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Effect of a Degenerate Neutrino Sea on Electromagnetism~
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Modern cosmological theories imply the existence of a universal degenerate Fermi sea of neutrinos. The
fact that the Fermi energy Ez varies from theory to theory could, in principle, be used to help decide which
universe we live in. We show that a parity-violating term is introduced into Maxwell s equations as a result
of the neutrino sea. In particular, we study whether a new, meaningful limit on the Fermi energy can be es-
tablished by studying the propagation of light and the character of magnetic fields in such a neutrino sea.
Unfortunately, the solutions to these equations show that the eBect of the neutrino sea on electromagnetism
is too small to be observed.

INTRODUCTION be done because of the small size of the relevant
parameters.

I. MODIFIED MAXWELL EQUATIONS

As stated in the Introduction, the first derivation of
the neutrino-sea-dependent term in Maxwell's equations
is rather heuristic. This derivation is motivated by the
desire to add a parity-violating term to Maxwell's
equations consistent with the usual requirements of
Lorentz covariance and diff erential current conservation.

We assume that the neutrino sea is completely filled
at an absolute temperature of T=O' and thus char-
acterized only by the Fermi energy Ep. We define a
4-vector K~ so that it has components IS"=Kt, I=0 in
the rest frame of the neutrino sea; i.e., the frame in
which k space is filled symmetrically about the origin.
EI" then characterizes the neutrino sea in an arbitrary
frame. 4 We assume for simplicity that the extra term
depends linearly on E& and the electromagnetic held
tensor. We also exclude the possibility of derivative
terms. The motivation to search for an extra term with

parity opposite from the rest of the equation is based
on the hope that the parity-violating effects can be
more easily observed than those which do not violate
parity.

For reference, we write Maxwell's equations:

8 P"~=4~J" (1)
e„p)~8&Ii '&= 0. (2)

Kith the preceding remarks in mind, we see that the
two possible candidates for extra terms are the 4-vectors

EC F„, K F~&e, g~.

Thus the modified Maxwell equations which include
parity-violating terms are'

it F"o=4rrJ"+Crt'&K. F. .„ (3)

e p)~8&F~&=C2E~F g. (4)*Work supported by the U. S. Atomic Energy Commission.
t National Science Foundation Fellow.
' S. Weinberg, Nuovo Cimento 25, 15 (1962); Phys. Rev. 128,

1457 (1962).
e L. M. Langer and R. J. D. Moffat, Phys. Rev. 88, 689 (1952);

D. R. Hamilton, W. D. Alford, and L. Gross, iNd'. 92, 1521 (1953).' S. C. Curran, J. Angus, and A. L. Cockcroft, Phil. Mag. 40,
53 (I949).' J. Bernstein, M. Ruderman, and G. Feinberg, Phys. Rev.
132, 1227 (1963).

4Although we have speci6ed a particular frame in which the
neutrino sea is at rest, the dynamical equations are still Lorentz-
covariant.

The modi6ed equations with terms of the same parity included
would be

a„J.
'

t =47'J +CI~ »I FP,+TDIEgp"'

&aPby~~~ ~= C2E. ~ati+D2&aPby+ I
and
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' 'T has been pointed out by Weinberg' that modern
~ ~ cosmological theories imply the existence of a
universal degenerate Fermi sea of neutrinos. The fact
that the magnitude of the Fermi energy Ep varies from
theory to theory could, in principle, be used to help
decide which cosmology best describes our universe.

Weinberg's order-of-magnitude estimates for various
cosmologies are E&&10 "MeV for the evolutionary
cosmology, Ez&e ' " MeV for the steady-state
cosmology, and Kg&10 MeV for the oscillating
cosmology. Clearly, there is hope of detecting only the
Ep value for the oscillating cosmology. Analysis of
P-decay experiments' '~ indicate that if neutrinos are
degenerate E~&1000 eV, and if antineutrinos are
degenerate E~&200 eV.

In this paper, we investigate the propagation of light
in a degenerate Fermi sea of neutrinos with the purpose
of determining whether or not the anomalies caused by
the sea can be used to establish meaningful limits on
E~. Section I contains two different derivations of a
modification in Maxwell equations. The first is a
phenomenological derivation and the second is a more
detailed microscopic derivation. The two methods of
derivation are shown to be mutually consistent. Section
II contains a discussion of the solutions of the modified
Maxwell equations. The possibility of observing the
neutrino-sea-dependent terms is discussed. In order to
ensure clarity, detailed calculations have been relegated
to an Appendix.

The results point out what might have been sus-

pected in the first place. In the cases examined, the
extra term depends directly on the Fermi constant G.
Because of its small size, the extra term is masked by the
familiar electromagnetic effects. The experiment cannot
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Since J~ is arbitrary, this implies C2 =—0.
The modified equations now assume the form

a F"I'=47rJ"+Cia '&K F
e p)78t'E'&=0.

(5)

(6)

These equations are consistent with current conserva-
tion, which can be seen by contracting Eq. (5) with a".
The constant Cj will be determined in the microscopic
derivation.

By writing this out in the more familiar vector
notation,

v E=4~, v B=o,
vXE= OB/—at, vXB=4nJ+2CiB+-OE/at,

we see that the neutrino sea introduces a parity-
violating term in the induction law.

The microscopic derivation is based on elementary-
particle formalism. The object of the calculation is to
determine the first-order weak correction to the photon
propagator produced by the neutrino sea. Feynman
graphs for this process are shown in I'"ig. 1.The photon
propagator is altered because of the interaction of the
virtual e+—e pair with the neutrino sea. The formalism
is developed and the detailed calculation carried out in
the Appendix. The method of calculation is erst to
determine the modification of the electron propagator,
and then to use the modified electron propagator in the
usual calculation of the photon polarization tensor.
The result of the calculation is that the polarization
tensor is modified by the finite term

(GKp' 1 p g' )i~~"(q) = e'/ — ~"" q.+0/
E V2 9m4 EM,2l'

where we have evaluated E& in the rest frame of the sea.
In order to compare this with the first derivation and

The coefficients C~ and C2 are assumed to be constant,
which corresponds to assuming a constant spatial den-
sity of neutrinos in the universe. ' We can prove that
C&——0 as follows. Contract Eq. (4) with a . The left-
hand side of the equation vanishes identically, and we
have C2E~O F,q=o. Substitution of O'F q from Eq. (1)
into this expression yields

4xC2E'Jg =0.

II. DISCUSSIOH

The modified Maxwell equations are

v E=4irp, v B=o,
v XE= —as/at, vx B=4~J—KB+OE/at,

where we have set
E~= (K&,0)

and
e'G Eg'

~10 'rE~' (Ky in eV).E-
W2 9~4

Now we proceed as in any elementary text and solve
these equations in every possible way. Looking at the
static equations first, we see that it is only the magneto-
static equations that are affected by the anomolous
term. These equations are

v XS+KB=4~J, v B=O.

The solution is readily found by making the substitution
S=vXA EA. The equ—ation for A is —V'A —E'A
=4~J, with the condition V.A=O. The solution is

cosE j
x' —x

A(x') = d'x (x) .
4~/x'-x/

The solution for B, to first order in G, is then

B=vxAO —EAO,

d'x J(x)
Ao(x') =

4ir/x' —xf

to determine the constant C~, we use the fact that the
exact photon propagator satisfies

D„,(q) =D„.'(g)+D„.'(g) m'"D)„(g)

or

(D ')..=((D') ')..—~,.
The determinant of (D ')„„=((D') '),„—ir„„ then gives
the dispersion relations for the electromagnetic field.

If we now find the dispersion relations for the modified
Maxwell equations, they Inust be the same as the dis-
persion relations derived from the microscopic picture.
This is carried out in the Appendix, and we see that the
dispersion relations are identical if we set Ca= (G/~2)
X(E~'e'/18ir'). This determines the constant Ci and
shows that the two derivations lead to consistent results.

FIG. 1. Feynman diagrams for the 6rst-order neutrino-sea
contribution to the photon propagator.

' If C1 or E~ is a function of x, then we no longer have differential
current conservation.

This solution presents the interesting result that the
magnetic field from a localized static current should
have a term which drops off as 1/r instead of the usual
1/r'. To estimate the distance from the source where
such a term would be observable we simply assume that
the first term in 8 goes like 1/r' and the second like
E/r. When the terms are equal r=1/E. To discuss the
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feasibility of doing this experiment, we take a conserva-
tive value (compared to Weinberg's estimates) of
Eg= j. eV. This gives a result of r= 10" light years. An
experiment based on this would be out of the question,
since the age of the universe is believed to be only
about 10"year-.

Another possibility which suggests itself is that of
setting up an experiment in which the two parts of B,
namely, VXAO and EAO, are perpendicular to each
other. For example, one might set up a current in a
wire along the s axis, as in Fig. 2. Then Ao will be in the
s direction and vXAO in the (x,y) plane. The fact that
VXA0 and EAO are perpendicular might allow one to
measure EAO. Unfortunately, this is again impossible,
as is seen by comparing the two terms

E(g, )=10-» cm-t( g, I

J
vxA, (=Is, (/I.„,

where L is some laboratory-sized dimension, say, L= 1
cm. Thus

EIw, (/(jw, (/1.)=10- .
Thus we would be required to measure fields which are
10 times smaller than laboratory fields.

iJ

A
z 0

FIG. 3. Dispersion relations
for the right- and left-handed
polarization modes of free
electromagnetic propagation.

ttF„= p -kp

FIG. 3

Illustrated in Fig. 3 are the dispersion relations for the
two propagation modes. We see that col, is imaginary
for p&E and so the left-handed polarization mode
cannot propagate for p&E. This cutoff wavelength with
ER=1 eV is X,~1/P~1/E~10t2 light years. Any
attempt to put meaningful limits on E& by observing
the above dispersion relations would require rneasure-
ments of wavelengths the same order of magnitude as
X, and thus seems to be out of the question.

The fact that the two rotational modes have different
dispersion relations leads to the suggestion that one
may be able to observe the rotation of linear polariza-
tion. For example, if we polarize a beam along the x
direction at /= 0, its subsequent behavior will be

E=3p cos2 (o&R—cvz)t+ e„sin2 (teR —tdz)tf

XcosH(~R+a&r)t —Ps).

FIG. 2. Situation in which the
feasibility of measuring Ez in the
laboratory is discussed. xA

After a time T=m/(a&R —cvz), the polarization vector
will be in the y direction. For measureable wavelengths
we have E«p, so that

(p2+ Ep) 1/s~p+ 1E
~z= (p' Ep)'"=p —lE—

Therefore,

Another interesting case is provided by the propaga-
tion of light in a source-free region. The appropriate
equations are

v E=o, v B=o,
vXE= aB//at, vXB= BE—/at —EB.

A solution is easily obtained by assuming a wave to be
propagating in the s direction with frequency ~ and
wave number p. The divergence equations ensure that
E and B are in the x-y plane. The curl equations yield
the following results: There are two nondegenerate
eigensolutions, namely, the left- and right-handed
polarization modes. The usual degeneracy is destroyed
by the parity-violating term in the modified Maxwell
equations, so that each mode has its own dispersion
relation:

~R—~r, ——E and T~~/E 10"years.

Again, this is far beyond experimental feasibility.
The solution for the time-dependent Green's func-

tion is presented in the Appendix. The extra term in
Maxwell's equations affects the low frequencies in the
propagator through the same dispersion relation found
in source-free propagation. Thus, radiation from the low
frequencies in the source might exhibit properties
differing from the propagation with the usual dispersion
relation co'=p'. However, the problem is, as before,
that of detecting such low-frequency radiation.

Up to this point we have been concerned with the
photon or electron propagating through a stable Fermi
gas of neutrinos: i.e., ~F); =

~

F)out. We would now
like to consider the scattering of the photon off of the
sea. VVe will have an initial "in" state

ER= A )e,+i e„je'&&* "R''i

C0R =p +Ep
E =ALe, —ie„]e'i * " '&

coz.'= p' —Ep

BR———(ip/to) ER,

Bz= (ip/~)Ez

inYKX ~~)
consisting of a photon and the "vacuum" and a final
"out" state

out~ptst outepuso out YK'X'
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states with energy less than ICJ; are filled. These filled

states are just the neutrinos which comprise the neutrino
sea, . We then define a new vacuum

FIG. 4. Feynman diagrams for knocking a neutrino out of
the neutrino sea by a photon.

which consists of a photon, a neutrino, a hole, and the
vacuum. This is just the physical process of a photon
knocking a neutrino out of the Fermi sea. We can cal-
culate a lifetime for the photon this way by calculating
the total cross section to see how long it takes the photon
to scatter completely out of the initial beam. The
relevant Feynrnan diagram is presented in Fig. 4.

Using the formalism developed in the Appendix, the
calculation is straightforward, but tedious. The ex-

pression for the total transition rate out of the initial
state for low frequencies co(&m, is

o) EI."G'e4
A=—

324

For visible light with E) = 1 eV, the lifetime is T= 1/h.
i037 years.
If we assume the lifetime to be 10"years, which cor-

responds to the most distant light sources observed, we

get an upper limit on E&.

Eg(10' eV.

Unfortunately, this limit does not tell us anything
since much better limits have been established.

III. SUMMARY

We started with the assumption that the universe is
filled with a degenerate Fermi gas of neutrinos at zero
temperature. We have derived in two diferent ways a
neutrino-sea-dependent term which modifies Maxwell's
equations. The solutions which we studied lead to the
conclusion that the neutrino-sea-dependent terms are
too small to be observed. Any limit on EF which follows
from these solutions is much higher than limits already
established.
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where b~,t is the creation operator for a neutrino of mo-

mentum E and spin s.
We use the usual minimal electromagnetic interaction

and the current-current form of the weak interaction.
Although the weak interaction is CI'-, T-, and CI'T-in-
variant, our vacuum is not, because the neutrinos turn
into antineutrinos. This asymmetry allows effects such
as an e--e+ mass difference.

The neutrino field operator is

d'p (m)"'
(U„,e '*b„—,+V„.e' *d„.')

(2m.)'k Zl

For convenience in calculation, we make a canonical
transformation to neutrinos and holes, as follows. 7 We
define two new operators:

a„,=b„, (p)—E)),
c„=b„,t (p(Ep).

These new operators obey the usual fermion com-
mutation rules and have the virtue of destroying the
vacuum.

a„,~Fy=.„,~b&=O;

A(~) =2
d'p m '"

[t '„,e '""a 0(p ICF)—
(2ir)' E

y U„e "*c„,tS-(E, P)+ V„—,d„,te"*5

Using the above formalism, we calculate the neutrino
propagator

is,„(~—x') =(r~ Ty„(*)|t„(x')~r)

a„,t creates neutrinos and c„,~ creates holes. d~, ~ as
usual creates antineutrinos. In terms of these new

operators, the neutrino field operator becomes

I would like to take this opportunity to thank Pro-
fessor S. D. Drell for suggesting this problem and for
guiding the research with many helpful discussions.

d4p e iy ~ (x—x')—

(2ir)' P—m+ie

d4p e ip (x—x')—

(2')' 2p()

APPENDIX A

In this Appendix, we explain the formalism and use it
to derive contributions to the electron self-energy and
to the photon polarization tensor. is

X (p+m) 8(E) p)2irb(p p E—„). —

2. Electron Self-Energy

The weak interaction current-current Hamiltonian

1. Formalism

The only diGerence in the following formalism and the
usual formalism is that we assume that all neutrino 7 T. Kinoshito and Y. Nambu, Phys. Rev. 94, 598 (1954).
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~

~
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To zeroth order in g2/jjz2, we have

6
izr pp( t{)= p X3' copy a{i

42

and

Therefore

G;;(x)= ~ '"*G (p)
(2zr)'

d4p d4x

p'—J(x) iK—p XJ(x)
~~ —iy (x'—~)XeAPPENDIX 8

{p2)3—Xzj y( 3

X'pp. J(x)

p L(p ) —X2[p[ j

The solution for the time-dependent Green's function
of the modified Maxwell's equations is now explained.

We start with the equations

F~p —4'rJy +~0&aPP (81)
(82)

d4p p
—iy {x'—s)

Jo(x) .
(2~)' (-p')

e p),8~I'&=0. Ao(x') =4~

Equation (82) permits us to introduce a vector poten-
tial A&, where Ji&"={j"A& {j&A—" Equ. ation (81)becomes We can make this a little simpler by making a gauge

transformation:8 8&A" {j"{—{jA") =4zrJ" 'E—e'-" P({jpA —8 Ap) J(x)e—'& {"-'&
X(x') = yK2V, ,

+p2[(p2)2 —X3~ p~2$

A '(x) =A(x)+ Vs(x),

Now we choose to solve this in the Lorentz gauge
B„A&=G. The equations are then

p= 0, 8„8&Ap= 4m.Jp, (83)
z =1, 2, 3, a„a&A=42rJ —X(WXA). (84) BA(x)

A o'(x) =A o(*)—
These equations are solved by Fourier-transforming the
equations and inverting the operators. The solution of
Eq. (83) is well known:

Then
dp'dx4 —p'J(x) —iKpX J(x)—

e
—i@ (x'—x)A'(x') = 42r

(22r)' (p')' —K'(y
~

'
A o(x) = 42r d'x'G(x —x')J'o(x'),

d4p d4x
e—iy (x'-z)

—X' p'—
A o'(*') =4~where

(22r) 4 (p2)2—K2)p~2d4p p i' z—
G(x) =—

(2~) 4 p2 APPENDIX C

To first order, this result is independent of the electron
Af

mass and is the same as the result for the muon in a
p-neutrino sea.

The solution of Eq. (84) is a little more laborious. If we
assume that the solution is of the form

A, (x)= 42r d4x'G, ,(x—x')Jj(x'),

then G;,(x) satisfies

We now show the equivalence of the two derivations
of the modi6ed Maxwell equations; we do this by
showing that they both have the same dispersion rela-
tion. From Appendix 3, we have the dispersion relation
for the 6rst derivation:

pzt (p2)2 —X2~y~2)=0

or
(a„a S,,+X.;„jV.)G,,(x) =S;,S (x)

( p'b,;+iKe;,p )G;3(p—) = e;3.

To Gnd the dispersion relation for the second deriva-
tion, we must hand the poles of the modi6ed photon
propagator. YVe use the fact that

—p' —zXp3 +zXp2

Now we must invert p28;,+iKe;;—p considered as a
matrix in ij.

(D ')"=(Do ')..—~'.'
The dispersion relation is given by the determinant of
the matrix (Do ')„„—zr'„„,

jjzij +zKp3 p iXp2—

G'j(p)=(j~ )'= p 8ij zXeimjpm

(p2)2 —X2
~ p~

'

.—zXP2 +zXPz —P'

I

pz

det 0
0

.0

0 0
p' 'Ep'
iXp3 —p'
iKpz iKpz—

0
iKp2iKpz-
p2

p2L(p2)2 —X2
~ y ~

2)= Q

X'p'pj
which is identical to the dispersion relation obtained

p2$(p2)2 —X'~y~'j in the erst derivation.


