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A calculational procedure is defined to permit the computation of radiative corrections for nonderivative
transcendental interactions. The method, a generalization of the Fradkin iterative procedure, is guaranteed
to maintain the correct analyticity structure of at least the lowest-order corrections, and suggests a cor-
relation between transcendental and conventional polynomial interactions, along with simple conditions
for equivalence. A class of chiral models, treated in this sense and tested in an approximate way which
partially violates the chiral symmetry, appears to be dynamically empty under this equivalence.

I. INTRODUCTION

NTEREST has recently been expressed in certain

highly nonlinear, or transcendental interaction,
Lagrangians, in connection with the low-energy pre-
dictions of chiral symmetry.! The estimates obtained
involve only tree graphs, while the question of radiative
(closed-path Feynman integral) corrections is com-
pletely open. The purpose of this paper is to define a
calculational procedure in which the radiative cor-
rections derived from a nonderivative transcendental
Lagrangian may be put into a one-to-one correspon-
dence with the ordinary radiative corrections of a
related polynomial interaction with modified coupling
constant. This correlation suggests simple conditions
for equivalence between certain transcendental and
polynomial interactions, which may be of some value
in studying the dynamical content of chiral symmetry.
However, because of the restriction to nonderivative
interactions, these results are not directly applicable to
the chiral models.

The method of calculation will be a variant of
Fradkin’s elegant iterative procedure,? in which all
the n-point Green’s functions are expanded in powers
of the complete transcendental interaction. The modi-
fication of Fradkin’s procedure is one which ensures
the correct analyticity, and hence unitarity, of the
lowest-order terms of the expansion for an Hermitian
interaction. The computation is most simply done in
configuration space, and we accordingly choose a con-
venient form of the regularization which must be used
to give meaning to the manipulations involved in
summing over products of otherwise singular boson
propagators: The zero-mass causal propagator

i
D (x)=—
=) 4n? a2 i

P=x—xe?,

* Supported in part by the U. S. Atomic Energy Commission
(Report No. NYO-2262TA-181).

1The original observation was made by S. Weinberg, Phys.
Rev. Letters 18, 188 (1967). A recent summary has been given
by P. Chang and F. Giirsey, Phys. Rev. 164, 1752 (1967).

2 E. S. Fradkin, Nucl. Phys. 49, 624 (1963); 76, 588 (1966).
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is replaced by?® ¢/ (a*+ L+i¢), where L is a small, real,
positive (length)?, and we omit the factor 4«®. The
restriction to zero boson mass is for illustrative con-
venience only, while any form of regularization can be
used for which both —iAR%(x) and —i[ALl&(0)
— ARes(x)] are real and positive for a2=X>0, and for
which —iAR(0) diverges as the regularization is
removed.

As long as regularization is retained, we have in
lowest orders a theory with proper cut structure, but
one whose numerical values depend upon the regular-
ization parameters. This analysis does not specify
what happens in that final limit in which the regular-
ization is removed; but it does suggest that there are
classes of interactions for which there is no need to
calculate any radiative corrections at all, since these
theories will, at best, be expected to give only trivial
phase and mass renormalizations. This expectation is
suggested by observing the results of an interchange
of limits, corresponding to the removal of regularization
before final calculations are performed; and it must be
emphasized that this procedure in part defines the
correlation scheme. However, within such classes of
trivial interactions, this can be made quite plausible
by simple examples where one finds results in agree-
ment with those obtained by keeping the regularization
until the very last step.

3 For nonzero boson mass p, this corresponds to writing
00
AcRes(x) = ﬁ dnto(n?)Ac (x5 7%),

with p(n®) =8(*—p?) — 36 (n—w) [L/ (*— p2) 2T 1 ((L (2 — p2)12).
The transform A Re2(k) thus has the usual cut structure and is
given by the appropriate Bessel functions, (i/4x%)A.*(k; L). This
resembles the regularization used, in a related context, by G-
Efimov, Yadern. Fiz. 2, 180 (1965) [English transl.: Soviet J.
Nucl. Phys. 2, 126 (1966)]. In the usual way of regularizing,

AReg(x) =3 Cil.(z; wi?),
i=1

with >3, so that the C; satisfy

2 Ci=2; Cops®=0
in order to remove all singular dependence at the light cone. For
example, if r=3, u=u;=0, us/us=£>1, then as x*— 0+,
—iARee(0) = p [ £2/(£2—1)] Ing, which is positive and diverges
as p; — .
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1726 H. M.

II. CORRELATIONS

We consider the simplest interaction Lagrangian
£L'=—yV(¢)y, where V(¢) denotes a local function of
a scalar boson field ¢(x), of form

V(z)=gozU(2),
with

U(z)= / da?X (o) 2
0

and x(a?) to be specified below. Corresponding to this
£’, consider first »# vertices in any diagram of order go*,
in which all the boson lines are internal to the diagram,
i.e., virtual. Each point x; lies on a fermion line, the
same or a different line depending on the process, and
between each point are exchanged all possible numbers
of virtual bosons; by symmetry, for this interaction,
7 must be even. In addition, each point x; may emit
and reabsorb its own cloud of virtual particles. The
latter contributions are frequently considered too
singular to be sensible and, typically, are omitted from
such peratization calculations; but when regularization
is used, these terms are finite and should be included
for completeness.* They turn out to be the crucial
mechanism by which at least the lowest-order Fradkin
iterations are guaranteed to be unitary, and provide
sufficient damping to produce our results in the final
regularization limit, L — 0.

If we define N\;j= (x;—x;)?, and initially assume that
all points are spacelike with respect to each other
(A\:;>0, i5£7), then the function corresponding to all
virtual exchanges among the 7 points, and no external
lines ending on them, is given by the simple functional
expression®

F(1[0:|72[O]’ o '7”[03)

:eXp[_%i/ / 5¢6(u)AcReg(u—v)5¢a(v)}

V(aop (1)) - V0ot (%0)) | 40, (1)

where the number inside each square bracket denotes
the number of external lines at the corresponding point.
It is convenient to introduce the representation

+o0
Viad)= [ do Pl)eiss,
with
_ igew [ da?
Viw)=——— —X (o)
W/rJe o

4One familiar usage is the generation of the change in the
electron’s wave-function renormalization constant under a gauge
transformation of the third kind; see, e.g., B. Zumino, J. Math.
Phys. 1, 1 (1960).

5 This follows directly from the formal functional solutions of
J. Schwinger, Lecture Notes, 1954 (unpublished), and K
Symanzik, Z. Naturforsch. 9a, 809 (1954).
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in which case (1) becomes®

o0 dal'l
wx(O“?) e
a13

F(1[0],2[0],- - ':”LO])z(iig“D" /o

) dan2 400 +o00
X/ X (a,2) dwy- - / dwywi Wy
. 3

0 Uy —w —x%

1 /w2 w2 wiw;
Xesp| (ot )3 E ] @
4 ij L+>\ij

2
ay anz

The w integrals of (2) are simple Gaussians and, with

5, 1
. ,
208 L+

=

yield

* da? “ doy?
X / —x(ar)--- / X(a,2) [detD T2
0 0

a an®

X Z (D—l)m(D—I)M' o (D_l)n-—l,n,

perm

)

where the permutation sum’ in (3) is over all distinct
products of the inverse matrix elements (D1);;. For
n= 2, for example, this sum is just (D), while for n=4
itis (D) 12(D ™) st (D)13(D )24t (D) 14(D ) 25

For fixed N\;; we now remove the regularization by
passing to the limit L — 0, in which case it is easy to
see that

n /1 1
detD — J] <———+———)
=1 \ L 2a;?

¢ Because we retain the virtual clouds about each point, the
sums over 7 and j run over all coordinates. For »=2, this sum
may be written as

11 2 1A 1
sipete)l =57

which is negative for any positive A=X\1;. Hence the represen-
tation (2) is valid for all A>0, and iF (g) will be analytic in the
cut ¢? plane, and real for positive g2 The simplest nucleon self-
energy correction,

2® (w),

constructed from F'5, will then be analytic in the cut w plane, and
real for real w*<m?, where m denotes the nucleon mass. These
properties are here guaranteed for any L>0, in contrast to the
previous situations in which the virtual-point clouds were omitted,
and where one finds clear violations of this cut structure; see,
e. g., H. M. Fried, Nuovo Cimento 52, 1333 (1967).

" This permutation sum may be displayed as the result of the
operation

(w1t ws?),

aifl- . 5% exp (3 ?; FiD™iifi) 110,

while the sum leading to (5) is given by
3\ 3\ a a
LYYy ... 2 1 (DY)
(afl) (af2) /s af”exp(z gfc(D— )uf-)lf:-o-
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while

(N TN
o Y (Y
Nii \L 20 L 2af

¥
so that

11 1
F(1[0]2[0],- - -p[0]) > g* X —— -, (4)

perm Ajg A3g n—1,n

0 2&2 -3/2
p— 2X (o2 - .
4t lg},gofo da (a)(1+L)

Equation (4) is just that function of # vertices and no
external boson lines which appears in the perturbation
expansion of the interaction £'=— gy, for a zero-
mass boson. The same steps go through for the finite-
mass case, with A;;! replaced in (4) by —iA.(xi—=;),
and for more general regularization, where L= in g is
replaced by the constant —7A.R5(0), which diverges
as the regularization is removed. Subsequent expressions
calculated in terms of the F(1[0],2[0],- - -,»[0]) of (4)
will have the divergences characteristic of the g
perturbation expansion; and it may well be that the
sensible method of calculating radiative corrections is
to complete all calculations before removing the regular-
ization.® Nevertheless, as a consequence of this modified
Fradkin procedure (MFP), the transcendental inter-
action serves, in this limit, to generate an equivalent
perturbative expansion with altered coefficients.
Consider, next, the same set of # points with external
boson lines attached to two points, say, x; and x,,
together with all possible virtual exchanges between
and for all # points; this is simply given by (1) with
V(¢(x1)) and V(p(x)) replaced by V’'(¢(x1)) and
V'(¢(x2)), respectively, where V'(z)=dV/dz. A com-
pletely analogous calculation goes through as before,
with a somewhat more complicated permutation sum
appearing’ than that of (3); in the limit L — 0, how-

where

8 The difficult question, not attempted in this paper, is to prove
that those interactions which vanish in the MFP limit, g — 0 as
L — 0, will have radiative corrections which vanish as L — 0,
when the regularization is removed at the last step of any arbi-
trarily complicated calculation. Since the terms of (4), defined
for \;;0, must generate the finite part of all radiative cor-
rections, one might expect that this is true. It can be verified in
simple examples, such as that of theory (b), where the g¢® order
nucleon-nucleon scattering amplitude vanishes with L according
to ~(L/2a0%)?%?/ (momentum transfer) using the MFP, and to
~g?L(L/2a¢?)3”? when regularization is retained until after the
appropriate Fourier transform is calculated. Similarly, the nucleon
self-energy function of the same order vanishes as ~gg®(L/2c0?)?
XInL under the MFP, in comparison with ~g*(L/2a,?)3”2 ob-
tained by holding the regularization until the last step. In these
examples, one finds just zero, regardless of the sequence of oper-
ations. If this apparent equivalence could be proved for all
radiative corrections, one would then be able, in principle, to
circumvent unnecessary calculation. If it is not true for all
radiative corrections, the MFP defined here is simply different
from a theory defined in terms of the usual regularization
procedure.

AND POLYNOMIAL
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ever, it simplifies down to

I’(l[l],ZEIJ,S[O], T ',11[0])’\' - %1g0) !
* day? * doy?
X / ———;X(af)- . / X(as?) [detD ] 12

o ans

XED (D a2 25 (D Vsar (D Nperyn,  (5)

perm

where the meaning of the permutation sum is the same
as in (3). This simplification occurs, as L — 0, because

DY~ (zl‘f"i—)_ly

2(152

and hence dominates any (D) =;. Thus, in this
limit we obtain

F([112[1]13[0],- - -,n[0]) — g1

1 1
XL — i, (6)

perm A34

n—1,n

which is just the form appearing in the corresponding
perturbation expansions of the interaction £’'= — gji¢f.
On the other hand, had both external boson lines ended
on the same point, say, x1, then V(p(x1)) of (1) is
replaced by V''(¢(x1)), where V" (z)=d*V (z)/dz?, and
we obtain just (3) with an extra factor of (D1)y; in
the limit L — 0 this yields

F(1[2]72[0]13[0]y v )n[o:]) - g2g1n—1

1 1 1
XE ————, (1)

verm A1p Azs An—i;n

0 2a2 —5/2
g2=go/ doz2X(a2) 2a2<1+—> .
0 L

If the integrals defining g; and g, exist, we may expect
ga~Lg, and hence

~(L/NFQAL]2L130],- - -m[0]).

Quite generally, for the interaction considered here,
processes with more than one external boson attached
to the same point will vanish, in the limit L -0,
relative to processes with only one external boson line
ending at any point, and the latter will be the obvious
generalizations of (6),

F(1[1]: 2[1]’ o ')1[11 l+1[0]: o ',%[0])
1 1

where

=g1" 2

perm N\ziq 749

®)

An—l.n
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These statements depend upon the existence of the
integrals

» D\ 3G+
guan/ o= f da?X () <2a2)l(1+7) :
0

which are the only restrictions we need put on x(a?)-
The ratio gi/go will always be given as a function of
the ratio ag?/L, and it is useful to consider some special
cases, as follows.

(a') U(Z2)=6'—22, 2=, X(a2)=6(a2_a02); and gl/go
vanishes as (L/2a?)*?in the MFP limit. If, incidentally,
ag~ L2, we get a finite variant of the exponential form
useful in removing gauge dependence of electromagnetic
currents, but modified to a quadratic dependence on
the boson field.? This provides one situation in which
the MFP is clearly sensible, since we certainly would
expect to obtain a polynomial interaction when ao— 0.

(b) UR)=1/(1+2%), x(a®)=ag 2"’ and again
g1/go vanishes, but this time more slowly, g/go
~(L/ag).

() U@@)=22/(142), x(e®)=—e"*"9/da?, and
here g1/go is finite as L — 0, gi/go— 1.

(d) U@ =2/(1+2), x(e)=ade¥**(9/3a’)?, and
g1/go diverges as 3a¢?/L. This situation is analogous to
that of an ordinary nonrenormalizable polynomial
interaction, where the degree of divergence increases
with the complexity of the process.

From these examples, it is clear that the ratio gi/go as
L— 0 is strongly dependent upon the form of U(2?),
which observation forms the basis for the equivalence
statements of Sec. ITI. It should also be noted that the
identical MFP can be defined for interactions of form
£'=—yU(ad®y, £&'=—W(a¢?), with appropriate
isotopic generalizations, but we defer consideration of
these interactions until Sec. III.

III. EQUIVALENCE

Because of the circumstance that the parameters L
and ag appear in the ratio ai®/L, it is possible to prove
a statement of equivalence between special non-
derivative transcendental and polynomial interactions.
Suppose we are dealing with &'=—yU (ai’¢?)¢, where
U(z?) has the property U(«)=C, a constant; then,

.under the MFP, £ is equivalent to an effective inter-
action Letf = —C¥¢, which just corresponds to a
fermion mass shift, mo—> me+C. Similarly, if we begin
with an interaction &'=—gwWoU (ad?)y, where
U(w)=C, a constant, then, under the MFP, £ is
equivalent to an effective interaction Lot = — (g0C W
Both statements are easily generalized to contain
isotopics. It may be noted that they are the general-
izations of example (c), and that they suggest a useful
corollary which relates to the remaining examples (and

9 As in the paper by F. Csikor and G. Pocsik, Nuovo Cimento
42, 1529 (1966).
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can be obtained directly from the proofs to follow):
Any U(2?) given as the ratio of two polynomials, or
reducing to such a ratio for large values of their argu-
ment, can be put into equivalent polynomial form. If
U(8*)=Nun(2%)/Dm(s), then Ues(3?)=Pn_m(3?), where
Ny, D, P, are polynomials of order #, m, and I, re-
spectively. These statements are true because, under
the MFP, the relevant parameter is ag?/L, and hence
ag*—> o is equivalent to L — 0. If, in the first case,
U(ai®¢?) — C as ai® — 0, we obtain just émo; and we
must recover the same result when L — 0 in the MFP.
The proofs for both cases may be sketched as follows,

(&) &= —PU(aid?)V
é é
PO[07,2007,- -,n[03>=exp(—%i-AcRez—-)
o) 0
X Ui (@)- - Uladd () om0y (©)

and one expects, from this form, # — C” in the limit
ao— «, where U (ag?¢?) — C.
Inserting the representation

oo
U=/ dw e"“""‘""[j'(w) ,

calculating the functional operations, reexpressing
U(w) in terms of U(z?), and performing the Gaussian
integrals, we obtain the result

F(1[0],2[0],- - -,»[0])

1 —1/2
)
+o0

+o0
X/ dle(zf)---/ d2,U (2.2)

= (27rozo2)‘"/2[det<

<enl=zp el (7)o o

Setting z;= (ao/+/L)é&i, this may be written as

L —1/2
(27r)—"/2[det<————):|
L
400 aOZ o0 aoz
X / d£1U(—212)7 . / denU(~5n2>
. o L el L
L =1
Xexpl =3 S & (—) | &, @
w2 o) o

and we now pass to the limit ag— o, U(«)=C, under
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the integrals which exist and give just

L —19—1/2
R PR
L+

so that F— C», as expected. Note that this is inde-
pendent of L/\;;.

To show the equivalence of this limit with the L— 0
limit of the MFP, we observe that

)

1 L/(L+N2) L/(LAAw)- -+
= | L/(L+Na1) 1 L/(LANg)- -+ | —
: 1
1
1
1

as L— 0. Thus

L 7 Ly
det( ) —1 and |:(————) :l — 55,‘,
L+ L4\ i

SO thart
(

and (11) becomes

+o0 2
(2#)_"I2[w dflU(a'Zoflz)

+o0 Oi()2
[ amv(Te) en-r T )

—o

1\V2 pteo aOZ n
Q) [y
2 e L

and the limit U (e )=C then yields C'=C. If external
boson lines are attached to any point, we will always
get extra factors of L/ag? which cause these amplitudes
to vanish; and hence we have demonstrated that
Lotf = —CyPy. Note that the constant C can be zero,
e.g., for U(z®)=¢"**; and therefore these interactions
are completely damped out under the MFP.

(12)

(B) &'=—igyse- mpU (ai?n?)= foI"-2U (23),
with

fo=go/a0, Ti=—tp(x)vswp(x:), z=arvsm.

TRANSCENDENTAL AND POLYNOMIAL
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The equation analogous to (10) is, with # even,

F1[0]1,2[0],- - -,n[0]) = (=i fo)" (2man®) "2

Lol (o) (i)

X/d%U(zl?)- . -/d"'an(znz) exp{i Z f;-2;

1 1 \7?
el
20?44 L+ ij

and we mneed only make the variable change
Zi= (ao2/L)1/2§,- and take the limit U((Otoz/L)fiZ) —C
as L— 0 to obtain

9
PU[0],200],- - -,[0]) — (~ifoC)"(1‘1-5f—)

1

} ,(3)

0
- (1‘"—) exp[—3a? X £i-£;(0\i)) ™ 0
of i

n

I Ty) 1Ty
=(gO)" 2 ( "‘< ),

perm A2

(14)

n—1,n

as expected. The generalization to the case of external
boson lines to produce forms similar to (6), (7), and
(8) is straightforward ; one must, however, assume that
alU' ()] a-=0, as is true for U(a)=N,(a)/D.(a).

If, in either case, U() is divergent, we produce the
singular forms illustrated in example (d). The sig-
nificance of the MFP may now be stated for the case
of purely boson interactions, £’ = —W (a?¢?). If W is a
polynomial, the limit L — 0 does not exist, correspond-
ing to the presence of divergent virtual-point processes
in every order (which sum to a divergent phase factor,?
distinct from but added to that of the ordinary closed
loops). There is also, in every order, finite dependence
upon the A;;, which remains and defines the nontrivial
theory (once the phase factor is recognized and re-
moved). In the polynomial case there is no need to
retain the virtual-point terms and they are conven-
tionally dropped by omitting all factor pairings at the
same point. On the other hand, for transcendental
interactions, when the MFP limit does exist, the virtual-
point processes are finite, in every order, but there is
nothing left over and all the )\;; dependence vanishes
with L. For such interactions the MFP gives finite
phases but no physics; or, for the interaction
&'=—ygU (a¢?)y, U(x) finite, just a fermion mass

10This statement is strictly true for the simplest quadratic
interaction, but must, in general, be amended to include the
possibility of further renormalizations. Thus, for a - interaction
of form £'=—\r4, (r)=0, £’ differs from the normal ordered
interaction —}\:w4: by the inclusion of the extra terms — A {r*)
—3\(#?):w?:, which correspond to a divergent phase and an
infinite bare mass factor, respectively.
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shift and nothing else. In order to have a nontrivial
theory for such interactions, within the MFP, one must
have an interaction which increases without limit for
large values of its argument.

IV. APPLICATION

A tentative application of these ideas may be made
for chiral theories of current interest, although we will
be forced to employ an approximation. Thus, the
Lagrangian of Chang and Girsey,! excluding the
symmetry-breaking term,

L= —P(v, 0, +mV (aysc =) W— (1/16a?) tr(3,V3,V1),

is too complicated for the present techniques because
of the derivatives appearing in the pion term; and so
we brutally replace the latter by —%(8,x)?%, which
destroys the chiral invariance of the procedure, but
makes a dynamical statement possible. We continue to
assume, however, that V(z) satisfies V(—z)=V1(2)
=V (2)", 2=aoys% =, and choose a general form which
satisfies this unitarity requirement,

14-12F (22)
1—1izF (2%) ’

with F real. It is simplest to consider £ = —mV ()¢
rather than to subtract off a mass term and use
(V(3)—1) for the interaction. Rationalizing, we have
V(z)=U(=2)+12U2(z?), with

2F
1422F2

1—22F2 (22)

= and U2 =
14-22F2(22)

If lim,o., 22F2(22)=§2, where £ denotes a non-
oscillatory limit, 0<#< o, then, according to the
MFP, these functions may be replaced by U,
=(1—-8)/(1+8)=C and U,*=0. Depending upon
the form chosen for F, C can take on any value between
—1 and +1, and hence this interaction is equivalent
to just a free, massive fermion field (of arbitrary parity
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convention). As expected, this result violates the chiral
symmetry and cannot yet be taken seriously; but it
raises suspicions as to the MFP dynamical content of
the complete theory. There could be nontrivial content
to the theory if the symmetry-breaking part of the
interaction diverges, in the 22— o limit, with sufficient
strength; there would then remain the problem of
disentangling the phases from the physics.

V. SUMMARY

It may be useful to summarize the observations of
this paper. For a nonderivative transcendental inter-
action and with the aid of regularization, the quantities
F(1[4],2[71,3[%k], - ) have been defined in a way
which guarantees the correct cut structure of the
lowest-order radiative corrections, and which exhibits
strong damping as the regularization is removed. Such
damping suggests a simple correlation between trans-
cendental and ordinary polynomial interactions with
modified coupling constants, in the MFP limit as the
regularization is removed. For an interaction even in
the boson field, U(a¢?), only a modified coupling
constant which diverges, or equivalently a divergent
value of U(), can correspond to a nontrivial theory
under the MFP; for an interaction odd in the boson
field, V'=_gowpU (ai’¢p?), a finite or divergent U(w) can
produce a nontrivial theory. The content of such non-
trivial possibilities has not been considered here, al-
though the special case U~z%, 22— o, [>0, yields an
iterative expansion similar to that given by the per-
turbation expansion of the polynomial interaction
U=2%

An approximate and highly tentative application of
the MFP to a class of chiral theories suggests that the
latter contains no dynamics, in the sense of being able
to generate nontrivial radiative corrections.
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