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Correlation between Transcendental and Polynomial Lagrangians*

H. M. FRIED

Department of Physks, Brown University, I'rouidence, Rhode Island OZP1Z

(Received 23 May 1968)

A calculational procedure is de6ned to permit the computation of radiative corrections for nonderivative
transcendental interactions. The method, a generalization of the Fradkin iterative procedure, is guaranteed
to maintain the correct analyticity structure of at least the lowest-order corrections, and suggests a cor-
relation between transcendental and conventional polynomial interactions, along with simple conditions
for equivalence. A class of chiral models, treated in this sense and tested in an approximate way which
partially violates the chiral symmetry, appears to be dynamically empty under this equivalence.

I. INTRODUCTION

'NTKREST has recently been expressed in certain
~ - highly nonlinear, or transcendental interaction,
Lagrangians, in connection with the low-energy pre-
dictions of chiral symmetry. ' The estimates obtained
involve only tree graphs, while the question of radiative
(closed-path Feynman integral) corrections is corn-

pletely open. The purpose of this paper is to define a
calculational procedure in which the radiative cor-
rections derived from a nonderivative transcendental
Lagrangian may be put into a one-to-one correspon-
dence with the ordinary radiative corrections of a
related polynomial interaction with modified coupling
constant. This correlation suggests simple conditions
for equivalence between certain transcendental and
polynomial interactions, which may be of some value
in studying the dynamical content of chiral symmetry.
However, because of the restriction to nonderivative
interactions, these results are not directly applicable to
the chiral models.

The method of calculation will be a variant of
Fradkin's elegant iterative procedure, 2 in which all

the e-point Green's functions are expanded in powers
of the complete transcendental interaction. The modi-

6cation of Fradkin's procedure is one which ensures
the correct analyticity, and hence unitarity, of the
lowest-order terms of the expansion for an Hermitian
interaction. The computation is most simply done in
con6guration space, and we accordingly choose a con-

venient form of the regularization which must be used

to give meaning to the manipulations involved in

summing over products of otherwise singular boson

propagators: The zero-mass causal propagator

D, (x)= Ã2 =X2—Sp2
4s' x'+se

is replaced by' i/(x'+1. +t', e), where I. is a small, real,
positive (length)s, and we omit the factor 47r . The
restriction to zero boson mass is for illustrative con-
venience only, while any form of regularization can be
used for which both ih—,n"(x) and iTA—,R's(0)
—i),~s(x)] are real and positive for xs=.) )0, and for
which t'A,—R's(0) diverges as the regularization is
removed.

As long as regularization is retained, we have in
lowest orders a theory with proper cut structure, but
one whose numerical values depend upon the regular-
ization parameters. This analysis does not specify
what happens in that final limit in which the regular-
ization is removed; but it does suggest that there are
classes of interactions for which there is no need to
calculate any radiative corrections at all, since these
theories will, at best, be expected to give only trivial
phase and mass renormalizations. This expectation is
suggested by observing the results of an interchange
of limits, corresponding to the removal of regularization
before final calculations are performed; and it must be
emphasized that this procedure in part defines the
correlation scheme. However, within such classes vf
trivial interactions, this can be made quite plausible

by simple examples where one finds results in agree-
ment with those obtained by keeping the regularization
until the very last step.

' For nonzero boson mass p,, this corresponds to writing

~.""(*)= dA(~')~. (*;«')
0

( 9) S(59 PR) z/t(8 P)r L/(//2 P2)gl/2J ((L(52 //2)1/2)

The transform h,n's(k) thus has the usual cut structure and is
given by the appropriate Bessel functions, (i/47r')n, ~(k; L) This.
resembles the regularization used, in a related context, by G'
Efimov, Yadern. Fiz. 2, 180 (1965) /English transl. : Soviet J.
Nucl. Phys. 2, 126 (1966)g. In the usual way of regularizing,

A.R'&(x) =Q C,h. (s pP),

* Supported in part by the U. S. Atomic Energy Commission
(Report No. NYO-2262TA-181).

'The original observation was made by S. Weinberg, Phys.
Rev. Letters 18, 188 (1967). A recent summary has been given
by P. Chang and F. Gursey, Phys. Rev. 164, 1752 (1967).' K. S. Fradkin, Nucl. Phys. 49, 624 (1963);?6,588 (1966).
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with r&3, so that the C; satisfy

Q; C;=Q; Cp; =0
in order to remove all singular dependence at the light cone. For
example, if r=3, p.=@1=0, pajp2 ———-- g) 1, then as g'~0+—i&,n's(0)=pi, '($'/(p —1)7 in), which is positive and diverges
as p2~ .
1725
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while

(—)'+~'f 1 1 ~-'(1 1

(D')f —
I

—+—
I I

—+—,i&j
kL, 2n,'I 5 L 2n,

so that
1 1 1

~(1[0]»[0], , LO]) g
" Z

perm gi2 $34 ~n —]., n

where

202

gt ——hm gs dn'X(n') 1+
I.

, (4)

Equation (4) is just that function of e vertices and no
external boson lines which appears in the perturbation
expansion of the interaction 2'= —gtitgit, for a zero-
mass boson. The same steps go through for the finite-
mass case, with X;; ' replaced in (4) by sD—,(x; x,)—,
and for more general regularization, where I ' in g~ is
replaced by the constant —sA.a's(0), which diverges
as the regularization is removed. Subsequent expressions
calculated in terms of the F(1[0],2[0], ,n[0]) of (4)
will have the divergences characteristic of the gi
perturbation expansion; and it may well be that the
sensible method of calculating radiative corrections is
to complete all calculations before removing the regular-
ization. ' Nevertheless, as a consequence of this modified.
Fradkin procedure (MFP), the transcendental inter-
action serves, in this limit, to generate an equivalent
perturbative expansion with altered coefFicients.

Consider, next, the same set of e points with external
boson lines attached to two points, say, x~ and x~,
together with all possible virtual exchanges between
and for all I points; this is simply given by (1) with

V(g(xr) ) and V(P(xs) ) replaced by V'(p(xt) ) and

V'(P(xs)), respectively, where V'(s) = d V/ds. A com-

pletely analogous calculation goes through as before,
with a somewhat more complicated permutation sum

appearingr than that of (3); in the limit L —+ 0, how-

ever, it simplifies down to

I'(1[1],2[1],3[0], ,~r [OJ)- (=,,'-sg.)

X

&(burrs)

0 ni

do.„~
&(n.') [detD]—'I'

3

»'(D ')»(D ')» Z (D ')34' (D )n—r, np (5)
perm

where the meaning of the permutation sum is the same
as in (3). This simplification occurs, as I.~ 0, because

(1 1
(D ')'*-I —+

EI. 2 i

and hence dominates any (D-');;,;~;. Thus, in this
limit we obtain

F(1[1],2[1],3[0], ,N [0])—+ gr"

xp
perm $34 ~n —1 n

(6)

~( L ], Lo], [o], ,~[0])~ gsgr" '

where

xp (7)
perm gg2 f34

2~2 —5/s

gs
——ge dn'X(n') 2n'I 1+

L

which is just the form appearing in the corresponding
perturbation expansions of the interaction 2 = gtggf. —
On the other hand, had both external boson lines ended
on the same point, say, xr, then V(g(xt)) of (1) is
replaced by V"(p(xt)), where V"(s)=d'V(s)/ds', and
we obtain just (3) with an extra factor of (D ')tr, in
the limit I.~ 0 this yields

The dificult question, not attempted in this paper, is to prove
that those interactions which vanish in the MFP limit, gi ~ 0 as
I- —+0, will have radiative corrections which vanish as I.—+0,
when the regularization is removed at the last step of any arbi-
trarily complicated calculation. Since the terms of (4), defined
for X;;&0, must generate the finite part of all radiative cor-
rections, one might expect that this is true. It can be verified in
simple examples, such as that of theory (b), where the gP order
nucleon-nucleon scattering amplitude vanishes with I. according
to (I/2nD')'gos/(momentum transfer) using the MFP, and to
~gal. (J/2np')'I when regularization is retained until after the
appropriate Fourier transform is calculated. Similarly, the nucleon
self-energy function of the same order vanishes as gp(J/2nas)'
glnL under the MFP, in comparison with ~gp~(L/2np)N2 ob-
tained by holding the regularization until the last step. In these
examples, one finds just zero, regardless of the sequence of oper-
ations. If this apparent equivalence could be proved for all
radiative corrections, one would then be able, in principle, to
circumvent unnecessary calculation. If it is not true for all
radiative corrections, the MFP defined here is simply difI'erent
from a theory defined in terms of the usual regularization
procedure.

If the integrals defining gi and g2 exist, we may expect
gg Igi, and hence

I"(1[2],2[0], ,N[0])
—(L/))~(1[1],2[1]3[0], , [0]).

Quite generally, for the interaction considered here,
processes with more than one external boson attached
to the same point will vanish, in the limit I.—+0,
relative to processes with only one external boson line
ending at any point, and the latter will be the obvious
generalizations of (6),

~(1[1],2[1],",i[1],i+1[0],",~[0])

=gr" 2 (8)
p"m ~t+x, t+~
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These statements depend upon the existence of the
integrals

2f22~
—&&2+2'&

gf+1/up= d 'X(~') (2~')'I 1+ Li

which are the only restrictions we need put on g(f22).
The ratio gf/gp will always be given as a function of
the ratio «2/L, and it is useful to consider some special
cases, as follows.

(a) U(s2)=e *', s=«$, y(ff')=&(ff' —ffp), and g1/gp
vanishes as (L/2«2)2/2 in the MFP limit. If, incidentally,
no I.'~', we get a finite variant of the exponential form
useful in removing gauge dependence of electromagnetic
currents, but modi6ed to a quadratic dependence on
the boson field. ' This provides one situation in which
the MFP is clearly sensible, since we certainly would

expect to obtain a polynomial interaction when no ~ 0.
(b) U(s') =1/(1+2'), x(n') =«-2e-"/ o', and again

g 1/gp vanishes, but this time more slowly, g,/gp
-(L/«').

(c) U(s2) s2/(1+s2) +(f22) f
—2/zopf///&2

here gf/gp is finite as L —+ 0, gf/gp ~ 1.
(d) U(s') =s'/(1+2'), x(~') =~ '~ "'"'(&/a2)' and

gf/gp diverges as 3«2/L. This situation is analogous to
that of an ordinary nonrenormalizable polynomial
interaction, where the degree of divergence increases
with the complexity of the process.

From these examples, it is clear that the ratio gf/gp as
L ~ 0 is strongly dependent upon the form of U(s'),
which observation forms the basis for the equivalence
statements of Sec. III. It should also be noted that the
identical MFP can be dered for interactions of form
2'= —pU(«2&2) f, 2'= —W(/222&2), with appropriate
isotopic generalizations, but we defer consideration of
these interactions until Sec. III.

can be obtained directly from the proofs to follow):
Any U(s') given as the ratio of two polynomials, or
reducing to such a ratio for large values of their argu-
ment, can be put into equivalent polynomial form. If
U(s2)=1V„(z2)/D (s'), then U,ff(z')=P„(s2), where
S„,D, P~ are polynomials of order e, m, and /, re-
spectively. These statements are true because, under
the MFP, the relevant parameter is «'/L, and hence
o.o' —+ ~ is equivalent to I —&0. If, in the first case,
U(ap2$2) —+ C as np2 —+ pp, we obtain just bmp, and 'we
must recover the same result when I.—& 0 in the MFP.
The proofs for both cases may be sketched as follows.

(A) ~'= —fU(«'4')4

F(1L0$,2LOj, . ,22L0j) = expl ——'2—g,~
ff q

si

and one expects, from this form, Ii ~C" in the limit
«~ pa, where U(«2&2) —+ C.

Inserting the representation

dfp ef p& U(fp)

calculating the functional operations, reexpressing
U(&p) in terms of U(s'), and performing the Gaussian
integrals, we obtain the result

F(1L0j,2L0j, RL0j)

( 1 ) 1/2

= (22r«2)-"/2 detl
kL+ Xi

IIL EQUIVALENCE X dsgU zg' ds U(s„')
Because of the circumstance that the parameters I.

and «2 appear in the ratio n p2/L, it is possible to prove
a statement of equivalence between special non-

derivative transcendental and polynomial interactions.
Suppose we are dealing with 2'= QU(«2&2)P, —where

U(s') has the property U(~)=C, a constant; then,
, under the MFP, 2' is equivalent to an effective inter-
action Z, ff' = —CPP, which just corresponds to a
fermion mass shift, mp —+ fffp+C. Similarly, if we begin
with an interaction 2' = —gppft1U(«2&2) p, where

U(~)=C, a constant, then, under the MFP, 2' is

equivalent to an effective interaction 2,ff (gpC)fff1$.

Both statements are easily generalized to contain
isotopics. It may be noted that they are the general-

izations of example (c), and that they suggest a useful

corollary which relates to the remaining examples (and

9 As in the paper by F. Csikor and G. Pocsik, Nuovo Cimento
42p 1529 (1966) o

1 (1-
(10)

2~p2 '/ kL+Xi

Setting s;= (ffp/QL) $;, this may be written as

(22r) "" detl
U+/i

dbUI —81' I" .
EI. i

+ '

f2 2

dj„U —(„2
lI, i

I )
—'1-

Xexp ——', p 5' l I &f, (11)
EL,+xi

and we now pass to the limit f2p ~ ~, U(~ ) =C, under
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the integrals which exist and give just

( I, )—1-—1/2

(2tr)+"/' detI
kL+) )

so that F~ C", as expected. Note that this is inde-

pendent of L/),;.
To show the equivalence of this limit with the L —+ 0

limit of the MFP, we observe that

(Ll
t,L+))

The equation analogous to (10) is, with I even,

~(1l:0],2L0], ~L0])= (—if )"(2 o') '""

('l "'(
kL+)) 4 Bf ) k Bf„)

X d'ztU(z') . d's„U(z ') exp i Q f; z;

1 -(1
Q z"z

2mp' 'f kL-//-), ) (13)

L/(L+)tot)

L/(L+ X„) L/(L+ Xts)

L/(L+)too) ~ ~ .

and we need only make the variable change
z;= (nps/L)'/'(; and take the limit U((crop/L) $ s) ~ C
as L-+ 0 to obtain

F(1LO],2L0], ,mj0]) ~ (—ifoC)"I ri
af,i

r
I expL 'pro'g f"f'P ") 'Ir-p

) 2

as L—+0. Thus

det — I-+1 and
I I

—+8,;,
L+) ) &L+) )

so that
(L l(L
EL+)) Uy))

and (11) becomes

(2or) "" (&o',l
dbUI —O'

I

&I. )

(&p
d(„UI —t„'

I
exp( —-', p &;s)

&L )
—( 1 li/s +~

&2~)
dpUI —P Ie

f&' =C'"-,
iL i

(12)

with

fo=gp/ao, r;= iP(x;)go~—iP(x;), z=noyooo.

and the hmit U(m) =C then yields C'=C. If external
boson lines are attached to any point, we will always
get extra factors of L/nos which cause these amplitudes
to vanish; and hence we have demonstrated that
S,tr' ———C~. Note that the constant C can be zero,
e.g., for U(s')=e *', and therefore these interactions
are completely damped out under the MFP.

(8) g'= —igpfyo~ oofU(noses')=— foF.zU(z'),

(r, r,) (r„, r„)= (goC)" Z " , (14)
perm

as expected. The generalization to the case of external
boson lines to produce forms similar to (6), (7), and
(8) is straightforward; one must, however, assume that
aU'(e) I, „=0, as is true for U(a) =E„(a)/D„(a).

If, in either case, U(~) is divergent, we produce the
singular forms illustrated in example (d). The sig-
ni6cance of the MFP may now be stated for the case
of purely boson interactions, 2'= —W(nosy'). If W is a
polynomial, the limit L—+ 0 does not exist, correspond-
ing to the presence of divergent virtual-point processes
in every order (which sum to a divergent phase factor, "
distinct from but added to that of the ordinary closed
loops). There is also, in every order, finite dependence
upon the X;;, which remains and de6nes the nontrivial
theory (once the phase factor is recognized and re-
moved). In the polynomial case there is no need to
retain the virtual-point terms and they are conven-
tionally dropped by omitting all factor pairings at the
same point. On the other hand, for transcendental
interactions, when the MFP limit does exist, the virtual-
point processes are finite, in every order, but there is
nothing left over and all the X;; dependence vanishes
with L. For such interactions the MFP gives 6nite
phases but no physics; or, for the interaction
2'= —QU(np'p')lt, U(oo) finite, just a fermion mass

"This statement is strictly true for the simplest quadratic
interaction, but must, in general, be amended to include the
possibility of further renormalizations. Thus, for a m-~ interaction
of form 2'= ——,'Xs', (s.)=0, 2' differs from the normal ordered
interaction —xsam:s.4: by the inclusion of the extra terms —&~),(s4)—~~X(~'):w~., which correspond to a divergent phase and an
in6nite bare mass factor, respectively.



1730 H. M. FRIED 174

shift and nothing else. In order to have a nontrivial
theory for such interactions, within the MFP, one must
have an interaction which increases without limit for
large values of its argument.

is too complicated for the present techniques because
of the derivatives appearing in the pion term; and so
we brutally replace the latter by 2(—8„22)2, which

destroys the chiral invariance of the procedure, but
makes a dynamical statement possible. %e continue to
assume, however, that V(z) satisfies V(—z) = Vt (z)
= V(z)

—', =za,y,c 22and .choose a general form which
satisfies this unitarity requirement,

1+izF ('z2)

V(z) =
1—2zF (z')

with F real. It is simplest to consider 2'= —222$V(z)p
rather than to subtract off a mass term and use

(V(z) —1) for the interaction. Rationalizing, we have

V(z) = Ui(z2)+izU2(z2), with

z2F2 (z2)
Up=-

1+z'F'(z')
aIld Ug =

1+2'F'

If lim, 2 „z'F'(z') = P, where P denotes a non-

oscillatory limit, 0(P(~, then, according to the
MFP, these functions may be replaced by /7&'"

=(1—P)/(1+P)=C and U2'" ——0. Depending upon
the form chosen for F, C can take on any value between
—1 and +1, and hence this interaction is equivalent
to just a free, massive fermion field (of arbitrary parity

IV. APPLICATION

A tentative application of these ideas may be made
for chiral theories of current interest, although we will

be forced to employ an approximation. Thus, the
Lagrangian of Chang and Gursey, ' excluding the
symmetry-breaking term,

2= —y(7/. &/+222V(~0'Y5~ 22))4' —(1/16&o') «(~J V~I Vt)

convention). As expected, this result violates the chiral
synunetry and cannot yet be taken seriously; but it
raises suspicions as to the MFP dynamical content of
the complete theory. There could be nontrivial content
to the theory if the symmetry-breaking part of the
interaction diverges, in the 2' ~ ~ limit, with sufhcient
strength; there would then remain the problem of
disentangling the phases from the physics.

V. SUMMARY

It may be useful to surrimarize the observations of
this paper. For a nonderivative transcendental inter-
action and with the aid of regularization, the quantities
F(1[ij,2t jj,3Lkj, . ) have been defin'd in a way
which guarantees the correct cut structure of the
lowest-order radiative corrections, and which exhibits
strong damping as the regularization is removed. Such
damping suggests a simple correlation between trans-
cendental and ordinary polynomial interactions with
modified coupling constants, in the MFP limit as the
regularization is removed. For an interaction even in
the boson field, U(n22qP), only a modified coupling
constant which diverges, or equivalently a divergent
value of U(~), can correspond to a nontrivial theory
under the MFP; for an interaction odd in the boson
field, V=g+U(n22$2), a finite or divergent U(~) can
produce a nontrivial theory. The content of such non-
trivial possibilities has not been considered here, al-
though the special case U~s", s' —+ ~, 3)0, yields an
iterative expansion similar to that given by the per-
turbation expansion of the polynomial interaction
V=.2~.

An approximate and highly tentative application of
the MFP to a class of chiral theories suggests that the
latter contains no dynamics, in the sense of being able
to generate nontrivial radiative corrections.
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