(q', v) we expand R(q', v) using the
identity7

BA t+'(x) =rrt 'f.lt.-(x) . (2.1) where

Substituting this in the Lehmann-Symanzik-Zimmer-
mann reduction formula for the s. p scattering amplitude

I(q' v) = (iN„)-'qvq" d4x e'"

X&p(p) I
T(-4„'+ (x)~„l-'(0))

I p(p)), (2.6')* National Science Foundation Graduate Fellow.
' Y. Tomozawa, Nuovo Cimento 46, 707 (1966); A. P. Balan-

chandran, M. G. Gundzik, and F. Nicodemi, ibid. 44, 1257 (1966).' S. Weinberg, Phys. Rev. Letters 17, 616 (1966).' K. Kawarabayashi and W. Wada, Phys. Rev. 146, 1209 (1966).' K. Raman, Phys. Rev. 164, 1736 (1967).' S. Adler, Phys. Rev. 140, 8736 (1965).
' M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960);

Y. Nambu, Phys. Rev. Letters 4, 380 (1960).

II(q', v) = (iN „) 'd4x e-'v'b(x—,)

X&p(p) I
L»'"'(0),~o' '( )j p(p)), (2.6")

For example, see W. Weisberger, Phys. Rev. 143, 1302 (1966).
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III(g,v) = —(&v) d x e '&'q&
Threshold +E scattering in all charge states is de-

termined by F(+)(m ',m ), the even- and odd-crossing
amplitudes on the mass shell,

&&(p(p)l&(*0)LAo"'(0),A. ( )(*)lip(p)) (26"') F&+)(g',v) =-,'LF(q', r)+F(q', —v)j (2.14)

The equal-time commutator term III(q', v) is de-
termined by the assumption of SU(2)QXSU(2) commu-
tation relations'.

)Ao (0),AO~(0, y)1=i', p, Vp'(0)h'(y). (2.7)

The result is

(analogous definitions apply to Born and non-Born
parts of F&+)). In terms of these amplitudes the current-
algebra restrictions, Eqs. (2.13'), and (2.13"),are

2' ~gg2 II
F(+)(0,0) =

2 2

(2.15')
III(q', v) = —v+IIIs T(q', v), (2.8) =0.

7

where IIIgT represents Schwinger terms' and will be
ignored.

If we assume that the current-divergence commutator
in (2.6") is proportional to 8'(x), then II(q', v) is a
g-independent c number, proportional to the 0- term
(0 =—-', II).

I(q', v) is the sum of Born and non-Born terms:

(o, o)

F& '(0,0) =0,

(0,0) fr

(2.15")

3. At:+)
(2.9)I(q') v) = Ii) (q',v)+ IN)) (q') v) .

The even-crossing scattering length a&+) is determined
Using Eqs. (A3) and (A4), the Born contribution can be by F&+)(m ',m ), which isthesumof Born andnon-Born
written terms:

Ii)(q v) =g& Fi (v+2M+) —2FiD+ , (2.10)
q'+ 2vM~

where Fi(q') and D(g') are defined in Appendix A.
Notice that the pole term in (2.10) represents the

Born contribution to F(g',v):

F(+)(m 'm )=F)3(+'(m ',m, )+F(+)(m ',m~). (3.1)

This can be rewritten as

F&+) (m. ',m. )= —Fi) ( ) (m. ',m. )
+~F + (,) ~„„.yG(m. ,O),

where

(q' —m ' ' g~'D'v
Fa(q', v) = I . , ~

k im 'f, q'+2vM~
(2.11)

hF&+)(v) t. .=F&+'(m ' m )—F(+)(m ' 0) (3.2')

G(q' v) =Fi)(q',m.)+P(q' v) (3 2")

Substituting Eqs. (2.8)—(2.10) and (2.6) in Eq (2.3)
gives F(q', v), the non-Born part of F(g',v):

Using Eqs. (2.11), (A4), and (A5), we can write the
first term on the right side of (3.2) as

F(q', v) =F(g', v) —Fs(g', v)

g tÃ~

L
—v(1—g„'Fi')

21m~

+2g~'Fi(M+Fi —D)+Iws(q', v)+II). (2.12)

—2vg'g'(q')
Fs(—) (q2 v)

(q')' —(2vM~)'

Evaluating this on the mass shell gives

Fa( '(m ',m )=(2.04&0.06)m

(3.3)

(3.4)

2gg'M~ II
F(0,0) =

f
(2.13')

(q~, v)=(o, o)

(2.13")

' M. Gell-Mann, Phys. Rev. 125, 1067 {1962); Physics 1, 63
(&964).

9 J. Schwinger, Phys. Rev. Letters 3, 296 (1959).

This equation contains the two restrictions which
current algebra places on F(q', n):

The second term in Eq. (3.2) is determined by on-
mass-shell dispersion relations. Using the dispersion
integrals in Raman's' equation (3.4a) gives

AF(+)(v) ~. ~,= (1.33&0.20)m.-'.
We must now calculate G(m ',0) using the current

algebra condition, Eq. (2.13').First we note the analytic
properties of each part of G(g', 0). Equation (2.11)
shows that Fi)(q', m ) has a branch cut at q2= 9m 2 and
a pole at g2= —I3.6m '. In addition, if we hypothesize
(as in Weisberger's article') that matrix elements of
BA satisfy unsubtracted dispersion relations in g2,
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then Eqs. (A4) and (2.11) imply that Fi)(gs,m ) satisfies
a once-subtracted dispersion relation in g'. %eisberger~
shows that F(g',0) is analytic except for a branch cut at
g' =Sm '. Also, if matrix elements of 8A. satisfy un-
subtracted dispersion relations in g', then Eqs. (2.3),
(2.4), and (2.11) imply that F(g',0) obeys a twice-
subtracted dispersion relation. The net result is that
G(g', 0) is analytic in the interval —13.6m '(g'(8m '
and is expected to satisfy a twice-subtracted dispersion
relation in g'. Therefore, G(g', 0) should have a smooth
(largely linear) Taylor expansion in the interval
0&g' &m '; explicitly,

G(m ',0) =G(0,0)+ m '+NLT
~g (o o)

BFg
Fi)(O,m )+

~g (o ~ )

BF
+ F(0,0)+ m ' +NLT, (3 6)

~Q'

where NLT represents nonlinear terms, expected to be
much smaller than the linear ones.

The first bracket in Eq. (3.6) is determined by Eqs.
(2 ~ 11), (A4), and (A5):

BFg
Fi)(0,m„)+ m. '

~g (o,m»)

~N (~s()—2g~' —gg~'I I((i,m. )'+g~' (3 7)
km. j

terms (containing a,) in Eqs. (3.7) and (3.9). Thjs
improves the precision of the calculation since experi-
mental and theoretical estimates of a, are crude. "The
formal cancellation of the first terms in Eqs. (3.7) and
(3.9) is also important for the precision of the result,
since these terms are very large ( 21m —') ~ Neither of
these cancellations would have occurred if we had de-
termined G(m ',0) by evaluating Fi)(m ',m ) exactly
and expanding P(g', 0) alone.

To find the second term in Eq. (3.10), we adopt a
pole model: I(g', p) is approximated by the sum of all
pole diagrams arising from exchanges in the s, t, and I
channels. Then the second term in (3.10) can be written
as the sum of contributions from resonances '.

—m ' BIN)) (—m ')BINn"'
(3»)

f~s Bg' (0 p) r~s ~ f s I (lgs (p 0)

A detailed calculation (see Appendix 3) shows that the
only nonzero s- and I-channel contributions in (3.11)
are resonances with spin ~ and —,

'
~ These are dominated

by X*(1236). The only t-channel contributions are
associated with hypothetical scalar and tensor particles;
these are ignored. The result is LEq. (84)j

—m»' BINg = (—1.03+0.12)m '. (3.12)
f~ t)g (0,0)

The uncertainty in (3.12) is associated with the esti-
mation of the axial-vector-current —EE* coupling
constant.

Equations (3.12) and (3.10) give

G(m ',0) = (0.56+0.16)m '+II/f '+NLT. (3.13)
where ap is the rms radius of g(g'):

Bg =g (0) (as'/6) .
g g2—o

We expect NI T to be much smaller than the linear
terms as a conservative guess we will suppose its

(3.8) magnitude to be less than one-third the magnitude of
the linear contributions:

The second bracket in Eq. (3.6) is evaluated using the
current-algebra condition, Eq. (2.13'), and Eq (2.12):

a
F(0,0)+ m. s

~g (o o)

m. —

2g„s —+-s'g~' I((r,m.)'
m. m. j

—0.19m '& NLT& 0.19m (3.14)

a(+) = (—0.011+0.022)m —'. (3.16)

Combining Eqs. (3.2)—(3.5), (3.13), and (3.14) gives

F'+'(m 'm )=(—o 15~032)m '+II/f ' (3 15)

If we assume that the 0- term, 0-=—
~II, is zero, then

Eqs. (3.15) and (2.5) predict

m 2 BI~B II
+ . (3.9)fs t)gs ( ) fs

This is consistent with the experimental result"

u. 0.,(+' = (—0.001+0.004)m (3.17)

Therefore, Eqs. (3.6)—(3.9) give
An alternative interpretation of Eq. (3.15) is to use
(3.17) to fix F(+)(m ',m ); then (3.15) implies that the

m m„' BINg
G(m, s 0) = Lg„']— + +NLT. (3.10)

f~ f» ()g (0 0) fm."For instance, see G. Furlan, R. Jengo, and E. Remiddi,
Nuovo Cimento 44A, 427 (1966);S. Ragusa, ibid 53A, 855 (1968);.
E. Kazes, Phys. Rev. 16?, 1543 (1968).

Notice the cancellation of the nucleon "structural" "J. Hamilton, phys, Letters 20, 687 (1966).
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0- term is

o =-,'II= (0.06&0.14)m . (3.18)

condition, Eq. (2.15"),gives

The result, Eq. (3.16) or Eq. (3.18), includes the
effect of all terms of order q' and v' )for example:
—(m '/f ')BINs/Bq'~(p, p), AF(+&(v) ~„~., and the nu-

cleon "structural" terms in a,j. These contributions
are sizable. Most similar calculations do not con-
sider such effects and, therefore, yieM less precise results.
Kawarabayashi and %ada' do include an extrapolation
in v and q' with the result":

m. =—(1—g~') .
Bv I (p pi f~s

(4 3)

PE7r ~ m =—(1—gg'). (4.4)
(m ~, p) (lv (p, oi f

The accuracy of the Adler-Weisberger relation suggests
that we use the oG-mass-shell extrapolation required to
derive it:

(3.19)(r Kw [0 451m~ . The second term in (4.2) can be evaluated by using the
dispersion integrals in Ref. 4:

AF( '(v)
~
„=~.= (—0.08&0.01)m~—'.

The discrepancy between Eqs. (3.18) and (3.19) might
be due to the Adler-type' extrapolation of F(+&(q',v)

in the variable q which is used in Ref. 3 )see Eq. (2.12)
of Ref. 3].It is possible that this extrapolation procedure
breaks down, when applied to the interval (q', v)

=(O,m ) to (q', v)=(m ',m ), since F(+&(q', v) has a
branch cut in q' and a near-zero at the point (q', v)
= (m s,m ). Raman' uses a, similar extrapolation as-
sumption and finds

(4 5)

Combining Eqs. (4.1), (3.4), (4.2), (4.4), and (4.5) gives

F(-i(m ',m. ) =(1.49~0.11)m -(
or

a( ' = (0.103~0.008)m —i. (4.6)

pa. .=L—0.3]m. .
Since the uncertainty in (4.6) does not account for the

(3 20) extrapolation error in Eq. (4.4), this result is probably
consistent with the experimental data":

The difference between Eqs. (3.18) and (3.20) may
again lie in the Adler-type extrapolation, especially
since it is applied only to the non-Born nonresonant
terms which are very large and nearly cancelled by the
Born resonant contributions.

4. a(—)

gp(-&
F(—'(m ',m, ) =- —

~

m.+AF(-&(v)
BV ' (m~2, 0)

(4 2)

where AF & ) refers to terms of order v3 and higher. To
6nd the first term in (4.2), recall that the current-algebra,

"These higher-order eGects should be even more signi6cant in
reactions such as ICE scattering; a generalization of the above
techniques to such amplitudes is presently underway.

"The original result of Kawarabayashi and %ada was gKw
=[0.7]m . Equation (3.19) represents the result of their method
when the more accurate dispersion integrals and scattering
lengths of Raman and Hamilton are used (see Refs. 4 and IO)."S. L. Adler, Phys. Rev. Letters 14, 105j. (1965); W. I.
Weisberger, ibid. 14, 1047 (1965};also see Refs. 5 and g.

The calculation of a( ' is much more straightforward.
The only off-mass-shell extrapolation is identical to the
one used to derive the Adler-Weisberger sum rule. '4

The scattering length a' ' is determined by
F (—& (m. ',m.):

F(-&(m,,s,m. ) =F (-'(m. ',m.)+F' '(m-', m. ) (4 1)

The first term is given in Eq. (3.4). The second «rm
can be expanded:

(i....,(-' = (0.090+0.002)m.-i.
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APPENDIX A: NOTATION

The conventions for the metric, Klein-Gordon
equation, and Dirae equation are those of Bjorken and
Drell, "except that we define p5=—p0&+ 2+3.

The currents obey the algebra of SU(2)QxSU(2) as
in Eq. (2.7), The 7r-decay constant is

&0[a~ (+i(o) [~-&=-
(2s)'"(2go) '(s

where

g |.'+) —g i~g 2

f.= (o 94+0.01)m. (experimental value). (A2)

The matrix element for p decay is

(&f
~

3„(+'(x)
) x,)

+vs g&UÃr(7v'rsFi(q ) qv'rsFs(qs) jr(+i UN, , (A3)

where

(u~,m~, ) r(

(2n)s ( p.op o )
'5 J. D. Bjorken and S. D. Drell, Relativistic QNantlm Fields

(McGraw-Hill Book Co. , New York, 1965).
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and q= pI —p, , g~= 1.19+0.03, Ft(0) = 1, and r t+&

= z(r'+ir'). This means that the current-divergence
matrix element becomes

(IV, )
a~ t+&(~) ~X,)

E,—e' r"g~D'('q') U&v,ysr l+& U&v, , (A4)

where

D(qs) = (M~, +M~, )E,(qs) —qV', (q') .

We define an off-shell zE coupling constant:

The X*(1236)contribution is"

4g~"'(q')
INsN+(1236& (qs 0)

3(M&v'+ q' —M &v~')

X [(M&v~+M&v)q" +-', (M&v*—M~)(E,*+M„)'j
g~"(q')

+ [2M~*'+2(M&v~+M&v)
9M~*'

X (MN~'+2M~*M~ 2M&v—')+4(M&v~+M&v)q'

—Ã, =V2E„
r&1~ gp q m

Xe""U&v,y„r'+& U-~, (AS)

where
+2M&v(M&v'+q')$ (81)

E*+M~= [(M&v*+M&v)' q' 'j/2M— ~e,
q*'= (E*+M~)(E* M &v) .— '

Experimentally, we have

g'(m ')/47r= 14.6&0.4.

Comparing (A4) and (A5) gives the usual relation

f =V2M~g~/g(0).

1.4g„s&g„*s(0)&1 7g„s

Differentiating (81) and using (82) gives

(82)

Schnitzer" estimates the value of g~*'(0) (an axial-vec-
tor-current —E1V* coupling constant), :

If we define g(q') =g(m ')E(q'), then Eq. (A6) implies
—m 2 gy„,&*(»36)

= (—1.03&0.12)r&s. '. (83)
E(0)=0.88+0.03. (A7)

APPENDIX B: POLE MODEL

We examine the contributions to the right side of
Eq. (3.11). Exchanges in the s and s&' channels are
associated with baryon resonances E;~. The kinematic
form" of the axial-vector-current —EE;* vertex shows
that, if the spin of X,* is J,&-', , then IN»~"(q', 0)
is at least of order (q')s. Therefore, these terms do not
contribute to Eq. (3.11). The baryon resonances" of
spin zr and zs which a,re considered include E*(1236),
IV*(1470), N*(1518), X*(1550),and 1V*(1710).

An estimate of the other baryon-resonance contribu-
tions, using PCAC values for axial-vector-current
coupling constants, shows that they are negligible.

The only t-channel contributions to Eq. (3.11) are
exchanges of scalar, vector, and tensor mesons. How-
ever, covariance arguments imply that the vector-meson
terms in IN&&(q', v) are at least of first order in v. There-
fore, they do not contribute to Eq. (3.11).Hypothetical
scalar-meson and tensor-meson terms are expected to
be suppressed by weak coupling and high mass; they
will be ignored.

Thus, the pole model is dominated by E*(1236).The
net result is

'6 See, for example, Eq. (A1) in H. J. Schnitzer, Phys. Rev.
158, 1471 (1967).

'7 All masses, coupling constants, and decay constants are taken
from A. Rosenfeld et al. , Rev. Mod. Phys. 40, "II (1968).

—m»' BINg
= (—1.03+0.12)m —'.

f~ r)q too&
(84)


